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Abstract

Stationarity is a common assumption in statistical inference when data come from a random

field, but this hypothesis has to be checked in order to avoid falling into nonsense regressions

and inconsistent estimates. In this thesis, consequences on statistical inference associated

with non-stationary random fields are shown, specifically due to a spatial unit root. A

statistical test to check a spatial unit root for spatial autoregressive models is built in the

frequency domain, and its asymptotic distribution found. Monte Carlo simulations are used

to obtain the small sample properties of the proposed statistical test, and it is found that

the size of the test is good, and the power of the test improves if the spatial autocorrelation

coefficient decreases. Additionally, we find that the size of our test is better than other spa-

tial unit root tests when the data generating process is not a spatial autoregressive model.

In order to get better small sample properties of the test when there is a spatial unit root

near to one, a Monte Carlo test is performed. Finally, two applications are done; first, the

Mercer-Hall dataset, which is one of the most analysed regular lattice data in the literature,

is studied. It is found that the data do not have a spatial unit root, although the dataset

is highly autocorrelated. And second, data of electricity demand in the Department of An-

tioquia (Colombia) are studied. Statistical evidence based on different tests suggest that

electricity consumption does not have a spatial unit root; therefore, parameter estimates are

sensible. Specifically, it is found that the price elasticity of electricity demand is -1.150 while

the income elasticity is 0.408.

Keywords: Stationarity, Random Fields, Spatial Unit Root Test, Spatial Autoregres-

sive Models, Periodogram, Covariance, Monte Carlo Simulation.

Resumen

La hipótesis de estacionariedad es un supuesto común cuando los datos provienen de una

realización de un campo aleatorio, pero esta hipótesis debe ser verificada para evitar caer

en problemas de regresiones sin sentido o inconsistencia de los parámetros estimados. En

esta tesis se muestran las consecuencias sobre la inferencia estad́ıstica asociadas a la no

estacionariedad de los campos aleatorios, espećıficamente debido a la presencia de una ráız

unitaria espacial. Se propone un estad́ıstico de prueba en el dominio de las frecuencias para

corroborar la presencia de una ráız unitaria espacial y se encuentra su distribución asintótica.

Se utiliza simulación Monte Carlo para obtener las propiedades para muestras pequeñas del

estad́ıstico propuesto, y se observa que el tamaño es bueno, y que la potencia del estad́ıstico

mejora si la autocorrelación espacial disminuye. Adicionalmente, se encuentra que el tamaño

de nuestra prueba supera al obtenido con otras pruebas para corroborar la presencia de una

ráız unitaria espacial cuando el proceso generador de datos no es un proceso espacial au-

torregresivo. Dado el objetivo de mejorar la potencia del estad́ıstico de prueba cuando se
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presenta una ráız espacial cercana a uno, se construye un estad́ıstico fundamentado en simu-

lación Monte Carlo. Finalmente se realizan dos aplicaciones, la primera consiste en el análisis

de los datos Mercer-Hall, los cuales son una de la base de datos más citada en la literatura

de datos en rejillas regulares, y se encuentra que las series en consideración no presentan

ráız unitaria espacial, aunque están espacialmente autocorrelacionadas. Y en la segunda, se

estudian los datos de la demanda de electricidad en el Departamento de Antioquia (Colom-

bia). La evidencia estad́ıstica fundamentada en diferentes pruebas indica que el consumo de

electricidad no tiene una ráız espacial unitaria; lo cual implica que los parámetros estimados

tienen sentido. Espećıficamente, se encuentra que la elasticidad precio de la demanda de

electricidad es -1.150, mientras que la elasticidad ingreso de la demanda es 0.408.

Palabras claves: Estacionariedad, Campos Aleatorios, Prueba de Ráız Unitaria Espa-

cial, Modelo Espacial Autorregresivo, Periodograma, Covarianza, Simulación Monte

Carlo.
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1 Introduction

“. . . Perhaps the foremost reason for studying spatial statistics is that we are

often not only interested in answering the “how much” question, but the “how

much is where” question.”

Schabenberger and Gotway (2005, pp 1)

In statistics, spatial analysis or spatial statistics include any of the formal techniques which

study entities using their topological, geometric or geographic properties.

Most authors applying statistical methods for spatial data agree that one of the key features

of this kind of data is the presence of spatial autocorrelation (Schabenberger and Gotway,

2005). This idea is summarized by a fundamental concept in geography which says that

nearby entities often share more similarities than entities which are far apart. This idea is

often labeled Tobler’s first law of geography and may be summarized as

“. . . everything is related to everything else, but near things are more related

than distant things.”

Tobler (1970, pp 237)

Given this fact, it is necessary to establish a series of statistical tools in order to handle this

kind of characteristic. Technically, the data generating process in space is seen as a random

field (see Chapter 2). This means that a sample of size n in the space represents a single

realization of a random experiment; a sample of size one from a n-dimensional distribution.

The classification in spatial statistics is characterized by the nature of the spatial domain

(Cressie, 1993) where the spatial domain is a subset in Rd. Typically, these data fall into

three categories: geostatistical data, regional data (lattice data) and point pattern data. In

geostatistical data and regional data the domain is fixed (the points in a subset of Rd are

non-stochastic) but regional data are characterized by a discrete domain and geostatistical

data by a continuous domain. On the other hand, the important feature of point pattern

data is the random domain.

The principal concern in this dissertation is related to regional data; specifically, unit root

processes in the spatial domain and the implications of assuming weak stationarity. In this
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context, where a simultaneous spatial autoregressive model is assumed with a row standard-

ised contiguity matrix, a spatial unit root process is characterized by a spatial autocorrelation

coefficient equal to one. This implies that the spatial impulse response function will not tend

to zero as the distance between a pair of locations tends to infinity. This phenomenon means

that the process is not stationary because its mean and variance depend on the absolute lo-

cation of the spatial units (see Chapter 2).

This topic is important because omitting spatial effects in the estimation process causes

inconsistency in the parameter estimates (Anselin, 1988), and regressions between non-

stationary spatial series leads to nonsense outcomes. Specifically, Fingleton (1999) shows

some analogies between time unit root processes and spatial unit root processes. In his pa-

per is evidenced through simulation exercises that the variance of spatial autoregressive unit

root processes depends on locations, and also, this tends to increase with an increment in

the sample size. Additionally, the author shows how regressions between spatial autoregres-

sive unit root processes generate nonsense outcomes. These outcomes are similarly found

by Lauridsen and Kosfeld (2006, 2007), and equally, we achieve them in this dissertation.

On the other hand, given a spatial autoregressive process with row standardised contiguity

matrix, the spatial autocorrelation parameter should be between 1/ωmin and 1, where ωmin
is the smallest negative eigenvalue of the contiguity matrix (Ord, 1975; Anselin, 1982). This

condition is strongly related to weak stationarity of a random field. Specifically, a spatial

autocorrelation parameter in this range is necessary to ensure weak stationarity but is not

sufficient due to edge and corner effects (Haining, 1990).

Although Mur and Tŕıvez (2003) and Paelinck et al. (2004) warn about the application of the

concept of unit root in the spatial context, there is a fact that is undeniable, a collection of

data in the space is just one realisation of a random field. The implications are formidable:

how does a researcher learn anything about the statistical properties of a random field if

only a single realisation is available? Thus, it is necessary to develop statistical tests that

contribute to check the stationarity hypothesis.

Regional data is the nearest spatial category to time series; although most work has been

done to test the non-stationarity hypothesis in time series (Priestley and Rao, 1969; Dickey

and Fuller, 1979; Phillips and Perron, 1988; Kwiatkowski et al., 1992), which is a single

realization of a random process in one dimension. There is not much literature about formal

procedures to test stationarity in spatial stochastic processes (Fuentes, 2005). However, this

is an old subject since Whittle (1954) put it in discussion.

Bhattacharyya et al. (1997) and Baran et al. (2004) develop asymptotic inference for near

unit process in the spatial autoregressive model z(s1i, s2j) = αz(s1i−1, s2j) + βz(s1i, s2j−1)−
αβz(s1i−1, s2j−1)+ε(s1i, s2j) which can be considered as being very simple because this model
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can be reduced to two one-dimensional autoregressions, (1 − αL1)(1 − βL2)z(s1i, s2j) =

ε(s1i, s2j) where L1z(s1i, s2j) = z(s1i−1, s2j) and L2z(s1i, s2j) = z(s1i, s2j−1). Paulauskas

(2007) considers the unit root case in the autoregressive model z(s1i, s2j) = αz(s1i−1, s2j) +

βz(s1i, s2j−1) + ε(s1i, s2j). This author shows that the growth of variance of the process

depends on the dimension of the lattice. Baran and Pap (2011) analyse the spatial autore-

gressive model z(s1i, s2j) = αz(s1i−1, s2j) + βz(s1i, s2j−1) + γz(s1i−1, s2j−1) + ε(s1i, s2j) in the

unit root case, and find the limiting distribution and the rate of convergence of the least

square estimator. It can be seen from the previous formulations that these models do not

incorporate all the possible spatial interactions that z(s1i, s2j) could have. Fingleton (1999)

is the first author that introduces the concept of a unit root in regional data where all pos-

sible spatial interactions are considered. This author illustrates its implications via Monte

Carlo simulations. He finds that a unit root leads to spurious spatial regression, like in the

well known case of time series, and demonstrates that Ordinary Least Square estimation of

spatial error correction models is not consistent. This author postulates the Moran’s test as

a diagnostic indicator of the presence of a unit root in spatial context. Specifically, Fingleton

(1999) performs a Monte Carlo experiment in which a couple of independent Spatial Autore-

gressive processes are generated (see Chapter 2). These two spatial processes are used to

conduct bivariate regressions, and the t-ratios for the null hypothesis of no relation between

the processes are recorded. This author shows that when there are spatial unit root pro-

cesses, the empirical size of the statistical test is considerably bigger than the nominal size,

and this problem worsens if the sample size increases. This phenomenon implies a spurious

relation between independent variables. Therefore, the author proposes the Moran’s test for

regression residuals as a diagnostic indicator of the presence of a spatial unit root. But there

is one open question in his article: the null hypothesis in the Moran’s test is not spatial

autocorrelation, so rejecting the null hypothesis means autocorrelation or non-stationarity.

Recently, there has been an increasing interest in analysing spurious spatial regression when

there is a near unit root process (ρ = 1 − 1/ψ, ψ → ∞). Specifically, Lee and Yu (2009)

and Baltagi and Liu (2010) investigate spurious spatial regression where the regressant and

regressors may be generated from possible non-stationary processes. The former find that

with a row-normalized spatial weights matrix, the possible spurious regression phenomena

in the spatial setting are weaker than those in the non-stationary time series case. The

latter study the case where the weight matrix is normalized and has equal elements, it is

shown that the spurious spatial regression does not occur in a spatially autoregressive model.

Actually, the asymptotic distribution of the OLS estimate converges to its true value zero.

Additionally, Lee and Yu (2007), Martellosio (2010) and Roknossadati and Zarepour (2011)

have studied properties of different mechanisms to estimate spatial unit root processes when

there is a spatial effect parameter near to unity.

With regard to statistical tests to check stationarity in random fields, we can do a taxonom-
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ical classification. A first approximation can be done by the nature of the spatial domain.

Specifically, Guan (2008) develops a statistical test to check stationarity for spatial point pro-

cesses. This test is based on the integrated squared deviations of observed counts of events

from their means estimated under stationarity, and the convergence of their partial sum pro-

cesses. On the other hand, Bose and Steinhardt (1996), Ephraty et al. (2001), Mateu and

Juan (2004) and Fuentes (2005) develop statistics to test stationarity for geostatistical data.

Bose and Steinhardt (1996) build a statistic based on the covariance structure of the process

to test stationarity. In particular, the centrosymmetric property is used which is exhibited by

the sample covariance matrix of spatially stationary fields sampled at a uniform linear array.

The centrosymmetric property reflects the fact that the operations of reversing the indexing

of the elements do not alter the correlation matrix as long as spatial stationarity holds. The

authors use invariance principles to ensure that the tests have constant significance under

the null hypothesis of a stationary Gaussian Random Field (see Chapter 2). Specifically,

they use the maximum eigenvalue test, the determinant test and the trace test associated

with the projection onto the row space of subvectors of the measured random field. Ephraty

et al. (2001) develop a statistical test to check stationarity in spatio-temporal geostatistical

data. This test is based on the spatial cumulant spectrum, its properties in the stationary

case and the assumption of temporal ergodicity of the measured random field. Under the

null hypothesis of a Gaussian Random Field, the asymptotic distribution of their statistical

test is proportional to a Chi-square distribution with known degrees of freedom. Mateu and

Juan (2004) develop a statistical test based on the spectral representation of a non-stationary

random field. The practical implementation of the test, given a spatial process sampled at

regularly spaced data, is the following: First, select a number of subregions with equal sizes.

Then, for each subregion, estimate the tapered periodogram. Third, estimate the coefficients

(intercept and slope) of the regression log(I in(ξ1, ξ2)) = β0i +β1ilog(‖ξ‖) + εi where I in(ξ1, ξ2)

is the periodogram at frequencies ξ1 and ξ2 for subregion i, ‖ξ‖ is the Euclidean norm, εi
is a stochastic perturbation and β0i and β1i are coefficients to be estimated. Finally, cal-

culate the statistical test to check any difference between the parameters estimates in each

subregion. Any statistical difference implies that the random field is not stationary. Finally,

Fuentes (2005) uses the concept of evolutionary spatial spectrum, which means that the

spatial spectral density function varies in space. The proposed method consists in testing

the homogeneity of a set of spatial spectra evaluated at different locations. In particular,

the evolutionary spatial spectral density is estimated at n nodes that constitute a systematic

sample of all locations in a regular grid, and given the asymptotic results in the paper, the

test to check stationarity is reduced to a simple two-factor analysis of variance of spectral

estimates at different locations. In the context of regional data, Bhattacharyya et al. (2000),

Lauridsen and Kosfeld (2004, 2006, 2007) and Beenstock and Felsenstein (2008) have pro-

posed statistical tests to check non-stationarity associated with a spatial unit root process.

Bhattacharyya et al. (2000) propose two statistical tests to check stationarity in the pro-

cess z(s1i, s2j) = αz(s1i−1, s2j) + βz(s1i, s2j−1) − αβz(s1i−1, s2j−1) + ε(s1i, s2j). Specifically,
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given the testing problem H0 : α = β = 1 versus H1 : 0 < α, β < 1 a periodogram test

φn = 16π2I(ξ1, ξ2)/(σ2n4)
d−→ 3χ2

2 is postulated. Once a significance level is established, a

decision can be taken . Additionally, a spatial domain test ψn = n3/2(θ̂− (1, 1)′)
d−→ N (0,Γ)

where Γ = diag(2, 2) for testing H0 : α = β = 1 is also proposed. It is found that the

asymptotic power of the spatial test is one and over performs the power of the periodogram

test. This outcome is due to the parametric test (ψ) performing better under the assump-

tions of the parametric models. However, the advantage of the periodogram test is that the

periodogram can always be computed and is less sensitive to model assumptions. Lauridsen

and Kosfeld (2004) propose a Wald test based on the maximum likelihood estimation. Their

proposal resembles the Dickey-Fuller approach applied to time series. However, it is known

that (1− ρ̂)/ŝ.e.(ρ̂) does not converge to the standard normal or t distribution under the null

hypothesis of a spatial unit root process, i.e. ρ = 1. Thus, a Monte Carlo simulation is used

to deduce the distribution of the statistical test. It is seen from the simulation exercises that

the critical limits of the Wald test under the null hypothesis are higher than for the χ2
1 distri-

bution. Additionally, Lauridsen and Kosfeld (2006) propose a two-step Lagrange Multiplier

test to check spatial non-stationarity. In the first step, the LM error statistic developed by

Anselin (1988) is used to test the null hypothesis of no spatial autocorrelation. Therefore, a

large statistic value indicates either a spatial unit root process or a stationary spatial auto-

correlated process. In the second step, it is proposed to make the regression using the spatial

differenced process, ∆z(s1i, s2j) (see Chapter 4). If there is a spatial unit root in the original

process, the differenced process is a white noise process, so that the LM error test statistic

for this spatially differenced model will be close to zero. On the other hand, if the null hy-

pothesis of non-stationarity does not hold, the errors resulting from spatial overdifferencing

are expected to go along with a positive differenced LM value. Lauridsen and Kosfeld (2007)

generalize this procedure by incorporating control for unobserved heteroscedasticity through

a Lagrange Multiplier test developed by Anselin (1988) which adjusted for unobserved het-

eroscedasticity. Recently, Beenstock and Felsenstein (2008) point out that if the residuals

contain a spatial unit root, the regression coefficient estimates will be nonsense rather than

spurious.1 Beenstock and Felsenstein (2008) develop a spatial “Dickey-Fuller” test under

the null hypothesis of a spatial unit root, and find its empirical distribution through Monte

Carlo simulations. These authors establish in a spatial autoregressive model that a spatial

unit root process is generated by an autoregressive coefficient equal to the reciprocal of the

number of neighbours.2 Therefore, these authors perform Monte Carlo exercises where spa-

tial unit root processes are simulated. Then, they use these synthetic datasets to estimate

spatial autoregressive models by maximum likelihood. After that, they build the empirical

distribution of the spatial autoregressive coefficient estimates, but they have to truncate the

1Spurious regression is induced by the fact that the mean of the series increases or decreases with the
domain. Nonsense regression is induced by the fact that the variance increases with the domain.

2This outcome assumes that the contiguity matrix is based on a binary criteria. However, this argument
leaves out edge and corner effects (Haining, 1990).
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distribution because they obtain coefficient estimates greater or equal to the upper limit of

stationarity. Finally, they report the critical values from the truncated distribution. There-

fore, if an estimated coefficient in a spatial autoregressive model is greater than the critical

value at some significance level, the null hypothesis of a spatial unit root cannot be rejected.

It can be helpful to do a taxonomical classification by domain. In this way, the statistical

tests to check stationarity based on the spatial domain are: Bose and Steinhardt (1996), Lau-

ridsen and Kosfeld (2004, 2006, 2007), Beenstock and Felsenstein (2008) and Guan (2008).

On the other hand, the statistics based on the frequency domain are: Bhattacharyya et al.

(2000), Ephraty et al. (2001), Mateu and Juan (2004) and Fuentes (2005). The most im-

portant advantage of the statistical tests in the spatial domain is that these statistics over

perform the power of the periodogram tests under the assumption of the parametric model.

However, the advantage of the periodogram tests is that the periodogram can always be

computed and they are less sensitive to model assumptions. Unfortunately, conventional

estimation of the spectral density function through the periodogram is based on a regular

lattice. And, we have not found any application of stationarity tests on irregular lattices or

regional data. So, one of the most important contributions of this dissertation is to propose

a spatial unit root test based on the frequency domain and use it to check stationarity in

regional data.

If we think about the disadvantages of the statistical tests to check stationarity of random

fields, we can find some limitations associated with them and their possible application in

regional data. Specifically, the asymptotic distribution of the statistical test proposed by

Guan (2008) is based on the convergence of a partial sum of its integrated squared deviations

of observed counts of events from its mean. This asymptotic outcome is based on a result

given by Ivanoff (1982), and unfortunately, we have not found this theorem for regional data.

Additionally, this test is based on the concept of a two-dimensional Brownian motion, so

the test is sensitive to the determination of an initial point. The test proposed by Bose and

Steinhardt (1996) is sensitive to the property of centrosymmetry which is exhibited by the

sample covariance matrix of a spatially stationary field sampled at a uniform linear array.

Thus, it can be used to test stationarity in regular lattices but not on regional data. On the

other hand, Ephraty et al. (2001) argue that their test can be applicable to an arbitrary ge-

ometry; however, they do not show this extension in their paper. But, this is not the biggest

restriction in this test; the biggest restriction is that it is necessary to have spatio-temporal

data to build the test. The statistical tests proposed by Mateu and Juan (2004) and Fuentes

(2005) are implemented in regular lattices and are based on the concept of an evolution-

ary spectrum; this concept can be complicated and implies a big computational burden.

Although these tests are based on the periodogram, which is a nonparametric estimator,

there are some assumptions about the family of the spectral density function. Specifically,

these statistics assume a Matér spectral density function. The statistical methodology used
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by Bhattacharyya et al. (2000) to propose their statistic is too related to the methodology

that we use to build our statistical test. However, there is a big difference: our model is a

simultaneous spatial autoregressive model; while the model proposed in Bhattacharyya et al.

(2000) does not include all the possible multilateral effects. The tests proposed by Laurid-

sen and Kosfeld (2004, 2006, 2007) and Beenstock and Felsenstein (2008) can be applied to

regular and irregular data. However, the statistical test proposed by Lauridsen and Kosfeld

(2006, 2007) is based on a two-step strategy; therefore, the second stage is conditioned on

the conclusion from the first stage. This implies that the overall type I error of the test will

grow. Finally, there is a problem with the procedure proposed by Lauridsen and Kosfeld

(2004) and Beenstock and Felsenstein (2008); they use Maximum Likelihood to estimate the

spatial autoregressive coefficients, but it is known that under the null hypothesis of a spatial

unit root, the probability distribution function of a spatial autoregressive field degenerates

to zero (Anselin, 1982). Specifically, the asymptotic ML estimates will only hold if the reg-

ularity conditions for the log-likelihood function are satisfied. This statement is not fulfilled

under the null hypothesis.

The main objectives of this thesis are the following:

• Show the consequences on statistical inference associated with non-stationary random

fields, specifically due to a spatial unit root.

• Propose a statistic to test the null hypothesis of a spatial unit root in spatial autore-

gressive models and find its asymptotic distribution.

• Use a Monte Carlo statistical test as a tool to improve the finite sample performance

of the theoretical test.

• Perform Monte Carlo simulations to obtain the small sample properties of the statistical

test.

• Apply the spatial statistical methodology which is proposed, and specifically, the statis-

tic to test the null hypothesis of a spatial unit root in particular datasets. Specifi-

cally, the Mercer-Hall data and the electricity demand in the Department of Antioquia

(Colombia) are used.

The main achievements in this dissertation is proposing a statistic to test the null hypoth-

esis of a spatial unit root random field, and showing its asymptotic distribution under the

null hypothesis (Theorem 1). Additionally, we extend the test to cover a generalised spa-

tial autoregressive process (Theorem 2). This theoretical development contributes to spa-

tial statistics, and specially regional data analysis, because stationarity of the random field

which generates a specific realization of lattice data is an implicit assumption that needs to

be checked.
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With regard to the test, it is found that the size of the test is closer to the nominal size as

the sample increases, and also, the power of the test improves if the spatial autocorrelation

coefficient decreases. Although other spatial unit root tests over perform our test in some

circumstances when the data generating process is a spatial autoregressive process, our test

gets the best size when the data generating process is not a spatial autoregressive process.

In applications, we find that the Mercer-Hall data do not have a spatial unit root, although,

this dataset is highly autocorrelated. With regard to the electricity demand in the Depart-

ment of Antioquia (Colombia), all tests indicate that there is no spatial unit root in the

electricity consumption. Additionally, we find that our test is robust to different schemes

of discretisation of regional data. Therefore, the elasticity estimates are sensible, and imply

that an increment of 1% in electricity price means a reduction of 1.150% in electricity con-

sumption, while the income elasticity is 0.408.

In the next chapter, some elements of discrete random fields are given. Specifically, the

representation of a bi-dimensional random field in the spatial and frequency domains is

shown, and the relation of a pure spatial autoregressive process and its representation in the

frequency domain is highlighted. Chapter 3 examines some consequences in the statistical

inference because of a non-stationary spatial unit root process. In Chapter 4, a statistic

is proposed to test the null hypothesis of a spatial unit root random field, its asymptotic

distribution is found, and some Monte Carlo simulations are performed to analyse the small

sample properties. In order to get better small sample properties, a Monte Carlo statistical

test is proposed. Chapter 5 shows some applications, and the final chapter summarises key

research issues and postulates some future research.



2 Some theory: an introduction to

discrete random fields

This section is strongly based on Cressie (1993), Billingsley (1995), Ripley (2004) and Sch-

abenberger and Gotway (2005).

Given a complete probability space (Ω,F ,P) and D ⊆ Rd a topological space, then a
measurable mapping z(s, ω) : D×Ω→ Rn is called a vector valued random field (Adler and
Taylor, 2007). This means that each component z(s, ω), which is located in s, is an outcome
of a random experiment ω ∈ Ω where a particular realization produces a surface z(. , ω). As
a consequence, the collection of n indexed observations that make up the dataset do not
represent a sample of size n. They represent a single realization of a random experiment;
a sample of size one from a n-dimensional distribution. In this context, the concept of
stationarity is very important. Specifically, given ω ∈ Ω, a random field z(. , ω) is called a
strong stationary field if the spatial distribution is invariant under translation of the index,
i.e.,

Pr(z(s1) < z1, z(s2) < z2, ..., z(sn) < zn) = Pr(z(s1 + h) < z1, z(s2 + h) < z2, ..., z(sn + h) < zn) (2.1)

for all n and h.

A strong stationary random field repeats itself throughout the domain. But this is a strin-

gent condition; most statistical methods for spatial analysis are satisfied with stationary

conditions based on the moments of the spatial distribution.

Weak stationarity of a random field implies that CovΩ[z(s, ω), z(s + h, ω)] = C(h) and

EΩ[z(s, ω)] = µ. The mean of a weak stationary random field is constant and the covariance

between attributes at different locations is only a function of their separation h, this implies

that the variance of a weak stationary process is constant. Weak stationarity reflects the

lack of importance of absolute position. Strong stationarity implies weak stationarity but

the converse is not true.

If z(. , ω) is not weak stationary, the increments ∆(z(. , ω)) might be, where

∆(z(. , ω)) = {z(s, ω)− z(s + h, ω) : s,h ∈ D ⊂ Rd, ω ∈ Ω} (2.2)

A process that has this characteristic is said to have intrinsic stationarity.



2.1 Bi-dimensional discrete random fields in the spatial domain 11

Statistical analysis becomes much simpler if the process is assumed to be stationary. How-

ever,

“. . . Analysing observations from a stochastic process as if the process were

stationary -when it is not- can lead to erroneous inferences and conclusions.”

Schabenberger and Gotway (2005, pp 42)

In the case of regional (lattice) data, the spatial domain is fixed and discrete. This means

that a regional spatial process in the plane has the following representation:

{z((s1i, s2j), ω)|(s1i, s2j) ∈ D a countable set ⊂ Z2, ω ∈ Ω : D × Ω→ R} (2.3)

This representation is very abstract and reveals little about the structure of the random field

under study. Thus, it is necessary to represent it in another way, specifically, the random

field may be formulated in the spatial domain or in the frequency domain. The distinction

between spatial and frequency representation depends on whether the process is expressed

in terms of functions of the observed coordinates, or in terms of a random field contained in

a space consisting of frequencies.

2.1 Bi-dimensional discrete random fields in the spatial

domain

One of the most useful representations in the spatial domain is the simultaneous spatial

autoregressive (SAR) model.1 This model has been extensively studied by Whittle (1954);

Ord (1975); Anselin (1988); Haining (1990); Fingleton (1999); Lauridsen and Kosfeld (2004,

2006, 2007) and Beenstock and Felsenstein (2008). One possibility of its popularity is that

the simultaneous spatial autoregressive model is narrowly related to the Autoregressive time

series model. For instance, the latter model is not stationary if the autocorrelation coefficient

is equal to one; this property is present in the spatial analogue. Another important point

that supports the idea of studying the SAR representation is that a simultaneous spatial

autoregressive model or a simultaneous spatial moving average model might cause spatial

autocorrelation. However, a manifestation of spatial non-stationarity is only attributed to a

SAR representation, and this phenomenon is of principal interest in this thesis. Specifically,

the spatial unit root autoregressive model.

The formulation of a simultaneous spatial autoregressive model is the following. µ(s1i, s2j)

denotes the mean of the discrete random spatial process at location (s1i, s2j). Thus z(s1i, s2j)

1In the following a given realization ω ∈ Ω is assumed.
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is thought to consist of the mean contribution, contributions of the neighbouring sites, and

a random noise ε(s1i, s2j), which is uncorrelated. Then for a row-column lattice,

z(s1i, s2j) = µ(s1i, s2j) +
∑
h1

∑
h2

bij,h1h2(z(s1i±h1 , s2j±h2)− µ(s1i±h1 , s2j±h2)) + ε(s1i, s2j) (2.4)

where h1, h2 = 0, 1, . . . , and coefficients bij,h1h2 describe the spatial connectivity of the sites.

These coefficients govern the spatial autocorrelation structure, but not directly. The re-

sponse at sites (s1i, s2j) and (s1i±h1 , s2j±h2) can be correlated, even if bij,h1h2 = 0.

A weak stationary random field is characterized with a constant mean, but if the mean

changes with location, this one is called the large-scale structure in data, and by definition

the random field is not stationary. The idea is not to associate stationarity properties with

the attribute z(s1, s2), but with its de-trended version, i.e., the process without the large-

scale structure. Then, it is supposed that µ(s1i, s2j) = x(s1i, s2j)
′β and [bij,h1h2 ] = ρW.

Where x(s1i, s2j)
′ is a 1 × k vector of regressors, β is a k × 1 vector of parameters, ρ is a

scalar that has to be estimated and W is a user defined spatial connectivity matrix whose

dimension is n × n, where n = rc, r and c are number of rows and columns, respectively.

This matrix induces the spatial covariance structure of the model. Thus,

z(s1i, s2j) = x(s1i, s2j)
′β + ρ

∑
z(s1l,s2k)∈N(i,j)

wij,lk(z(s1l, s2k)− x(s1l, s2k)
′β) + ε(s1i, s2j) (2.5)

where N(i, j) is the set of neighbours of z(s1i, s2j), i = 1, 2, . . . , r and j = 1, 2, . . . , c.2

If the following notation is adopted:

z =



z(s11, s21)

z(s11, s22)
...

z(s12, s21)
...

z(s1n, s2n)


,X =



x1(s11, s21) x2(s11, s21) . . . xk(s11, s21)

x1(s11, s22) x2(s11, s22) . . . xk(s11, s22)
...

... . . .
...

x1(s12, s21) x2(s12, s21) . . . xk(s12, s21)
...

... . . .
...

x1(s1n, s2n) x2(s1n, s2n) . . . xk(s1n, s2n)


,β =


β1

β2

...

βk

 ,

2Observe that this last representation is not only for regular lattices, it can also represent regional data
where the number of regions are n.
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e =



e(s11, s21)

e(s11, s22)
...

e(s12, s21)
...

e(s1n, s2n)


, ε =



ε(s11, s21)

ε(s11, s22)
...

ε(s12, s21)
...

ε(s1n, s2n)



The process can be expressed in matrix form as

z = Xβ + ρW(z−Xβ ) + ε (2.6)

then

(I− ρW)(z−Xβ ) = ε (2.7)

which implies that

z = Xβ + (I− ρW)−1ε (2.8)

or equivalently

z = Xβ + e (2.9)

where

e = ρWe + ε (2.10)

It follows that E[z] = Xβ and V ar[z] = σ2(I− ρW)−1(I− ρW′)−1 given that E[ε] = 0 and

V ar[ε] = σ2I. Note that (I− ρW) should be non-singular, this imposes restrictions on the

value of ρ. If W is row standardized, so that the influence of neighbours can be represented

in terms of averages, then 1/ωmin < ρ < 1, where ωmin is the smallest negative eigenvalue of

W (Ord, 1975; Anselin, 1982). This condition is strongly related to weak stationarity of a

random field. Specifically, ρ in this range is necessary to ensure weak stationarity but is not

sufficient due to edge and corner effects (Haining, 1990). Additionally, we can observe that
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the impulse response function of the spatial autoregressive process is the following,

∂z

∂ε
=



∂z(s11,s21)
∂ε(s11,s21)

∂z(s11,s21)
∂ε(s11,s22)

. . . ∂z(s11,s21)
∂ε(s1n,s2n)

∂z(s11,s22)
∂ε(s11,s21)

∂z(s11,s22)
∂ε(s11,s22)

. . . ∂z(s11,s22)
∂ε(s1n,s2n)

...
... . . .

...
∂z(s12,s21)
∂ε(s11,s21)

∂z(s12,s21)
∂ε(s11,s22)

. . . ∂z(s12,s21)
∂ε(s1n,s2n)

...
... . . .

...
∂z(s1n,s2n)
∂ε(s11,s21)

∂z(s1n,s2n)
∂ε(s11,s22)

. . . ∂z(s1n,s2n)
∂ε(s1n,s2n)


= (I− ρW)−1 (2.11)

If there is a spatial unit root process, i.e., ρ = 1, the impulse response function will not

tend to zero as the distance between a pair of locations tends to infinity (Beenstock and

Felsenstein, 2008). Thus, to analyse the case ρ = 1 is important because this condition

implies that the random field is not stationary. Observe that although wij,lk = 0, it could

happen that Cov[z(s1i, s2j), z(s1l, s2mj)] 6= 0.

With respect to the mechanisms to estimate spatial models, we have that the Ordinary Least

Square estimate of ρ in a pure first order spatial autoregressive model, i.e., z = ρWz + ε is

the following (Anselin, 1988):

ρ̂ = ((Wz)′(Wz))−1(Wz)′z (2.12)

thus

ρ̂ = ρ+ ((Wz)′(Wz))−1(Wz)′ε (2.13)

Asymptotically, the consistency of this estimator depends on the following two conditions:

n−1((Wz)′(Wz))
p−→ Q (2.14)

n−1((Wz)′(ε))
p−→ 0 (2.15)

where Q is a finite and non-singular matrix.

Whereas the first condition can be satisfied with the proper structure of the spatial weight

matrix, the second condition does not hold in the spatial case. Indeed,

n−1((Wz)′(ε)) = n−1ε′Bε (2.16)
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where B = (I− ρW′)−1W′.

The presence of the spatial weight matrix in this expression results in a quadratic form in

the error term. Therefore, except in the trivial case where ρ = 0, this expression does not

converge in probability to zero (Anselin, 1988). Consequently, the Ordinary Least Square

estimator is inconsistent, irrespective of the properties of the error term.

On the other hand, if it is assumed ε ∼ N (0, σ2I), then using the change of variable technique
(see equation 2.8)

f(z : X,W,β, σ2, ρ) = (2πσ2)−n/2|I− ρW|Exp
{
−1

2σ2
(z−Xβ)′(I− ρW)′(I− ρW)(z−Xβ)

}
(2.17)

Note that the use of the change of variable technique requires the non-singularity of (I− ρW).

In fact, if (I− ρW) is singular, |(I− ρW)| =
∏

i(1− ρωi) = 0 and the probability distribu-

tion function degenerates to zero.3

The log-likelihood function is obtained as:

L(β, σ2, ρ : z,X,W) = −n
2
Ln(2π)−n

2
Ln(σ2)+Ln|I−ρW|− 1

2σ2
(z−Xβ)′(I−ρW)′(I−ρW)(z−Xβ) (2.18)

It is therefore necessary to ensure that |(I− ρW)| > 0.

The first order conditions for Maximum Likelihood estimators are obtained by taking the

partial derivatives of the log-likelihood with respect to β, σ2 and ρ (equation 2.18). Conse-

quently, the estimation process can proceed according to the following stages:

• Carry out Ordinary Least Squares of X on z

• Compute an initial set of residuals

• Calculate the concentrated log-likelihood (Anselin, 1988)

• Given these residuals, find ρ that maximizes the concentrated log-likelihood

• Given ρ̂, carry out Estimated Generalized Least Squares

• Compute a new set of residuals

• If convergence criterion is met, continue the following stage, else return to stage four

• Compute σ̂2

3ωi are the eigenvalues of W.
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The stage four necessitates a nonlinear optimization routine. This can be carried out through

a direct search approach. Other possibilities can be a Gauss Newton approach or a Davidon

Fletcher Powell procedure.

Magnus (1978) shows that the Maximum Likelihood estimator of ρ is consistent, asymptot-

ically efficient and asymptotically normal.

2.2 Bi-dimensional discrete random fields in the frequency

domain

In order to represent the structure of a random field in the frequency domain (spectral

representation) it is necessary to use the Fourier transform. The Fourier transform is an

operation that transforms one complex-valued function of a real variable into another. In

this context, the domain of the original function is a countable subset D ⊂ Z2, and that of

the new function is a frequency, a subset S ⊂ C2.

The covariance function C(h1, h2) and the spectral density function s(ξ1, ξ2) form a Fourier

transform pair, where (ξ1, ξ2) ∈ S represents the frequency domain. Assuming that the

covariances are absolutely summable, the autocovariance generating function of a discrete

random field is given by (Besag and Kooperberg, 1995)

∞∑
h1=−∞

∞∑
h2=−∞

C(h1, h2)zh11 z
h2
2 (2.19)

where z1 and z2 are complex scalars. If this expression is divided by (2π)2 and evaluated at

some z1 and z2 represented by z1 = e−iξ1 and z2 = e−iξ2 where i =
√
−1 and ξ1, ξ2 are real

values, the result is called the population spectrum of z (Hamilton, 1994). Specifically,

s(ξ1, ξ2) =
1

(2π)2

∞∑
h1=−∞

∞∑
h2=−∞

C(h1, h2)zh11 z
h2
2

=
1

(2π)2

∞∑
h1=−∞

∞∑
h2=−∞

C(h1, h2)e−iξ1h1e−iξ2h2

=
1

(2π)2

∞∑
h1=−∞

∞∑
h2=−∞

C(h1, h2)e−i(ξ1h1+ξ2h2)

=
1

(2π)2

∞∑
h1=−∞

∞∑
h2=−∞

C(h1, h2)(cos(ξ1h1 + ξ2h2)− i sin(ξ1h1 + ξ2h2))
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=
1

(2π)2

{
C(0, 0) + 2

∞∑
h2=1

C(0, h2) cos(h2ξ2) + 2
∞∑

h1=1

∞∑
h2=−∞

C(h1, h2) cos(h1ξ1 + h2ξ2)

}

We use De Moivre’s theorem and the last equality uses the facts that C(h1, h2) is an

even function, that is C(h1, h2) = C(−h1,−h2), and some trigonometric properties like

cos(0) = 1, sin(0) = 0, sin(θ) = − sin(−θ) and cos(θ) = cos(−θ).

Then for a rectangular rc row-column lattice,

s(ξ1, ξ2) =
1

(2π)2

∞∑
h1=−∞

∞∑
h2=−∞

C(h1, h2)cos(ξ1h1 + ξ2h2) (2.20)

where

C(h1, h2) =

∫ π

−π

∫ π

−π
cos(ξ1h1 + ξ2h2)s(ξ1, ξ2)dξ1dξ2 (2.21)

Intuitively, the spectral density captures the frequency content of a random field and helps

to identify periodicities. Like the covariance function, the spectral density function is an

even function.

An empirical estimator of s(ξ1, ξ2) is the periodogram, I(ξ1, ξ2). It can be established that

for ξ1 6= 0 and ξ2 6= 0, the periodogram turns out to be the Fourier transform of the sam-

ple covariance function, Ĉ(h1, h2). The former has a considerable advantage due to the

periodogram values being -at least asymptotically- independent, while the sample covari-

ance does not satisfy this condition because the sampling variance depends on C(h1, h2)

and neighbouring values of the covariance are substantially correlated (Schabenberger and

Gotway, 2005).

Ĉ(h1, h2) =
1

n

L∑
l

M∑
m

(z(s1l, s2m)− z̄)(z(s1l+h1 , s2m+h2)− z̄) (2.22)

where h1 = −r+ 1,−r+ 2, ..., 0, 1, 2, .., r− 1, h2 = −c+ 1,−c+ 2, ..., 0, 1, 2, ..., c− 1, n = rc,

l = max(1, 1 − h1), L = min(r, r − h1), m = max(1, 1 − h2), M = min(c, c − h2) and

z̄ = n−1
∑r

i=1

∑c
j=1 z(s1i, s2j). Ĉ(h1, h2) can be thought as the average covariance over all

pairs of observations whose coordinates differ by (h1, h2). For large n, the sample covariance

function is an approximately unbiased estimate of C(h1, h2).
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On the other hand, the periodogram is given by

I(ξ1, ξ2) =
1

(2π)2

r−1∑
h1=−r+1

c−1∑
h2=−c+1

Ĉ(h1, h2)cos(ξ1h1 + ξ2h2) (2.23)

and I(0, 0) = 0 (Ripley, 2004). This expression suggests a simple method to obtain the

periodogram. Compute the sample covariance function for the combinations of lags h1 =

−r+ 1, ..., r− 1, h2 = −c+ 1, ..., c− 1. Once the sample covariance has been obtained for all

relevant lags, cycle through the set of frequencies S = {(ξ1, ξ2) : ξ1 = {−2π
r
b r−1

2
c, . . . , 2π

r
b r

2
c}

and ξ2 = {−2π
c
b c−1

2
c, . . . , 2π

c
b c

2
c}} where b.c is the greatest integer (floor) function. These

frequencies, which are multiples of 2π/r and 2π/c, are known as the Fourier frequencies.

Asymptotically (r → ∞, c → ∞ and r/c converges to a non-zero constant), at the non-

zero Fourier frequencies, 2I(ξ1i, ξ2j)/s(ξ1i, ξ2j)
d−→ χ2

2, where χ2
2 is a Chi-square distribu-

tion with two degrees of freedom. Hence, asymptotically, E[I(ξ1i, ξ2j)] = s(ξ1i, ξ2j) and

Cov[I(ξ1i, ξ2j), I(ξ1l, ξ2m)] = [s(ξ1i, ξ2j)]
2 if ξ1i = ξ1l, ξ2j = ξ2m and 0 in another case, i.e., the

periodogram is asymptotically independent at different Fourier frequencies.

2.3 SAR process and its representation in the frequency

domain

In order to highlight the relation of a pure SAR process and its representation in the frequency

domain, we express an SAR model on a regular lattice by

z(s1i, s2j) = ρ
∑
h1

∑
h2

wij,h1h2z(s1i±h1 , s2j±h2) + ε(s1i, s2j) (2.24)

where h1, h2 = 0, 1, 2, . . . , E[z(s1i, s2j)] = 0, V ar[z(s1i, s2j)] = C(0, 0), wij,00 = 0, wij,h1h2 =

wij,−h1−h2 , ρ
∑∑

wij,h1h2 cos(ξ1h1 + ξ2h2) < 1 and the number of nonzero wij,h1h2 ’s is finite.

The autocovariance generating function of this process is (Besag, 1972)

∞∑
l=−∞

∞∑
m=−∞

C(l,m)zl1z
m
2 = σ2

z(1− ρ
∑
h1

∑
h2

wij,h1h2z
h1
1 z

h2
2 )−1(1− ρ

∑
l

∑
m

wij,h1h2z
−h1
1 z−h22 )−1

(2.25)

Thus, the population spectrum is given by

s(ξ1, ξ2) =
1

(2π)2

∞∑
l=−∞

∞∑
m=−∞

C(l,m)zl1z
m
2
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=
1

(2π)2
C(0, 0)(1− ρ

∑
h1

∑
h2

wij,h1h2z
h1
1 z

h2
2 )−1(1− ρ

∑
h1

∑
h2

wij,h1h2z
−h1
1 z−h22 )−1

=
1

(2π)2
C(0, 0)(1− ρ

∑
h1

∑
h2

wij,h1h2e
i(ξ1h1+ξ2h2))−1(1− ρ

∑
h1

∑
h2

wij,h1h2e
−i(ξ1h1+ξ2h2))−1

=
1

(2π)2
C(0, 0)(1− ρ

∑
h1

∑
h2

wij,h1h2(cos(ξ1h1 + ξ2h2) + i sin(ξ1h1 + ξ2h2)))−1

(1− ρ
∑
h1

∑
h2

wij,h1h2(cos(ξ1h1 + ξ2h2)− i sin(ξ1h1 + ξ2h2)))−1

=
1

(2π)2
C(0, 0)(1− ρ

∑
h1

∑
h2

wij,h1h2 cos(ξ1h1 + ξ2h2))−2

There are two important facts in the spectral representation of an SAR model that should

be mentioned. First, the population spectrum for a pure SAR random field is nonnegative

for all (ξ1, ξ2), and depends on the spectral frequencies. And second, if there is no kind of

spatial autocorrelation, i.e. ρ = 0, the spectral density is constant in the frequency domain.

These facts will be used to create a statistical test to check the null hypothesis of a spatial

unit root process (see Chapter 4).



3 Unconditional simulation of a Gaussian

random field with a simultaneous

spatial autoregressive structure:

consequences of a spatial unit root

This section is strongly based on Cressie (1993), Schabenberger and Gotway (2005) and

Bivand et al. (2008). On the other hand, the R package (R Development Core Team, 2011)

was used to build all the algorithms in this thesis, specifically the libraries developed by

Bivand (2011); Venables and Ripley (2011); Adler and Murdoch (2011); Furrer et al. (2010);

Finley and Banerjee (2010).

“Real data are important for the development of statistical methods, and,

ideally, their analysis also stimulates research in statistical theory. Simulated

data have a different role. They may be used to validate or establish properties

of a statistical method under assumed model, which includes checking the validity

of asymptotic properties in finite samples.”

Cressie (1993, pp 568)

Constructing a realization of a random field is not a trivial task, since it requires knowledge

of the spatial distribution. From a particular dataset, it may be inferred, under stationarity

assumptions, the first and second moment structure of the field. Inferring the joint distri-

bution from the mean and covariance functions is not possible unless the random field is a

Gaussian Random Field (GRF).1 Even if the spatial distribution is known, it is usually not

possible to construct a realization via simulation from it (Schabenberger and Gotway, 2005).

Several methods are available to simulate GRFs unconditionally.2 The simplest method

relies on the reproductive property of the multivariate Gaussian distribution and the fact

that a positive definite matrix Σ can be represented as Σ = Σ1/2Σ′1/2. If z ∼ Nn(µ,Σ),

1A random field is a Gaussian Random Field, if the cumulative distribution function is that of a k-variate
Gaussian random variable for all k.

2A simulation method that honours the data in the sense that the simulated value at an observed location
agrees with the observed value is termed a conditional simulation. Simulation methods that do not
honour the data are called unconditional simulations.
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x ∼ Nn(0, I), then µ + Σ1/2x has a Nn(µ,Σ).

In the Cholesky decomposition, if Σn×n is a positive definite matrix, thus there exists an

upper triangular matrix Un×n such that Σ = U′U where U is unique. Since U′ is lower

triangular and U is upper triangular, this decomposition is often referred to as the lower-

upper or LU decomposition (Greene, 2003). This suggests a simple method of generating

data from a Nn(µ,Σ) distribution. Generate n independent standard Gaussian random

variables, calculate the Cholesky root U′ of the covariance matrix Σ and a (n× 1) vector of

means µ. Return z = µ+U′x as a realization from a Nn(µ,Σ). This method works well for

small to moderate problems (Schabenberger and Gotway, 2005). However when n is larger

than say, 1,000, and Σ is sparse, various numerical inaccuracies may result (Cressie, 1993).

In order to make the simulations of lattice data, the first step is to define the spatial con-

nectivity matrixWn×n, that induces the spatial covariance structure of the model. In the

context of data arranged in a regular rectangular grid, the original construction of this ma-

trix is based on the notion of binary contiguity between spatial units. According to this

notion, the underlying structure of neighbours is expressed by {0, 1} values. The most used

criteria are: the rook style where two spatial units that have a common edge are considered

to be contiguous, the queen style where a common vertex or edge are considered, and the

torus style that is useful for simulations, because, since all spatial units have equal num-

bers of neighbours, and there are no edges, the structure of the graph is as neutral as can be

achieved. By construction, the principal diagonal of the contiguity matrix is filled with zeros.

Once the contiguity matrix based on {0, 1} criteria is built, this matrix is row standardised.

Assuming that the structure of the random field is established by an SAR model whose

stochastic errors are not correlated and homocedastic, Σ = σ2(I− ρW)−1(I− ρW′)−1 is

obtained. Note that (I− ρW) should be non-singular, this imposes restrictions on the value

of ρ. If W is row standardised, then 1/ωmin < ρ < 1, where ωmin is the smallest negative

eigenvalue of W (Anselin, 1982). Specifically, the dominant eigenvalue of a row standard-

ised contiguity matrix is 1, and given that |(I − ρωi)| =
∏

i(1 − ρωi), then ρ has to satisfy

this condition. Additionally, the Wold representation of a SAR field is z = (I − ρW)−1ε,

then if there is a spatial unit root process, the impulse response function will not tend to

zero as the distance between a pair of locations tends to infinity (Beenstock and Felsenstein,

2008). Thus, to analyse the case ρ = 1 is important because this condition implies that the

random field is not stationary, so in this case, the Moore-Penrose inverse of Σ is used, if Σ

is non-singular, the Moore-Penrose inverse is the familiar ordinary inverse (Asmar, 1995).3

Lauridsen and Kosfeld (2006, 2007) follow this strategy.

3A Moore-Penrose inverse of a matrix Σ is a unique matrix Σ+ that satisfies the following requirements:
ΣΣ+Σ = Σ, Σ+ΣΣ+ = Σ+, Σ+Σ is symmetric and ΣΣ+ is symmetric.
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autoregressive structure: consequences of a spatial unit root

Figure 3.1: Variances of simulated SAR GRF with ρ = 0.9 on a lattice 10 × 10.

Figure 3.2: Variances of simulated SAR GRF with ρ = 0.9 on a lattice 25 × 25.

As can be seen in Figures 3.1, 3.2 and 3.3, |ρ| < 1 is a necessary but not a sufficient condi-

tion to generate a stationary Spatial Autorregresive Gaussian Random Field; because edge

and corner effects cause variances to change with spatial location,4 but it asymptotically

4These variances are obtained from the principal diagonal of Σ.
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Figure 3.3: Variances of simulated SAR GRF with ρ = 0.9 on a lattice 50 × 50.

approaches to stationarity when |ρ| < 1 and n→∞ (Fingleton, 1999). Similar findings are

shown by Haining (1990).

Figures 3.4, 3.5 and 3.6 show three different realizations of simulated SAR GRFs with |ρ| < 1

on a regular lattice of 25× 25 units with a row standardised rook style spatial connectivity

matrix; we can see in the figures that different spatial autocorrelation parameters imply

different configuration of the spatial process. On the other hand, Figure 3.7 displays a re-

alization of a non-stationary spatial autoregressive process, i.e., z = ρWz + ε where ρ = 1

and ε ∼ N (0, σ2I). The Moore-Penrose inverse is used in order to get (I− ρW)−1. In 3.7,

we observe that the field exhibits a clear trend.

As can be seen in Figures 3.8, 3.9 and 3.10, the variances of a unit root spatial autoregres-

sive Gaussian Random Field are not stable, although dimension of the lattice increases. A

fact that is corroborated in Table 3.1 where the mean, maximum and minimum variances

of the processes associated with different ρ’s are displayed. As can be seen in Table 3.1, the

variance tends to stabilize when n increases, except in the case of a spatial unit root process.

Similar findings are found by Fingleton (1999) and Lee and Yu (2009).5

In order to highlight similar characteristics of a spatial unit root process and a random walk

process in time, the spatial correlogram function is estimated, where spatial lag is built based

on higher order contiguities, that is, spatial correlograms are constructed by taking an input

5Lee and Yu (2009) find similar outcomes but they use ρn0 = 1− 1/ψn, ψn →∞, n→∞.
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autoregressive structure: consequences of a spatial unit root

Figure 3.4: Simulated SAR fields with ρ = 0.9.

list of neighbours as the first order set, and stepping out across the graph to second, third,

and higher order neighbours based on the number of links traversed, but not permitting cy-

cles, which could risk making z(s1i, s2j) a neighbour of z(s1i, s2j) itself (Bivand et al., 2008).

Figure 3.11 shows how the spatial correlogram decreases slower as the spatial correlation

coefficient increases; this characteristic resembles what is observed when there is a unit root

process in time (Enders, 1995).

Another common statistic for testing H0 : ρ = 0 is the Moran’s test (Moran, 1950). This

statistical test pertains to the close interval [−1, 1], where −1 indicates perfect dispersion,

0 random spatial pattern and 1 perfect correlation. Figure 3.12 shows that Moran’s test

detects spatial correlation at different spatial lags but is more persistent under spatial unit

root processes.
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Figure 3.5: Simulated SAR fields with ρ = 0.0.

The assumptions of constant mean and constant variance of z must not be taken lightly

when testing for spatial autocorrelation with Moran’s test. Values in close spatial proximity

may be similar, not because of spatial autocorrelation but because the values are indepen-

dent realizations from distributions with similar mean (Schabenberger and Gotway, 2005).

Figures 3.13 and 3.14 are built to show differences between stochastic and deterministic

non-stationary random fields. Independent extractions draw from a Gaussian Random Field

with E[z(s1i, s2j)] = 1.4 + 0.1s1i + 0.2s2j + 0.002(s1i)
2 + 0.003(s2j)

2 were assigned to the

sites of a 25×25 regular lattice. These data do not exhibit any spatial autocorrelation but

are not mean-stationary; although the Moran’s I statistics detected spurious autocorrelation.

Moran’s test rejects H0 : ρ = 0 for both processes, i.e., the spatial unit root process and

the deterministic non-stationary process. Specifically, the I statistic is equal to 0.95 and

0.84 for the unit root process and deterministic process, respectively. These values indicate

positive spatial autocorrelation. In both cases, the p-value is near to zero. Figure 3.15
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autoregressive structure: consequences of a spatial unit root

Figure 3.6: Simulated SAR fields with ρ = −0.9.

shows histograms of Moran’s test under random permutations associated with each process.

Random permutations are recommended because standard Moran’s test is based on strong

distributional assumptions. Equivalently, the p-values in both cases are equal to zero. As

cited by Schabenberger and Gotway (2005), the impact of heterogeneous means on the in-

terpretation of Moran’s I is both widely ignored and completely confused throughout the

literature.6 In order to perform the Moran’s test, it is advisable to fit a mean model to the

data and examine whether the residuals from the fit exhibit spatial autocorrelation.

We estimate the periodogram for SAR fields which have different values of spatial autocor-

relation coefficients to characterize them on the frequency domain. Figure 3.16 shows the

sample covariance and the periodogram functions associated with an SAR model with ρ = 0.

As can be seen in Figure 3.16, the sample covariance function is close to zero everywhere,

except for (s1i, s2j) = (0, 0), where the sample covariance function estimates the variance

6Mur and Tŕıvez (2003) analyse the consequences of deterministic trends in spatial econometrics.
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Figure 3.7: Simulated non-stationary SAR GRF, ρ = 1.

of the process. On the other hand, the periodogram is more or less evenly distributed, a

characteristic that can be observed from the population spectrum because ρ = 0 implies

s(ξ1, ξ2) = C(0, 0)/(2π)2. This means that high and low ordinates occur for large and small

frequencies (ξ1, ξ2).

As can be seen in Figure 3.17, where the sample covariance and the periodogram func-

tions are shown for a SAR process with ρ = 0.9 on a 10 × 10 lattice, sample covariances

are substantial for small s1i and s2j indicating high spatial correlation. The strong spa-

tial autocorrelation coefficient is associated with large periodogram ordinates for small fre-

quencies. As can be seen from the population spectrum of an SAR field, when ρ > 0,

(1 − ρ
∑

h1

∑
h2
wij,h1h2 cos(ξ1h1 + ξ2h2)) is a monotonically increasing function in (ξ1, ξ2)

over [0, π]2, meaning that s(ξ1, ξ2) is monotonically decreasing.
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3 Unconditional simulation of a Gaussian random field with a simultaneous spatial

autoregressive structure: consequences of a spatial unit root

Figure 3.8: Variances of non-stationary SAR GRF, ρ = 1 on a lattice 10 × 10.

Figure 3.9: Variances of non-stationary SAR GRF, ρ = 1 on a lattice 25 × 25.

Figure 3.18 shows the sample covariance and the periodogram functions associated with a

SAR model with ρ = 1. As can be seen in Figure 3.18, sample covariances are large even for

large distances. And the periodogram shows that the field is explained by low frequencies,

but large frequencies are also important. However, it must be pointed out that the popu-

lation spectrum is built for a stationary process, which is not a good assumption in this case.



29

Figure 3.10: Variances of non-stationary SAR GRF, ρ = 1 on a lattice 50 × 50.

Table 3.1: Simulated SAR models: Mean, Maximum and Minimum variances.

Lattice
ρ 10×10 25×25 50×50

0.2 Mean 1.035 1.032 1.031
Max 1.048 1.048 1.048
Min 1.031 1.031 1.031

0.5 Mean 1.286 1.261 1.253
Max 1.402 1.402 1.402
Min 1.245 1.245 1.245

0.9 Mean 5.216 4.395 4.153
Max 7.224 7.222 7.222
Min 4.029 3.925 3.925

0.95 Mean 11.602 8.741 7.936
Max 15.961 15.875 15.875
Min 8.386 7.201 7.200

1 Mean 32.652 238.562 1,006.720
Max 57.036 487.504 2,186.233
Min 7.567 38.410 154.674

Source: Author’s estimations.
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3 Unconditional simulation of a Gaussian random field with a simultaneous spatial

autoregressive structure: consequences of a spatial unit root

Figure 3.11: Spatial correlogram.

Figure 3.12: Moran’s test at different spatial lags.
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Figure 3.13: Simulated spatial unit root GRF.

Figure 3.14: Simulated deterministic non-stationary GRF .

As can be seen from Figures 3.16, 3.17 and 3.18, the sample covariance and periodogram

functions are symmetric functions, so we can just plot the right half-plane; the left half-plane

can be found by a half-turn rotation.
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3 Unconditional simulation of a Gaussian random field with a simultaneous spatial

autoregressive structure: consequences of a spatial unit root

Figure 3.15: Histogram of simulated non-stationary GRF.

Figure 3.16: Spatial sample covariance and periodogram functions: SAR field with ρ = 0 on
a Lattice 10× 10.

Two simulation exercises are performed to analyse implications on statistical inference as-

sociated with a spatial unit root process. Specifically, 10,000 SAR models are simulated

under different spatial autocorrelation coefficients on a 25×25 regular lattice where ρ =

{0.2, 0.5, 0.9, 0.95, 0.99, 1}. Thus, the spatial autocorrelation coefficient is estimated for each

simulation, and the empirical distribution function of ρ̂ is estimated. As can be seen in
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Figure 3.17: Spatial sample covariance and periodogram functions: SAR field with ρ = 0.9
on a Lattice 10× 10.

Figure 3.18: Spatial sample covariance and periodogram functions: SAR field with ρ = 1 on
a Lattice 10× 10.

Figure 3.19, E[ρ̂] = ρ, except when ρ = 1.7

Additionally, two independent realizations of spatial autoregressive models with row stan-

dardised rook style spatial connectivity matrix are simulated 10,000 times. Specifically,

z = ρWz + ε1 and x = ρWx + ε2 where ε1 and ε2 are independent. After this, Ordinary

Least Square regressions are conducted with each pair, and given a nominal size of 5% for

the null hypothesis H0 : β = 0, the empirical size is calculated. This process is replicated for

7Lee and Yu (2007) show that in the model z = ρn0Wz+ε where ε ∼ N (0, σ2I) and ρn0 = 1−1/ψn, ψn →
∞, n→∞, the QMLE ρ̂n is n-consistent. This means that ψn(ρ̂n − ρn0) = op(1) which implies that the
estimate is asymptotically unbiased. However, there is a practical paradox because ρn0 = 1−1/ψn, ψn →
∞, n→∞ is very similar to ρ = 1. In fact, there are numerical problems when matrix (I−ρn0W) requires
to be inverted; although in theory, there should not be any problem.
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3 Unconditional simulation of a Gaussian random field with a simultaneous spatial

autoregressive structure: consequences of a spatial unit root

Figure 3.19: Densities of ρ estimates.

Table 3.2: Empirical size ofH0 : β = 0 for z = βx+ε given independent spatial autoregressive
Gaussian random fields.*

Lattice
ρ 10×10 25×25 50×50

0.2 0.049 0.049 0.054
0.5 0.060 0.0595 0.077
0.9 0.150 0.149 0.156
0.95 0.218 0.219 0.218

1 0.367 0.766 0.926

*Nominal size is 0.05.

Source: Author’s estimations.

ρ = {0.2, 0.5, 0.9, 0.95, 1.0} on regular lattices of different dimensions, specifically 10 × 10,

25 × 25 and 50 × 50. Table 3.2 displays the empirical size results, and as can be seen, if

the spatial correlation coefficient is low, the empirical size is near to the nominal size, but

this fact worsens when the autocorrelation coefficient increases, the t-statistic rejects H0

when in fact this one is correct, i.e., the type I error increases. Given ρ = 1, the empirical

size is considerably bigger than the nominal size, with the additional problem that when

the dimension of the lattice increases, the empirical size increases. The fact that the t-
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statistic detects an apparent relationship of z and x when the variables exhibit a stochastic

trend is known as nonsense spatial regression (Beenstock and Felsenstein, 2008). Fingleton

(1999) and Lee and Yu (2009) show similar findings, although the latter analyse the case

ρn0 = 1− 1/ψn, ψn →∞, n→∞.



4 A statistical test for a unit root

process in SAR models

In order to use theory that is developed to test stationarity in time domain, we analyse four of

the most useful tests and their implications if they are applied in the spatial domain. Specif-

ically, Augmented Dickey and Fuller (1979) and Phillips and Perron (1988) tests to check

stationarity in time domain are strongly based on a consistent estimation of the autoregres-

sive coefficient obtained by OLS procedure. This estimator is used to build the asymptotic

distribution of the statistical test for a unit root process. However, OLS estimation of the

spatial autoregressive coefficient is not consistent. A consistent estimation can be obtained

by Maximum Likelihood or Feasible Generalized Least Square but these estimators are not

lineal, this implies great difficulty in building a spatial unit root test. Additionally, under

the null hypothesis of a spatial unit root process the probability distribution function of a

spatial autoregressive field degenerates to zero (Anselin, 1982). Specifically, the asymptotic

ML estimates will only hold if the regularity conditions for the log-likelihood function are

satisfied. This statement is not fulfilled under the null hypothesis. However, Lauridsen and

Kosfeld (2004) and Beenstock and Felsenstein (2008) propose a statistical test to check sta-

tionarity under this consideration. Kwiatkowski et al. (1992) test for a unit root process in

time domain bases its asymptotic distribution on the results of MacNeill (1978a) and Mac-

Neill (1978b), who establishes convergence of partial sums of residuals in the time domain.

Unfortunately, at this time, we have not found a theorem that establishes this outcome in

spatial domain. Guan (2008) develops a homogeneity test for point process following the

approach of Kwiatkowski et al. (1992), the asymptotic distribution of his statistical test is

based on a result given by Ivanoff (1982). Finally, Priestley and Rao (1969) use evolutionary

spectrum to test stationarity in time domain. This idea is taken by Mateu and Juan (2004)

and Fuentes (2005), who develop a test for non-stationarity of geostatistical data.

It is known that the OLS estimation of a Gaussian AR(1) process, yt = ρyt−1+εt where εt
i.i.d∼

N (0, σ2) and y0 = 0, has the following asymptotic outcome:
√
T (ρ̂ − ρ)

d−→ N (0, (1 − ρ2)).

This statement is also valid if ρ = 1, but it is not very helpful for hypothesis testing. Given

this outcome, the most useful unit root tests build their asymptotic distributions as functions

of a standard Brownian motion, which is a continuous time stochastic process, associating

each date r ∈ [0, 1] with the scalar W (r) such that:

• W (0) = 0.
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• For any dates 0 ≤ r1 < r2 < · · · < rk ≤ 1, the changes [W (r2) −W (r1)], [W (r3) −
W (r2)], . . . [W (rk) − W (rk−1)] are independent multivariate Gaussian with [W (s) −
W (r)] ∼ N (0, s− t), s > t.

• For any given realization, W (r) is continuous in r with probability 1.

Paelinck et al. (2004) caution about using the concept of Brownian motion in spatial do-

main. Specifically, because of a multilateral dependence structure in the space domain, it is

difficult to determine an initial starting point and have independent increments, conditions

that are required by a Brownian motion process.

4.1 A statistical test for a unit root in SAR models based

on differences in the frequency domain

To avoid the use of Brownian motion process our approach takes elements from the repre-

sentation of a random field in spatial domain and its spectral decomposition (see Chapter

2). As it is noticed by Mateu and Juan (2004), spectral analysis of stationary processes is

particularly advantageous in the analysis of large data sets because the use of traditional

techniques implies inversion of a large covariance matrix to compute the likelihood function.

The use of a Fast Fourier Transform algorithm for spectral densities can be a good solution

for this problem. Additionally, the periodogram, a nonparametric estimate of the spectral

density, has asymptotic properties that facilitate working in the frequency domain.

In order to get some intuition about the statistical test that we propose, we depict in Figure

4.1 the periodogram functions of ∆z(s1i, s2j) for different spatial autocorrelation parameters

associated with a pure SAR model z(s1i, s2j).

z(s1i, s2j) = ρ
∑
h1

∑
h2

wij,h1h2z(s1i±h1 , s1j±h2) + ε(s1i, s2j) (4.1)

h1 = 0, 1, 2, ... and h2 = 0, 1, 2, ....

And

∆z(s1i, s2j) = z(s1i, s2j)−
∑
h1

∑
h2

wij,h1h2z(s1i±h1 , s1j±h2) (4.2)

The important fact is that for ρ = 1, the periodogram is more or less evenly distributed

in the space of frequencies (see Figure 4.1, Panel A), while for ρ = {0.2, 0.5, 0.9} there is a

monotonically increasing tendency over (ξ1, ξ2) whose origin is (0, 0). However, this pattern
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is less clear as ρ increases to 1 (see Figure 4.1, Panels B, C and D).1

Figure 4.1: Spatial periodogram functions: ∆z(s1i, s2j), ρ = {0.2, 0.5, 0.9, 1}.

Using this intuitive result, an ad hoc statistical test is proposed to check H0 : ρ = 1, i.e,

non-stationarity of a pure SAR representation of a random field. The idea behind is to take

advantage of the behaviour of the periodograms associated with different spatial autocorre-

lation structures. Therefore, we compare low and high frequencies that are obtained from a

spectral density estimate.

The following theorem, which is one of the most important theoretic developments of this

dissertation, establishes the asymptotic distribution of the statistical test for a unit root in

a spatial autoregressive model in regional data.

Theorem 1. Asymptotic distribution of a statistical test for a unit root in a spa-

tial autoregressive model in regional data based on differences in the frequency

domain.

Given z(s1i, s2j) = ρ
∑

h1

∑
h2
wij,h1h2z(s1i±h1 , s1j±h2)+ε(s1i, s2j) where ε(s1i, s2j)

i.i.d∼ N (0, σ2).

Then, under H0 : ρ = 1, ∆z(s1i, s2j) ≡ z(s1i, s2j) −
∑

h1

∑
h2
wij,h1h2z(s1i±h1 , s1j±h2) =

1Evenness is a property of the periodogram. It is thus sufficient to compute the periodogram only for the
set of frequencies which removes from the space of frequencies the points with ξ2j < 0. So we plot only
the right half-plane; the left half-plane can be found by a half-turn rotation.
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ε(s1i, s2j), this implies that the spectral density function of ∆z(s1i, s2j) is constant and equals

σ2/(2π)2 ∀ξ1i, ξ2j. Given that
2I(ξ1i,ξ2j)

s(ξ1i,ξ2j)

d−→ χ2
2 where χ2

2 is a Chi-square distribution with

two degrees of freedom, ∀ξ1i 6= 0, ξ2j 6= 0, and asymptotically Cov[I(ξ1i, ξ2j), I(ξ1l, ξ2k)] = 0,

∀ξ1i 6= ξ1l, ξ2j 6= ξ2k, then under H0, we have that ψ̂ =

∑
ξ1i,ξ2j 6=[0,0] I(ξ1i,ξ2j)

m1∑
ξ1l,ξ2k 6=[0,0] I(ξ1l,ξ2k)

m2

d−→ F(2m1,2m2)

where (ξ1i, ξ2j) 6= (ξ1l, ξ2k), m1 and m2 are the number of periodogram ordinates in the sums,

m = m1 + m2 is the total number of periodogram ordinates in the frequency domain and

F(2m1,2m2) is a F-Snedecor distribution with 2m1 and 2m2 degrees of freedom.

Proof. Given that ε(s1i, s2j)
i.i.d∼ N (0, σ2) then C(h1, h2) = σ2 if h1 = 0, h2 = 0 and 0 in an-

other case, this implies that s(ξ1i, ξ2j) = 1
(2π)2

∑∞
h1=−∞

∑∞
h2=−∞C(h1, h2)cos(ξ1h1 + ξ2h2) =

σ2/(2π)2 ∀ξ1i, ξ2j (see Chapter 2). Additionally, under H0 : ρ = 1, ∆z(s1i, s2j) = ε(s1i, s2j)

thus the population spectrum of ∆z(s1i, s2j) is σ2/(2π)2 ∀ξ1i, ξ2j. And due to asymptot-

ically Cov[I(ξ1i, ξ2j), I(ξ1l, ξ2k)] = 0, ξ1i 6= ξ1l, ξ2j 6= ξ2k and
2I(ξ1i,ξ2j)

s(ξ1i,ξ2j)

d−→ χ2
2 where χ2

2 is

a Chi-square distribution with two degrees of freedom, then

∑
ξ1i,ξ2j 6=[0,0] 2I(ξ1i,ξ2j)

s(ξ1i,ξ2j)

d−→ χ2
2m1

and
∑
ξ1l,ξ2k 6=[0,0] 2I(ξ1l,ξ2k)

s(ξ1l,ξ2k)

d−→ χ2
2m2

where m1 and m2 are the number of periodogram ordi-

nates in the sums, m = m1 + m2 is the total number of periodogram ordinates in the

frequency domain and χ2
2m1

and χ2
2m2

are Chi-square distributions with 2m1 and 2m2 de-

grees of freedom, respectively. Given that (ξ1i, ξ2j) 6= (ξ1l, ξ2m) then

∑
ξ1i,ξ2j 6=[0,0] 2I(ξ1i,ξ2j)

s(ξ1i,ξ2j)

and
∑
ξ1l,ξ2k 6=[0,0] 2I(ξ1l,ξ2k)

s(ξ1l,ξ2k)
are asymptotically independent thus ψ̂ =

∑
ξ1i,ξ2j 6=[0,0] 2I(ξ1i,ξ2j)

s(ξ1i,ξ2j)2m1∑
ξ1l,ξ2k 6=0 2I(ξ1l,ξ2k)

s(ξ1l,ξ2k)2m2

=

∑
ξ1i,ξ2j 6=0 2I(ξ1i,ξ2j)

(σ2/(2π)2)2m1∑
ξ1l,ξ2k 6=0 2I(ξ1l,ξ2k)

(σ2/(2π)2)2m2

=

∑
ξ1i,ξ2j 6=[0,0] I(ξ1i,ξ2j)

m1∑
ξ1l,ξ2k 6=[0,0] I(ξ1l,ξ2k)

m2

d−→ F(2m1,2m2) by the continuous mapping theorem,

where F(2m1,2m2) is a F-Snedecor distribution with 2m1 and 2m2 degrees of freedom.

Obviously, we chose (ξ1i, ξ2j) equal to them1 frequencies around the origin (0, 0) (low frequen-

cies) and (ξ1l, ξ2k) are the other frequencies surrounding the central area (high frequencies).

This is due to using the pattern of the periodogram associated with ∆z(si1, s2i) in order to

build our statistic.

This test can be carried out by comparing ψ̂ against the confidence bounds (Fα/2,2m1,2m2 , F1−α/2,2m1,2m2).

Values of this statistic outside of these bounds suggest ρ 6= 1, which implies that the field

does not have a spatial unit root.

To highlight the finite sample properties of the proposed statistical test and compare its

properties with Likelihood Ratio, Wald and Lagrange Multiplier (Score) statistical tests,

i.e., tests based on principled inference, we conduct some simulation exercises to calculate

the size and power of different tests to check an spatial unit root process. Specifically, we

simulate spatial unit root pure SAR models on lattices of dimensions 10 × 10 and 25 × 25,
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each one 1,000 times, using rook and queen contiguity criteria. Then we fix a nominal size

of 0.05 to test the null hypothesis of a spatial unit root field using different tests.2

In particular, we calculate the size of the statistical tests proposed by Lauridsen and Kosfeld

(2006) and Lauridsen and Kosfeld (2004). Lauridsen and Kosfeld (2006) propose a two stage

strategy to test H0 : ρ = 1 using the Lagrange Multiplier error statistic developed by Anselin

(1988) (see Chapter 1). On the other hand, it can be intuitive to estimate the SAR model,

z(s1i, s2j) = ρ
∑

h1

∑
h2
wij,h1h2z(s1i±h1 , s1j±h2) + ε(s1i, s2j), and test the null hypothesis of a

spatial unit root process using a Wald or Likelihood Ratio test. However, it is well known

that 1−ρ̂
ŝ.e(ρ̂)

does not adhere to a normal or t distribution. Then, Lauridsen and Kosfeld (2004)

use a Wald test to check the null hypothesis of a spatial unit root process, but they build

the distribution of the statistic by Monte Carlo simulation (see Chapter 1). Moreover, we

calculate the size of the Likelihood Ratio and Wald tests to test H0 : γ = 1 − ρ = 0 in the

model ∆z(s1i, s2j) = α + γ
∑

h1

∑
h2
wij,h1h2∆z(s1i±h1 , s1j±h2) + ε(s1i, s2j) where this model

is estimated using Maximum Likelihood. As can be seen in Table 4.1, the empirical size is

larger than the nominal size in a 10×10 regular lattice, except in the case of queen criterion

with the Lauridsen and Kosfeld (2006) test. The size of the statistical test based on the

differences between low and high frequencies is the highest, 0.095 and 0.092 in the cases of

rook and queen criteria, respectively. While the test proposed by Lauridsen and Kosfeld

(2006) and the Likelihood Ratio test are near the nominal size. As the dimension of the

lattice increases, there is a reduction in the gap between the test proposed by Lauridsen

and Kosfeld (2006) and the test based on the differences between frequencies, i.e., there is a

low probability of type I error, and we get sensible outcomes with the test in the frequency

domain. Finally, the worst outcomes as the dimension of the lattice increases are gotten by

the test proposed by Lauridsen and Kosfeld (2004).

To analyse the power of the statistical test, we conduct another kind of simulation exercise.

Specifically, we simulate stationary SAR fields on lattices of 10 × 10 and 25 × 25 with dif-

ferent contiguity criteria and toroidal boundary restrictions. Additionally, we use different

levels of spatial autocorrelation to analyse the performance of the tests. As can be seen in

Table 4.2, the power improves if the spatial autocorrelation coefficient decreases, but there

is lower discrimination, i.e., there is higher probability of type II error when the spatial root

is near one, but this problem is solved as the dimension of the lattice increases. We can

observe that the power of the test based on differences between low and high frequencies is

the worst when the lattice is of dimension 25 × 25. On the other hand, the Lauridsen and

Kosfeld (2006) test obtains the worst outcomes with 10×10 lattices. Finally, the best power

is obtained with the test proposed by Lauridsen and Kosfeld (2004).

2It should be kept in mind that the simulation standard error of each estimate is approximately equal to
0.007 (the usual standard error in computing a binomial proportion is equal to

√
(0.05)(0.95)/1, 000).
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Table 4.1: Empirical size of statistical tests for a pure unit root in a spatial autoregressive
process in lattice data.∗

Rook Queen
10×10 25×25 10×10 25×25

Frequency domain
0.095 0.054 0.092 0.057

Lauridsen and Kosfeld (2006)
0.053 0.052 0.046 0.045

Lauridsen and Kosfeld (2004)
0.068 0.065 0.09 0.087

LR
0.053 0.048 0.057 0.054

Wald
0.060 0.049 0.072 0.054

*Nominal size is 0.05.

Source: Author’s estimations.

As a conclusion, the test proposed by Lauridsen and Kosfeld (2004) has the worst size but the

best power under the parametric specification that is assumed. On the other hand, the size

and power of the frequency domain test that we propose gets better as the sample increases.

However, principle inference tests overcome our test, an outcome that is expected under the

parametric specification. The test proposed by Lauridsen and Kosfeld (2006) obtains an

excellent size, although its power is exceeded by the Likelihood Ratio and Wald tests. With

regard to these tests, we obtain sensible outcomes. Finally, all these results are robust in

the face of different contiguity criteria or boundary restrictions.

In order to ensure accuracy at the null hypothesis, we propose a Monte Carlo test. Specifi-

cally, the test is implemented by simulating unit root SAR processes under rook contiguity

criterion without toroidal restrictions, and calculating values of the statistical test ψ̂ and com-

paring them to each statistic calculated from the simulated data under alternative hypoth-

esis. Following Cressie (1993), let ψ̂ denote a test statistic and let
{
ψ̂i : i = 1, 2, . . . , k − 1

}
denote (k − 1) values of the statistic generated by independently simulating data of size n

under H0 : ρ = 1. To see the power of this Monte Carlo test, call ψ̂k = ψ̂(ρ)(s) where ρ =

{0.2, 0.5, 0.9, 0.95} , s = {1, 2, ..., S} and S the number of simulations, the calculated value

of ψ̂ with simulated realizations of random fields under the different alternative hypothesis.

Ask whether ψ̂k is equal to ψ̂i’s; this is accomplished by ordering ψ̂(1) ≤ ψ̂(2) ≤ ψ̂(3) · · · ≤ ψ̂(k)

and not rejecting the null hypothesis if ψ̂k is in a given interval. Specifically, given that we
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Table 4.2: Empirical power of statistical tests for a pure unit root in a spatial autoregressive
process in lattice data.

Rook Queen Rook (Torus) Queen (Torus)
ρ 10×10 25×25 10×10 25×25 10×10 25×25 10×10 25×25

Frequency domain
0.2 0.956 1.000 0.648 0.966 0.978 1.000 0.635 0.952
0.5 0.819 1.000 0.506 0.908 0.867 1.000 0.522 0.886
0.9 0.286 0.606 0.180 0.319 0.251 0.580 0.154 0.293
0.95 0.164 0.287 0.161 0.287 0.144 0.266 0.111 0.135

Lauridsen and Kosfeld (2006)
0.2 1.000 1.000 0.995 1.000 1.000 1.000 0.982 1.000
0.5 0.984 1.000 0.932 1.000 0.973 1.000 0.871 1.000
0.9 0.293 0.972 0.232 0.947 0.239 0.954 0.135 0.901
0.95 0.156 0.682 0.124 0.682 0.100 0.597 0.075 0.513

Lauridsen and Kosfeld (2004)
0.2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.9 0.960 1.000 0.793 1.000 0.694 1.000 0.440 1.000
0.95 0.632 1.000 0.406 1.000 0.342 1.000 0.251 1.000

LR
0.2 1.000 1.000 1.000 1.000 1.000 1.000 0.997 1.000
0.5 0.990 1.000 0.982 1.000 0.984 1.000 0.953 1.000
0.9 0.330 0.978 0.348 0.947 0.280 0.965 0.209 0.918
0.95 0.176 0.706 0.172 0.706 0.109 0.626 0.131 0.562

Wald
0.2 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000
0.5 0.996 1.000 0.991 1.000 0.992 1.000 0.969 1.000
0.9 0.397 0.988 0.391 0.964 0.330 0.973 0.230 0.925
0.95 0.208 0.726 0.197 0.726 0.132 0.656 0.151 0.581

Source: Author’s estimations.

set α = 0.05 and S = 1, 000, we do not reject H0 : ρ = 1 if ψ̂k ∈
[
ψ̂(26), ψ̂(975)

]
. To see the

size of the Monte Carlo test, we simulate independent spatial unit root processes S times,

and calculate ψ̂k for each realization. Ask whether ψ̂k is not equal to ψ̂i’s; this is accom-

plished by ordering ψ̂(1) ≤ ψ̂(2) ≤ ψ̂(3) · · · ≤ ψ̂(k) and rejecting the null hypothesis if ψ̂k is

one of the smaller or one of the larger order statistics. Specifically, we reject H0 : ρ = 1 if

ψ̂k ∈
{[
ψ̂(1), ψ̂(2), . . . , ψ̂(25)

]
,
[
ψ̂(976), ψ̂(977), . . . , ψ̂(1,000)

]}
.
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The outcomes for the power and size of this statistic are shown in Tables 4.3 and 4.4, re-

spectively.

Table 4.3: Empirical power of the Monte Carlo test for a pure unit root in a spatial autore-
gressive process in lattice data.

Lattice
ρ 10×10 25×25

0.2 0.941 1.000
0.5 0.817 1.000
0.9 0.243 0.580
0.95 0.135 0.279

Source: Author’s estimations.

Table 4.4: Empirical size of the Monte Carlo test for a pure unit root in a spatial autore-
gressive process in lattice data.*

Lattice
ρ 10×10 25×25
1 0.044 0.040

*Nominal size is 0.05.

Source: Author’s estimations.

It is well known that a weak stationary random field is characterized with a constant mean,

but if the mean changes with location, the idea is not to associate stationarity properties

with the attribute z(s1, s2), but with the process without the large-scale structure. The

following theorem, which is another important theoretic development of this dissertation,

establishes the asymptotic distribution of the statistical test for a unit root in a general

spatial autoregressive model in regional data.

Theorem 2. Asymptotic distribution of a statistical test for a unit root in a

general spatial autoregressive model in regional data based on differences in the

frequency domain.

Given z(s1i, s2j) = x(s1i, s2j)
′β+ρ

∑
z(s1l,s2k)∈N(i,j) wij,lk(z(s1l, s2k)− x(s1l, s2k)

′β)+ε(s1i, s2j)

where N(i, j) is the set of neighbours of z(s1i, s2j) and ε(s1i, s2j)
i.i.d∼ N (0, σ2), then un-

der H0 : ρ = 1, ∆z(s1i, s2j) = ∆x(s1i, s2j)
′β + ε(s1i, s2j) where ∆z(s1i, s2j) ≡ z(s1i, s2j) −
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∑
z(s1l,s2k)∈N(i,j) wij,lk(z(s1l, s2k) and ∆x(s1i, s2j) ≡ x(s1i, s2j)−

∑
z(s1l,s2k)∈N(i,j) wij,lkx(s1l, s2k).

Therefore, given a consistent estimate β̂ of β, ε̂(s1i, s2j)
p−→ ε(s1i, s2j) where ε̂(s1i, s2j) =

∆z(s1i, s2j) − ∆x(s1i, s2j)
′β̂. This implies that the spectral density function of ε̂(s1i, s2j)

converge in probability to σ2/(2π)2 ∀ξ1i, ξ2j. Given that
2I(ξ1i,ξ2j)

s(ξ1i,ξ2j)

d−→ χ2
2 where χ2

2 is a

Chi-square distribution with two degrees of freedom, ∀ξ1i 6= 0, ξ2j 6= 0, and asymptoti-

cally Cov[I(ξ1i, ξ2j), I(ξ1l, ξ2k)] = 0, ∀ξ1i 6= ξ1l, ξ2j 6= ξ2k, then under H0, we have that

ψ̂ =

∑
ξ1i,ξ2j 6=[0,0] I(ξ1i,ξ2j)

m1∑
ξ1l,ξ2k 6=[0,0] I(ξ1l,ξ2k)

m2

d−→ F(2m1,2m2) where (ξ1i, ξ2j) 6= (ξ1l, ξ2k), m1 and m2 are the number

of periodogram ordinates in the sums, m = m1 + m2 is the total number of periodogram

ordinates in the frequency domain and F(2m1,2m2) is a F-Snedecor distribution with 2m1 and

2m2 degrees of freedom.

In this context, I(ξ1i, ξ2j) is the periodogram of the residuals from regression of ∆z(s1i, s2j)

on ∆x(s1i, s2j).

Proof. Given z(s1i, s2j) = x(s1i, s2j)
′β + ρ

∑
z(s1l,s2k)∈N(i,j) wij,lk(z(s1l, s2k)− x(s1l, s2k)

′β) +

ε(s1i, s2j) where N(i, j) is the set of neighbours of z(s1i, s2j) and ε(s1i, s2j)
i.i.d∼ N (0, σ2).

Then, under H0 : ρ = 1,

z(s1i, s2j) = x(s1i, s2j)
′β +

∑
z(s1l,s2k)∈N(i,j) wij,lk(z(s1l, s2k)− x(s1l, s2k)

′β) + ε(s1i, s2j),

thus

z(s1i, s2j)−
∑

z(s1l,s2k)∈N(i,j) wij,lkz(s1l, s2k) = x(s1i, s2j)
′β−

∑
z(s1l,s2k)∈N(i,j) wij,lkx(s1l, s2k)

′β+

ε(s1i, s2j), i.e., ∆z(s1i, s2j) = ∆x(s1i, s2j)
′β + ε(s1i, s2j).

Therefore, given a consistent estimate β̂ of β, i.e., Limn→∞P
{
||β̂ − β|| ≥ δ

}
= 0,∀δ > 0

then

Limn→∞P {|ε̂(s1i, s2j)− ε(s1i, s2j)| ≥ δ} =

Limn→∞P
{
|(∆z(s1i, s2j)−∆x(s1i, s2j)

′β̂)− (∆z(s1i, s2j)−∆x(s1i, s2j)
′β̂)| ≥ δ

}
=

Limn→∞P
{
|∆x(s1i, s2j)

′(β̂ − β)| ≥ δ
}

= 0 by the Slustky theorem, i.e., ε̂(s1i, s2j)
p−→ ε(s1i, s2j).

Again by Slustky theorem, the spectral density function of ε̂(s1i, s2j) converge in probability

to σ2/(2π)2 ∀ξ1i, ξ2j.

The rest of the proof is given in proof of Theorem 1.

Observe that if we follow the notation given in Section 2.1, specifically equation 2.8, we get

the following outcomes.

Given z = Xβ + (I− ρW)−1ε, under H0 : ρ = 1, z − Wz = Xβ + (I−W)−1ε −
WXβ −W(I−W)−1ε which implies that (I−W)z = (I−W)Xβ+ (I−W)(I−W)−1ε,

i.e, ∆z = ∆Xβ + ε where ∆ = I−W is the spatial difference operator. On the other hand,

if ρ 6= 1, then ∆z = ∆Xβ + (I−W)(I− ρW)−1ε where (I−W)(I− ρW)−1ε is autocor-
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related. This implies that the periodogram of the residuals will not be evenly distributed.

In order to analyse the finite sample properties of the statistical test for a unit root in a

general spatial autoregressive model, we simulate the process z(s1i, s2j) = 2+0.5x1(s1i, s2j)−
x2(s1i, s2j) + e(s1i, s2j) where e = (I− ρW)−1ε, ε(s1i, s2j) ∼ N (0, 1), x1(s1i, s2j) ∼ P(100)

and x2(s1i, s2j) ∼ U(10, 50). This process is simulated 1,000 times on lattices of dimen-

sions 10 × 10 and 25 × 25, using the rook and queen contiguity criteria with and without

toroidal boundary conditions and x1(s1i, s2j) and x2(s1i, s2j) fixed. To analyse the power

of different tests to check a unit root in a general spatial autoregressive model, we set

ρ = {0.2, 0.5, 0.9, 0.95} and fix a nominal size of 0.05. Then, we calculate one minus the type

II error for five tests: the test in the frequency domain that we propose, the tests proposed by

Lauridsen and Kosfeld (2006) and Lauridsen and Kosfeld (2004), and the Likelihood Ratio

and Wald tests.

To implement our test, we calculate ∆z, ∆x1 and ∆x2 and obtain by Ordinary Least Square

a consistent estimate of β′ = [β0, β1, β2] in the regression ∆z = β0+β1∆x1+β2∆x2+ε. Then,

we take the residuals of this regression, which are a consistent estimate of ε, and apply the

procedure that is used in the case of a pure spatial autoregressive process. Additionally, these

residuals are used to implement the Likelihood Ratio and Wald tests for the null hypothesis

H0 : γ = 1−ρ = 0 on the model ε̂(s1i, s2j) = α+γ
∑

ε̂(s1l,s2k)∈N(i,j) wij,lkε̂(s1i, s2j)+v(s1i, s2j).

Also, we calculate the power of the tests developed by Lauridsen and Kosfeld (2006) and

Lauridsen and Kosfeld (2004) following the stages that they propose.

We can see in Table 4.5 that the best power is obtained using the test proposed by Lau-

ridsen and Kosfeld (2004). Additionally, it can be seen in this table that we have similar

outcomes with the Likelihood Ratio, the Wald and the frequency domain tests when these

are used on lattices of dimension 10 × 10. Under this circumstance, the test proposed by

Lauridsen and Kosfeld (2006) shows the worst results. On the other hand, if we analyse

lattices of dimension 25× 25, we obtain the worst outcomes with our test. These results are

robust because we get them independently of the contiguity criterion or boundary restriction.

To analyse the size of the tests, we simulate the same process 1,000 times but fix ρ = 1, then

with a nominal size of 0.05, we calculate the type I error. As can be seen in Table 4.6, we

have the worst outcomes with the test proposed by Lauridsen and Kosfeld (2004). We can

see in this table that we get sensible results with the frequency domain test; although when

we apply this test on lattices of dimension 10× 10, we obtain an empirical size bigger than

the sizes obtained with the Likelihood Ratio, Wald and Lauridsen and Kosfeld (2006) tests.

On the other hand, if we analyse lattices of dimension 25 × 25, it can be seen in Table 4.6

that we have the best outcome with the frequency domain test under the assumption of a

rook contiguity criterion.
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Table 4.5: Empirical power of statistical tests for a unit root in a general spatial autoregres-
sive process in lattice data.

Rook Queen Rook (Torus) Queen (Torus)
ρ 10×10 25×25 10×10 25×25 10×10 25×25 10×10 25×25

Frequency domain
0.2 0.949 1.000 0.622 0.971 0.965 1.000 0.655 0.957
0.5 0.818 1.000 0.553 0.907 0.853 1.000 0.503 0.887
0.9 0.263 0.612 0.190 0.316 0.228 0.548 0.162 0.270
0.95 0.174 0.282 0.116 0.144 0.150 0.240 0.098 0.163

Lauridsen and Kosfeld (2006)
0.2 0.999 1.000 0.994 1.000 1.000 1.000 0.983 1.000
0.5 0.969 1.000 0.899 1.000 0.960 1.000 0.828 1.000
0.9 0.268 0.971 0.212 0.943 0.246 0.937 0.123 0.901
0.95 0.152 0.670 0.099 0.599 0.101 0.568 0.062 0.519

Lauridsen and Kosfeld (2004)
0.2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.9 0.993 1.000 0.841 1.000 0.770 1.000 0.565 1.000
0.95 0.872 1.000 0.466 1.000 0.500 1.000 0.276 0.999

LR
0.2 0.999 1.000 1.000 1.000 1.000 1.000 0.998 1.000
0.5 0.984 1.000 0.962 1.000 0.978 1.000 0.930 1.000
0.9 0.303 0.977 0.341 0.959 0.246 0.953 0.191 0.932
0.95 0.167 0.695 0.160 0.646 0.116 0.590 0.099 0.564

Wald
0.2 0.999 1.000 1.000 1.000 1.000 1.000 0.999 1.000
0.5 0.993 1.000 0.976 1.000 0.987 1.000 0.951 1.000
0.9 0.372 0.981 0.374 0.966 0.289 0.963 0.218 0.942
0.95 0.192 0.715 0.176 0.657 0.137 0.616 0.121 0.578

Source: Author’s estimations.

All the previous simulation exercises assume a spatial autoregressive process, and we get

sensible outcomes with our frequency domain test in general. However, our test is exceeded

by the parametric tests many times; therefore, we perform other simulation exercises where

a spatial autoregressive process is not assumed. Specifically, we perform two simulation

exercises on lattices of dimension 25 × 25 where the process is not stationary due to non-

constant mean. These processes are z(s1i, s2j)
1 = 10sin(0.5s1i)+10cos(0.5s2j)+ε(s1i, s2j) and
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Table 4.6: Empirical size of statistical tests for a general unit root in a spatial autoregressive
process in lattice data.∗

Rook Queen
10×10 25×25 10×10 25×25

Frequency domain
0.088 0.055 0.089 0.042

Lauridsen and Kosfeld (2006)
0.051 0.058 0.038 0.046

Lauridsen and Kosfeld (2004)
0.212 0.759 0.108 0.414

LR
0.056 0.058 0.050 0.046

Wald
0.066 0.060 0.061 0.047

*Nominal size is 0.05.

Source: Author’s estimations.

z(s1i, s2j)
2 = 1.4 + 0.1s1i + 0.2s2j + 0.002s2

1i + 0.003s2j + ε(s1i, s2j) where in both ε(s1i, s2j) ∼
N (0, 1). We calculate the size of the tests, and as we can see in Table 4.7, we get sensible

outcomes with our test, the best sizes are gotten using the frequency domain and Wald tests.

On the other hand, the worst sizes are obtained by the test of Lauridsen and Kosfeld (2004).

As a conclusion, there is some evidence that our test performs better than the parametric

tests when the data generating process is different from a spatial autoregressive process.

Table 4.7: Empirical size of statistical tests for the non-stationary process due to non-
constant mean

z(s1i, s2j)
1 z(s1i, s2j)

2

Frequency domain 0.084 0.096

Lauridsen and Kosfeld (2006) 0.202 0.216

Lauridsen and Kosfeld (2004) 0.000 0.000

LR 0.138 0.143

Wald 0.083 0.092

*Nominal size is 0.05.

Source: Author’s estimations.



5 Applications

5.1 Mercer-Hall Dataset

In order to apply the statistical test that is developed, we use the Mercer-Hall dataset (Mer-

cer and Hall, 1911), which is widely used in lattice literature (Whittle, 1954; Cressie, 1993;

Ripley, 2004).

Figure 5.1: Mercer-Hall’s dataset: grain.

“. . . Mercer and Hall (1911) were trying to determine the optimum plot size

for agricultural yield trials:

• Plots that are too small will be too variable;
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Figure 5.2: Mercer-Hall’s dataset: straw.

• Plots that are too large waste resources (land, labour, seed); if the land

area is limited, the number of treatments (varieties, fertilizers, herbicides

. . . ) will be restricted.

So they performed a very simple experiment at the famous Rothamsted Ex-

periment Station (Harpenden, Herts, England): an apparently homogeneous field

was selected, prepared as uniformly as possible and planted to same variety of

wheat. They attempted to treat all parts of the field exactly the same in all

respects during subsequent farm operations. When the wheat had matured, the

field was divided into 500 equally-sized plots. Each plot was harvested sepa-

rately. Both grain and straw were air-dried, then hand-threshed and weighed to

a precision of 0.01 lb (4.54 g = 0.00454 kg). The reported values are thus air-dry

weight in pounds per plot.

The field was a square of 1 acre, a historical English measure of land area

which is equivalent to 0.40469 ha (4,046.9 m2), or 63.615 m on a side. The field

was divided into a 20 rows by 25 columns, giving 500 plots, each of 1/500 acre.

Dividing the square by the number of rows and columns, we obtain plots 3.1807

m long × 2.5446 m wide, with an area of 8.0937 m2. We do not have records of
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the original orientation of the field, so we assume that the rows ran W (west) to

E (east), with 25 plots in each row, beginning at 1 on the W and running to 25

at the E. Then the columns run S (south) to N (north) with 20 plots in each,

beginning at 1 on the S and running to 20 at the N. . . .

The first statistician to deal with the dataset was none other than “Student”,

the pen name of William Seely Gosset, who developed methods for statistical

treatment of small samples, including the t-distribution, among many other ac-

complishments. He wrote an appendix (pp. 128-132) to Mercer and Hall’s pa-

per.”

Rossiter (2010, pp 118)

The Mercer-Hall’s dataset is displayed in Figures 5.1 and 5.2, as we can see, there are some

signs of spatial autocorrelation because of ripples running West-East. Seemingly, spatial au-

tocorrelation in straw-yield data is stronger than spatial autocorrelation in grain-yield data.

Figure 5.3: Mercer-Hall’s dataset: spatial correlogram and Moran’s I test.

As can be seen in Figure 5.3, evidence against not spatial correlation is stronger in straw-

yield data than in grain-yield data because spatial correlogram and Moran’s I statistics

decrease slower for the former. In fact, Moran’s I tests under randomisation are 0.40 and

0.52, respectively. At 5% significant level, we reject the null hypothesis of no spatial correla-

tion for each variable. Given the strong distributional assumptions of the Moran’s statistic,

we test spatial correlation for each variable with Moran’s I test under permutations and

10,000 simulations. Figure 5.4 shows the outcomes, and again we reject the null hypothesis
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at conventional significance levels due to their Moran statistic values being 0.41 and 0.52,

respectively.

Figure 5.4: Mercer-Hall’s dataset: Histograms of Moran’s I test under permutations.

Figure 5.5: Mercer-Hall’s dataset: spatial covariance and periodogram functions of grain-
yield.

Figures 5.5 and 5.6 display the sample spatial covariance (Panel A) and the periodogram

(Panel B) functions for grain-yield and straw-yield, respectively.1 Due to ripples running

1The mean is removed from the original array.
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Figure 5.6: Mercer-Hall’s dataset: spatial covariance and periodogram functions of straw-
yield.

West-East, there are peaks for small coordinates that decrease slowly, especially for straw-

yield data. In interpreting plots such as Panel B of Figures 5.5 and 5.6, it is often more

convenient to think in terms of the period of a cycle function rather than its frequency. As

can be seen in these figures, there are noticeable peaks on the periodograms at frequencies

(0,−2.01) and (0, 2.01), corresponding to a wavelength of approximately 8 meters in the

East-West direction.2

With regard to this last point, there are some studies that re-analyse the Mercer-Hall dataset

using spectral analysis. Specifically, McBratney and Webster (1981) show that there is a

periodicity in the East-West direction for both grain and straw data with a wavelength of

three rows of plots. As they say, this wavelength is attributed to an earlier ridge and furrow

system. Ripley (2004) computes a smoothed spectral density estimate using the Fast Fourier

Transform. The necessity of using a smoothed estimate arises because the periodogram es-

timate is biased in a small sample due to leakage effect. In particular, Ripley (2004) uses

a bivariate Normal density function as window in his estimations, and discovers a peak at

frequencies (10π/32, 0) and (−10π/32, 0), corresponding to a wavelength of 35 feet in the

East-West direction.

We estimate pure SAR models for grain and straw data, and obtain ρ̂grain = 0.60 and

ρ̂straw = 0.70, both parameters are statistically significant at 5% level. These outcomes are

consistent with the evidence that was shown earlier where the sample spatial autocorrelation

function for the straw data decreases slower than the grain data.

2If the frequency of a cycle is ξ, the period of the cycle is 2π/ξ, then for this case the period is 2.5446(2π/2.01)
meters.
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Figure 5.7: Grain-Straw model: Residuals.

After this analysis, we test the null hypothesis of a spatial unit root in the Mercer-Hall

dataset with the statistic that we propose. First, the test based on the asymptotic distri-

butions is applied to the grain and straw dataset. Specifically, we use the following algorithm.

Algorithm for the test

• Calculate ∆z(s1i, s2j)
grain = z(s1i, s2j)

grain −
∑

h1

∑
h2
wij,h1h2z(s1i±h1 , s1j±h2)

grain and

∆z(s1i, s2j)
straw = z(s1i, s2j)

straw −
∑

h1

∑
h2
wij,h1h2z(s1i±h1 , s1j±h2)

straw

• Estimate the periodograms of ∆zgrain =
[
∆z(s11, s21)grain,∆z(s11, s22)grain, . . . ,∆z(s1n, s2n)grain

]′
and ∆zstraw =

[
∆z(s11, s21)straw,∆z(s11, s22)straw, . . . ,∆z(s1n, s2n)straw

]′
• Calculate the means of the periodograms associated with the m1 = m/2 central fre-

quencies around the origin in the space of frequencies, and the mean of the rest of the

periodograms for each random field

• Estimate ψ̂ for each process

• Compare ψ̂ of each process against the confidence bounds (Fα/2,2m1,2m2 , F1−α/2,2m1,2m2)
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• Values of these statistics outside of bounds suggest ρ 6= 1, which implies that the fields

do not have a spatial unit root

As can be seen in Table 5.1, the test rejects the null hypothesis of a spatial unit root process

in both grain and straw data.

Table 5.1: Results of the spatial unit root test based on asymptotic distributions: Mercer-
Hall’s dataset.

The asymptotic test

ψ̂ F0.025,500,496 F0.975,500,496

Grain 0.348 0.838 1.192
Straw 0.286 0.838 1.192

Source: Author’s estimations.

Additionally, we use the Monte Carlo test to check the null hypothesis of a spatial unit root.

The algorithm that is used is the following.

Algorithm for the Monte Carlo test

• Calculate ψ̂k for each process

• Estimate the variances of each random field, σ̂2
∆zgrain and σ̂2

∆zstraw

• Simulate k − 1 independent spatially uncorrelated autoregressive random fields with

variances σ̂2
∆zgrain and σ̂2

∆zstraw and dimension 20× 25 for each field. Remember, under

H0 : ρ = 1, ∆z = ε

• Calculate
{
ψ̂i : i = 1, 2, . . . , k − 1

}
for each spatially uncorrelated autoregressive ran-

dom field

• Order ψ̂(1) ≤ ψ̂(2) ≤ ψ̂(3) · · · ≤ ψ̂(k)

• Ask whether ψ̂k for each field is different from the other ψ̂i’s. This is accomplished

by rejecting the null hypothesis if ψ̂k is one of the smaller or one of the larger order

statistics

We can see in Table 5.2 that the Monte Carlo test rejects the null hypothesis of a spatial

unit root in grain and straw data.
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Table 5.2: Results of the spatial unit root tests based on Monte Carlo distributions: Mercer-
Hall’s dataset.

The Monte Carlo test

ψ̂ ψ̂(25) ψ̂(975)

Grain 0.348 0.792 1.267
Straw 0.286 0.762 1.299

Source: Author’s estimations.

Summarizing the outcomes using our spatial unit root test for the Mercer-Hall dataset, we

reject the null hypothesis of a spatial unit root process in these dataset. This implies that

if we use these dataset in a regression analysis, we will not apparently have the problem of

nonsense outcomes.

After this preliminary analysis, we fit a model to the data and examine whether the resid-

uals from the fit exhibit spatial autocorrelation. Thus, we postulate the linear model

z(s1, s2)grain = β0 + β1z(s1, s2)straw + e(s1, s2) and obtain the Ordinary Least Square es-

timate of β0 and β1. Specifically, we get3

ẑ(s1, s2)grain = 1.523
(0.102)

+ 0.372
(0.015)

z(s1, s2)straw (5.1)

We can observe that there is a positive effect of straw-yield on grain-yield. Moreover, we

find that Moran’s I statistic is 0.24, this implies that there is spatial autocorrelation.

Figure 5.7 shows residuals plot (Panel A), spatial correlogram (Panel B), Moran’s I test at

different lags (Panel C) and the histogram of Moran’s I test under Monte Carlo permutations

(Panel D). As can be seen in this figure, there is strong evidence of spatial autocorrelation.

Additionally, we can see that there is evidence of spatial correlation of the residuals (Panel A)

and there are noticeable peaks on the periodograms at frequencies (0,−2.01) and (0, 2.01),

corresponding to a wavelength of about 8 meters in the East-West direction (see Figure 5.8).

Moreover, we perform Lagrange Multiplier diagnostics for spatial dependence in linear mod-

els. In Table 5.3 the outcomes can be seen.

3Standard deviation are in parenthesis.
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Figure 5.8: Grain-Straw model: spatial covariance and periodogram functions of residuals.

Table 5.3: Lagrange Multiplier diagnostics for spatial dependence in linear models: Mercer-
Hall’s dataset model.

LMerr LMlag RLMerr RLMlag SARMA

54.44 37.66 16.99 0.20 54.65

Source: Author’s estimations.

These outcomes imply that there is spatial dependence in the model except in the RLMlag

test. Therefore, we fit the spatial autoregressive model z(s1, s2)grain = β0 +β1z(s1, s2)straw +

e(s1, s2) where e(s1, s2) = ρWe(s1, s2) + ε(s1, s2). We get

ẑ(s1, s2)grain = 1.571
(0.116)

+ 0.364
(0.017)

z(s1, s2)straw + ê(s1, s2) (5.2)

where

ê(s1, s2) = 0.364
(0.055)

Wê(s1, s2) (5.3)

We find that all variables are statistically significant at conventional levels. The Moran’s

statistical test in the residuals of this model is -0.036 which implies that there is no spatial

autocorrelation. Additionally, we perform Lagrange Multiplier diagnostics for spatial depen-

dency in this model, and find that the value of the LMerr test is 1.26 which implies that

there is not spatial dependency. These outcomes apparently are not spurious due to grain

and straw data not having a spatial unit root.
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5.2 Demand of electricity in the Department of Antioquia,

Colombia

In this section, we analyse the variables that would affect the electricity demand made by

the representative agent of strata one in the Department of Antioquia, Colombia. In this

context a representative agent is an average individual from strata one in each municipality.

The residential consumers of utilities in Colombia are classified by strata. This is done in

order to give subsidies to poor people who are in strata one and two. On the other hand,

rich people, who are in strata five and six, have to pay contributions to the system in order

to subsidize poor people. Finally, people who are in the medium strata (three and four) do

not pay contribution or obtain any subsidy.

We collect information from 125 municipalities which are located in the Department of An-

tioquia. Specifically, we use the data of average per capita individuals classified in strata

one. The analysis is focused on this segment of the population because despite obtaining

subsidies, the expenditure of electricity of strata one is a big percentage of their income, a

mean of 4.62%, while the average percentage of strata six is less that 1.00%. Thus, it is

necessary to improve the mechanism to assign subsidies and achieve better equity. In order

to take regulatory decisions based on a strong framework, it is mandatory to offer statis-

tical tools which incorporate explicitly the spatial interaction of the municipalities because

denying this aspect can cause bias and inconsistency of parameters estimates. The dataset

contains information by municipality, specifically, the average annual per capita consump-

tion of electricity (kWh), the price of electricity (COP$/kWh), the price of an electricity

substitute (COP$/kWh) and the average annual per capita income (COP$/1.000).

5.2.1 Some empirical facts

As can be seen in Figure 5.9, the highest average electricity consumptions in strata one are

located in municipalities with less than one thousand meters above sea level (see Figure

5.13) which face medium electricity prices (see Figure 5.10) and substitutes of electricity

with the highest prices (see Figure 5.11). Occasionally, municipalities with the average high-

est electricity consumption are characterized by the highest average income (see Figure 5.12).

Table 5.4 shows some descriptive statistics. It can be seen that the annual average electricity

consumption is 313.17 kWh with a standard deviation of 157.08 kWh. Additionally, the av-

erage annual per capita income is COP$825,280 with a standard deviation of COP$197,950.

The municipality of Envigado exhibits the highest electricity consumption, and also, the

highest income. On the other hand, Viǵıa del Fuerte has the lowest average annual per

capita consumption of electricity. A reason that can explain this fact is that Viǵıa del
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Table 5.4: Descriptive statistics: Electricity demand in the Department of Antioquia,
Colombia.

Descriptive statistics

Statistic Electricity Consumption Electricity Price Substitute Price Income

Mean 313.17kWh 126.83COP$/kWh 62.31COP$/kWh COP$825,280

St.Dev. 157.08kWh 51.07COP$/kWh 12.47COP$/kWh COP$197,950

Max. 785.25kWh 498.25COP$/kWh 117.31COP$/kWh COP$1286,970
Envigado Entrerŕıos Chigorodó Envigado

Min. 35.46kWh 56.72COP$/kWh 33.89COP$/kWh COP$479,090
Viǵıa del Fuerte San José de la Montaña Venecia El Bagre

Source: Author’s estimations.

Fuerte is located in the Darién Gap, a large swath of undeveloped swampland and forest

separating Panama’s Darién Province in Central America from Colombia in South America.

With regard to the price of electricity, the mean is 126.83 COP$/kWh and its standard

deviation is 51.07 COP$/kWh. Entrerŕıos has the highest price and San José de la Montaña

exhibits the lowest electricity price. Finally, the average price of the substitute is 62.31

COP$/kWh with its minimum located in Venecia and its maximum located in Chigorodó.

5.2.2 Spatial econometric analysis

First of all, a contiguity matrix standardized by rows based on the rook criterion is defined

in order to perform the Moran test to check the presence of spatial autocorrelation in the

variables that are studied. In this context, two regions are neighbours if at least two bound-

ary points are within the snap distance of each other. The statistical evidence indicates that

the null hypothesis of no spatial autocorrelation should be rejected at 5% significance level

in all the variables (see Table 5.5). In order to check the robustness of these outcomes, a

permutation test for Moran’s I statistic is calculated by using 10,000 random permutations.

These exercises confirm again that the null hypothesis should be rejected (see Figure 5.14).

Table 5.5: Moran’s test: electricity demand, Antioquia (Colombia).

Electricity consumption Electricity price Substitute price Income

0.421 0.148 0.384 0.650

Source: Author’s estimations.
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Figure 5.9: Average annual per capita electricity consumption of strata one (kWh): quintile
spatial distribution, Antioquia (Colombia).
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Figure 5.10: Average electricity price of strata one (COP$/kWh): quintile spatial distribu-
tion, Antioquia (Colombia).
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Figure 5.11: Average electricity substitute price of strata one (COP$/kWh): quintile spatial
distribution, Antioquia (Colombia).
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Figure 5.12: Average annual per capita income of strata one (COP$/1.000): quintile spatial
distribution, Antioquia (Colombia).
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Figure 5.13: Less than one thousand meters above sea level: spatial distribution, Antioquia
(Colombia).
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Figure 5.14: Moran’s test: electricity demand, Antioquia (Colombia).

As can be seen in Figure 5.15, there is statistical evidence of spatial autocorrelation in the

variables. The variable that exhibits the lowest spatial autocorrelation is the price of elec-

tricity.

Figure 5.15: Spatial autocorrelogram: electricity demand, Antioquia (Colombia).

However, there is a problem with the implementation of Moran’s statistic because it as-

sumes constant mean, but some economic foundations argue that the demand for electricity

is a function of electricity price, substitute price, income and weather conditions. There-

fore, we estimate the model log(c(s1i, s2j)) = β0 + β1log(p(s1i, s2j)) + β2log(sp(s1i, s2j)) +

β3log(y(s1i, s2j)) + β4sl(s1i, s2j) + µ(s1i, s2j) where c(s1i, s2j) is the electricity consumption,

p(s1i, s2j) is the electricity price, sp(s1i, s2j) is the substitute price, y(s1i, s2j) is the income
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and sl(s1i, s2j) is a categorical variable which takes the value of 1 if the municipality is located

at less than one thousand meters above sea level and 0 in another case. We estimate the

model in log − log form because the parameter estimates can be interpreted as elasticities.

An elasticity is a measure of sensitivity commonly used by economists, and it shows how an

increment of 1% in an independent variable implies some percentage change in a dependent

variable. We have the following results in this exercise.

̂log(c(s1, s2)) = 5.615
(1.701)

−1.165
(0.169)

log(p(s1, s2))+0.148
(0.224)

log(sp(s1, s2))+0.735
(0.197)

log(y(s1, s2))+0.182
(0.105)

sl(s1, s2)

(5.4)

All variables are significant at 1% except sl(s1, s2) which is significant at 10% and log(sp(s1, s2))

that is not significant.

These outcomes imply that an increment of 1% in electricity price implies a reduction in

electricity demand of 1.165%. While an increment of 1% in income causes an increment of

0.735% in electricity consumption. Additionally, it is found that municipalities located at

less than one thousand meters above sea level have an electricity demand 18.2% higher than

municipalities without this characteristic. In general, all variables have the expected sign.

We perform spatial autocorrelation tests on residuals of this model. The value of the Moran’s

test is 0.49, this value implies the existence of spatial autocorrelation. Moreover, we can see

in Table 5.6 that there is evidence of spatial autocorrelation except in the case of RLMlag

statistic.

Table 5.6: Lagrange Multiplier diagnostics for spatial dependence in linear models: electricity
demand, Antioquia (Colombia).

LMerr LMlag RLMerr RLMlag SARMA

73.30 68.79 5.59 1.08 74.39

Source: Author’s estimations.

Additionally, we build the Local Index Spatial Autocorrelation map of the residuals to detect

if there are zones with greater correlations than others.

We can see in Figure 5.16 that there are some regions that exhibit local spatial autocorrela-

tion.
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Figure 5.16: Local Index Spatial Autocorrelation Map: electricity demand, Antioquia
(Colombia).
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Summarizing the statistical evidence indicates that there are spatial effects that we do not

take into account. Therefore, we might have a model with nonsense outcomes due to the

presence of a spatial unit root in the data generating process of the electricity consumption.

Thus, we implement the generalised spatial unit root test in the frequency domain to check

this hypothesis. We implement the following algorithm.

Algorithm for the generalised test

• Calculate ∆z(s1i, s2j) = z(s1i, s2j)−
∑

h1

∑
h2
wij,h1h2z(s1i±h1 , s1j±h2) for each variable.

The variables are in this case: log(c(s1, s2)), log(p(s1, s2)), log(sp(s1, s2)), log(y(s1, s2))

and sl(s1, s2)

• Estimate de model ∆log(c(s1i, s2j)) = β0 + β1∆log(p(s1i, s2j)) + β2∆log(sp(s1i, s2j)) +

β3∆log(y(s1i, s2j)) + β4∆sl(s1i, s2j) + µ(s1i, s2j)

• Obtain the residuals of this model µ̂(s1i, s2j)

• Estimate the periodogram of µ̂(s1i, s2j) =
[
µ̂(s11, s21), µ̂(s11, s22), . . . , µ̂(s1n, s2n

]′
• Calculate the mean of the periodogram associated with the m1 = m/2 central fre-

quencies around the origin in the space of frequencies, and the mean of the rest of the

periodogram for each random field

• Estimate ψ̂

• Compare ψ̂ against the confidence bounds (Fα/2,2m12,m2 , F1−α/2,2m1,2m2)

• Values of this statistic outside of bounds suggest ρ 6= 1, which implies that the field

does not have a spatial unit root

However in this application, we have variables associated with a geometry that is very differ-

ent compared to a regular lattice. Therefore, it is mandatory to handle some issues that arise

in this case because the formulations of the spatial covariance and spectral density are based

on regular lattices. This disadvantage can be handled easily because there are theoretical

considerations that connect these concepts in both the regular lattice and irregular spatial

polygons (Mateu and Juan, 2004). Specifically, we approximate the geometry of the regional

data with a regular lattice with missing values (Fuentes, 2007). First of all, we overlay a

spatial grid on the spatial polygons given by the map of the Department of Antioquia. The

area of each rectangle in the grid is given by the smallest rectangle that contains completely

the smallest polygon, i.e., 5,819×5,910. In Figure 5.17, the overlay of the grid on the spatial

polygons can be seen.
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Figure 5.17: Grid associated with Antioquia’s dataset.
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Second, we transfer the data in the spatial polygons to the spatial grid so that each cell has

the average value of the overlaid polygons weighted by area. Renshaw (2002) establishes

that this procedure is valid, but also warns that it is necessary to build a sufficiently fine

covering mesh. The outcomes of these operations can be seen in Figure 5.18.

As can be seen in Figure 5.17, there are missing values in the spatial grid because of the

irregular shape of the spatial polygons. Fuentes (2007) develops the theoretical framework

associated with periodogram estimates for spatial regular lattices with missing values and

irregularly spaced datasets. Specifically, it is demonstrated that asymptotically the bias is

negligible, but in a finite sample the effect of missing data can create some impact. Addi-

tionally, the asymptotic variance of the spectrum estimates in presence of missing data is

bigger than when there are no missing values.

Once the data in the spatial polygons to the spatial grid is transferred, we estimate the

autocorrelation function and the periodogram of the residuals associated with the auxil-

iary regression that is used in the algorithm to test the spatial unit root in the electricity

consumption. We omit the effect of missing values in this procedure (Fuentes, 2007). The

outcomes are shown in Figures 5.19 and 5.20 where we can observe in this last figure that

the periodogram function is concentrated at small frequencies, this probably implies that

the process does not have a spatial unit root.

After this preliminary analysis, we follow the algorithm for the generalised test omitting

the effect of missing values. We can see in Table 5.7 the outcomes of various spatial unit

root tests. All the tests have as null hypothesis a spatial unit root process in the electricity

consumption of the Department of Antioquia (Colombia). We reject this hypothesis with

all tests including the frequency domain tests with different areas of the grids that are used

to overlay the variable. Thus, the process is stationary once we take into account the large

scale effects. Therefore, the estimation result are sensible.

However, there are spatial effects as we show at the beginning of this section. Then, we

estimate a spatial autoregressive model, and obtain the following outcomes.

̂log(c(s1, s2)) = 7.578
(1.876)

−1.150
(0.122)

log(p(s1, s2))+0.181
(0.182)

log(sp(s1, s2))+0.408
(0.229)

log(y(s1, s2))+0.033
(0.100)

sl(s1, s2)+µ̂(s1i, s2j)

(5.5)

µ̂(s1i, s2j) = 0.796
(0.057)

∑
h1

∑
h2

wij,h1h2 µ̂(s1i±h1 , s1j±h2) (5.6)
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Figure 5.18: Grid associated with residuals of auxiliary regression: Antioquia’s variables of
strata one.
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Figure 5.19: Residuals of the auxiliary regression to check a unit root in average electric-
ity consumption of strata one: autocorrelation estimate function, Antioquia
(Colombia).

We take into account the spatial effects in this estimation. Specifically, the likelihood ratio test

value is 68.83 which implies that the spatial effect is relevant. Additionally, the value of Moran’s

tests is 0.009 which implies that there is no statistical evidence of spatial autocorrelation in the

residuals of this model. Moreover, this fact is corroborated with the LMerr and LMlag tests.

In this estimation all variables have the expected sign. In particular, the price elasticity of electric-

ity demand is significant and equal to −1.15 which implies that an increment of 1% in price means

a reduction in electricity demand of 1.150%. Moreover, income elasticity is significant at 10% and
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Figure 5.20: Residuals of the auxiliary regression to check a unit root in average elec-
tricity consumption of strata one: periodogram estimate function, Antioquia
(Colombia).

implies that an increment of 1% in per capita income means an increment of 0.408% in electricity.

On the other hand, once we take into account spatial effects, the dummy variable associated with

sea level is not significant, this makes sense because this variable is related to geographical condi-

tions, and these conditions are the core of a spatial autoregressive model. Finally, the substitute

price is not significant. This result was also found in the first regression analysis that we did. A

possible explanation of this fact, it is that electrical devices have few substitutes in rural areas

which is the biggest area in Antioquia. Therefore a decrease in substitute prices does not imply a

reduction in electricity consumption.
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Table 5.7: Results of the spatial unit root tests: Electricity demand in the Department of
Antioquia, Colombia.

Frequency domain test

ψ̂ F0.025,4094,4096 F0.975,4094,4096

Lattice (5,819×5,910) 4.212 0.940 1.063

ψ̂ F0.025,1482,1482 F0.975,1482,1482

Lattice (10,000×10,000) 3.147 0.903 1.107

ψ̂ F0.025,674,674 F0.975,674,674

Lattice (15,000×15,000) 2.320 0.891 1.115

L̂M χ2
1

Lauridsen and Kosfeld (2006) 4.201 3.841

L̂MSIM ̂LMSIM
Empirical

Lauridsen and Kosfeld (2004) 13.303 4.820

L̂R χ2
1

LR 6.004 3.841

Ŵald χ2
1

Wald 7.522 3.841

Source: Author’s estimations.



6 Conclusions, Recommendations and

Future Research

6.1 Conclusions

Stationarity is a common assumption in applied work, especially in regional data analysis. However,

this hypothesis should be checked. Therefore in this dissertation, the consequences on statistical

inference when there is a non-stationary spatial autoregressive random field on a lattice are anal-

ysed. Specifically, we study the case of spatial unit root processes. This point is important because

technically the collection of n indexed observations that make up a dataset in the spatial domain

do not represent a sample of size n. Actually, they represent a single realization of a random ex-

periment; a sample of size one from an n-dimensional distribution. We find that this phenomenon

causes a tendency in the pattern that exhibits the process, and also that the variance of the process

is not stable although dimension of the lattice increases. On the other hand, it is shown that many

characteristics that present spatial unit root fields are the same as can be found in unit root pro-

cesses in time domain. However, there is one difference that is very important, the Ordinary Least

Square estimator of the autoregressive parameter is not consistent in the spatial domain. This fact

gains relevance because many tests to check the presence of a unit root in the time domain are

based on the consistency of the OLS estimator.

In order to build a spatial unit root test, we use the spectral representation of a spatial autoregres-

sive random field. This strategy permits avoiding the use of Brownian motion in two dimensions, a

concept which presents some complaints in the spatial domain due to the multilateral dependence

structure in this space. Under the null hypothesis of a spatial unit root field, we propose a statistic

based on the asymptotic properties of the periodogram function, and find its asymptotic distribu-

tion. Additionally, a Monte Carlo test strategy is proposed to improve the finite sample statistical

properties of the test.

We perform some Monte Carlo experiments which indicate that the small sample properties of the

frequency domain test are sensible. Its sample size converges to the nominal size and the power

converges to one. However, if we compare these results with the ones obtained using other spatial

unit root tests, we can see that these tests can over perform our test in some occasions when the

data generating process is a spatial autoregressive model. This outcome is due to the parametric

tests performing better under the assumptions of the parametric models. On the other hand, some

simulation exercises show that our test gets the best size when the data generating process is not a

spatial autoregressive model. Therefore, it is found that our test is less sensitive to model assump-
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tions.

The Mercer-Hall data are used to apply the statistical methodology that is developed in this disser-

tation, and specifically, we test the null hypothesis of spatial unit root processes. We find that there

is statistical evidence to reject the null hypothesis of a spatial unit root in the data. Additionally,

the dataset of the demand of electricity in the Department of Antioquia is also used. Given that

the geometry of these data is not a regular lattice, we transfer the data in the spatial polygons to a

spatial grid in order to apply conventional statistical tools developed in regular lattice. It is found

that there is statistical evidence to reject the null hypothesis of a spatial unit root in electricity

consumption. This implies that the elasticities estimates are sensible, and thus, electricity demand

reacts with price and income changes. Specifically, an increment of 1% in electricity price means

a reduction of 1.150% in electricity consumption, and an increment of 1% in income implies an

increment of 0.408% in the demand of this service. Additionally, we find that substitute electricity

prices do not have an effect on electricity demand, and once we take into account spatial effects,

there is no effect due to the sea level dummy variable.

Finally, we know that the concept of a spatial unit root is controversial because of many aspects

(Florax and Vlist, 2003; Paelinck et al., 2004). In particular, the concept of integration associated

with a unit root process and its interpretation as an accumulation of stochastic shocks, which is

taken from time series analysis, sounds rare in spatial analysis using cross section data. This is

due to cross section data being a picture in a moment of time. However, we can think beyond,

and realise that a realisation of a spatial process in a moment of time is actually a picture of a

realisation of a random field in three dimensions: latitude, longitude and time. Therefore, we can

think the concept of integration in the context of spatial analysis with cross section data as an

outcome of a non-stationary random field of three dimensions. Thus, the accumulation of shocks is

not due to a current event, but a consequence of historical events. For instance, we can imagine a

variable in some region in its initial moment, the region is fixed and time passes. Suppose that for

any historical circumstance, the variable is non-stationary. Unfortunately, we do not normally have

georeferenced historical data, although things are changing, so, we have a picture in a moment of

time. Thus, evidence of a spatial unit root process is a consequence of a historical process, and we

should not think in accumulation of shocks as an immediate propagation of these ones in a moment

of time, but as evidence of non-stationarity due to historical events whose manifestation is present

now.

Another controversial point about spatial unit root process is the fact that ρ = 1 is just a problem

that is present when the contiguity matrix is standardised (Paelinck et al., 2004). Two things

about this point; first of all, the contiguity matrix is standardised because this procedure gives

some intuition about the spatial lag. Specifically, the spatial lag of a variable associated with a

location can be seen as a weighted average of the same variable associated with its neighbours.

Second, the spatial unit root process is present in other types of contiguity matrices. For example,

in the case of a binary contiguity matrix, Beenstock and Felsenstein (2008) establish in a spatial

autoregressive model that a spatial unit root process is generated by an autoregressive coefficient
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equal to the reciprocal of the number of neighbours. Therefore, the spatial unit root case is not

just an algebraic problem.

Summarising, we know that there is a debate about the concept of unit roots and its application in

the spatial context; however, we must keep in mind that spatial data are just a realisation of a ran-

dom field. Therefore, checking stationarity is an important stage in any statistical analysis because

the fulfilment of this characteristic facilitates enormously the inferential analysis. Unfortunately,

there is a lot of empirical work that forgets this stage and assumes that stationarity is fulfilled, but

this can lead to erroneous inferences (Schabenberger and Gotway, 2005). So, the central point in

this dissertation from a philosophical perspective is to warn practitioners about the hypothesis of

stationarity and its implications in applied work.

6.2 Recommendations and future research

There is a lot of future research that can be developed in order to improve the outcomes of this

dissertation. For instance, it is well known that the formulation of the autocovariance that was

used here is consistent but biased (Guyon, 1982). Therefore, it is a good idea to use the un-

biased expression in order to improve the finite performance of the statistical tests. Addition-

ally, Fuentes (2007) shows that E[I(ξ1, ξ2)] = 1
rc(2π)2

∫
s(ξ1, ξ2)V (θ1 − ξ1, θ2 − ξ2)dθ1dθ2 where

V (θ1 − ξ1, θ2 − ξ2) =
(
sin2(rθ1/2)
sin2(θ1/2)

)(
sin2(cθ2/2)
sin2(θ2/2)

)
and (θ1, θ2) are Fourier frequencies. The peri-

odogram bias arises due to leakage effect. Given this problem in the periodogram estimate, it is

wise to use tapering or pre-whitening to reduce the bias in finite sample. Although, there is some

information lost, it can be possible to use methodologies that minimize the loss. The implementa-

tion of these methodologies can improve the finite sample properties of the statistical test.

Although the mathematical basis of the statistical test that is proposed is the Fourier transform,

it can be possible to explore the use of wavelets to formulate new statistical tests. This strategy

has been implemented in the time series literature (Cardinali and Nason, 2007).

With regard to the simulation exercises, the statistical properties of the test were analysed in reg-

ular lattices, but in regional analysis, the datasets are normally irregular polygons. It is a good

practice to perform Monte Carlo simulation exercises to analyse the finite sample properties of the

statistical test in real maps where the data conserve some spatial autoregressive structures.

Unfortunately, the asymptotic distribution of the test under the alternative hypothesis that ρ 6= 1

is not demonstrated. This result is a necessary condition to show that the test is consistent. But

this is non-trivial because, under the alternative hypothesis ∆z does have a spectral representation

that depends on ρ. Although that 2I(ξ1,ξ2)
s(ξ1,ξ2)

d−→ χ2
2 does not depend on ρ,

∑
ξ1,ξ2 6=0 2 I(ξ1,ξ2)

s(ξ1,ξ2) does not

converge to χ2
2m, because now s(ξ1, ξ2) 6= σ2/(2π)2, and varies with (ξ1, ξ2). Actually, this is a

sum of weighted Chi-Square variables, and we do not find the exact asymptotic distribution of this

variable. However, there are approximations that might be used (Solomon and Stephens, 1977;
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Castano and López, 2005).

Other ideas that can be used to build statistical tests to check stationarity on spatial random fields

are based on the outcomes of Bickel and Wichura (1971) and Deo (1975). Bickel and Wichura (1971)

show that the partial sum of independent random variables with zero means and finite variances

in 2-dimensional time converges to a Brownian motion process on [0, 1]2. The requirement for this

outcome is that the random variables satisfy the Lindeberg’s condition. On the other hand, Deo

(1975) develops a functional central limit theorem for stationary ϕ-mixing random fields. These

concepts play a fundamental role in the theory that is behind the statistical tests of a unit root

process in time domain.

Additionally, there are some other ideas that can be taken from time series analysis to apply in

the spatial context. For instance, Shitan (2008) introduces fractionally integrated separable spa-

tial autoregressive models which are applied when there are processes with long memory in space.

The effect of fractionally integrated models in space on the statistical test that is proposed can be

analysed. Also, the effect of holes or structural changes in space can be studied, and their influence

on the stationarity of the random field like it is done in time domain (Perron, 1989).

Actually, this dissertation is a grain in a theory that, although forgotten, can be fruitful due to

the wide field in which it can be developed. There are huge opportunities to contribute to the theory.
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