Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorDuque Montoya, Alvaro
dc.contributor.advisorZuleta, Daniel
dc.contributor.authorJaramillo Mejia, Paola Andrea
dc.date.accessioned2023-07-04T16:06:47Z
dc.date.available2023-07-04T16:06:47Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84127
dc.descriptionilustraciones, diagramas
dc.description.abstractSpatial variation in tree species diversity and distribution is thought to be mediated by environmental variation, including topography, but the underlying processes are not well understood. Wetter habitats like valleys should support higher growth and survival than drier habitats like ridges. However, deviations from this pattern may occur due to species’ habitat associations, which should be aligned with species’ ecological strategy along the interspecific acquisitive-conservative spectrum: fast growth at the cost of lower survival, and higher survival at the cost of slower growth. Here, we assess the influence of topography on the growth and mortality of 123,977 trees (1,266 species) in the 25-ha Amacayacu Forest Dynamics Plot, Northwestern Amazon. Specifically, we asked: (1) Do tree growth and mortality rates vary across topographic habitats (valleys, slopes, and ridges)? (2) Do growth and mortality vary depending on species' habitat associations? and (3) are the observed patterns of tree growth and mortality consistent with expectations based on the acquisitive-conservative spectrum? Mixed-effects models were used to examine demographic variation across topographic habitats and species habitat associations controlling for tree size. Trees growing on valleys had significantly higher mortality and growth rates compared to trees growing on slopes and ridges, which was consistent with the acquisitive-conservative spectrum. This pattern held true regardless of the species habitat associations. Our findings suggest that even small differences in topography can translate into differences in access to soil water affecting tree performance, which has implications for understanding species’ ecological strategies and forest responses to climate change.
dc.description.abstractSe cree que la variación espacial en la diversidad y distribución de las especies arbóreas está influenciada por la variación ambiental, incluida la topografía, pero los procesos subyacentes no se comprenden bien. Hábitats más húmedos, como los valles, deberían soportar un mayor crecimiento y supervivencia que hábitats más secos, como las colinas. Sin embargo, pueden ocurrir desviaciones de este patrón debido a las asociaciones de hábitat de las especies, que deben estar alineadas con la estrategia ecológica de las especies a lo largo del espectro adquisitivo-conservador interespecífico: crecimiento rápido a costa de una menor supervivencia y mayor supervivencia a costa de un crecimiento más lento. Aquí, evaluamos la influencia de la topografía en el crecimiento y la mortalidad de 123,977 árboles (1,266 especies) en la Parcela de Dinámica Forestal Amacayacu de 25 ha, en el noroeste de la Amazonía. Específicamente, preguntamos: (1) ¿Varían las tasas de crecimiento y mortalidad de los árboles entre los hábitats topográficos (valles, pendientes y colinas)? (2) ¿Varían el crecimiento y la mortalidad dependiendo de las asociaciones de hábitat de las especies? y (3) ¿los patrones observados de crecimiento y mortalidad de árboles son consistentes con las expectativas basadas en el espectro adquisitivo-conservador? Se utilizaron modelos de efectos mixtos para examinar la variación demográfica entre los hábitats topográficos y las asociaciones de hábitats de especies que controlan el tamaño de los árboles. Los árboles que crecían en valles tenían tasas de mortalidad y crecimiento significativamente más altas en comparación con los árboles que crecían en pendientes y colinas, lo que era consistente con el espectro adquisitivo-conservador. Este patrón se mantuvo independientemente de las asociaciones de hábitat de las especies. Nuestros hallazgos sugieren que incluso pequeñas diferencias en la topografía pueden traducirse en diferencias en el acceso al agua del suelo que afectan el rendimiento de los árboles, lo que tiene implicaciones para comprender las estrategias ecológicas de las especies y las respuestas de los bosques al cambio climático. (Texto tomado de la fuente)
dc.format.extentxviii, 38 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc570 - Biología::577 - Ecología
dc.titleLocal-scale changes in topography influence tree growth and mortality in a terra firme forest in the Northwestern Amazon
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental
dc.contributor.researchgroupConservación, Uso y Biodiversidad
dc.coverage.regionAmazonas, Colombia
dc.description.degreelevelMaestría
dc.description.researchareaDinámica de los bosques de la Amazonia Colombiana
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedRedCol
dc.relation.indexedLaReferencia
dc.relation.referencesBarton, K. (2022). Package ‘ MuMIn .’ 1.
dc.relation.referencesBates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01
dc.relation.referencesBauman, D., Fortunel, C., Delhaye, G., Malhi, Y., Cernusak, L. A., Bentley, L. P., Rifai, S. W., Aguirre-Gutiérrez, J., Menor, I. O., Phillips, O. L., McNellis, B. E., Bradford, M., Laurance, S. G. W., Hutchinson, M. F., Dempsey, R., Santos-Andrade, P. E., Ninantay-Rivera, H. R., Chambi Paucar, J. R., & McMahon, S. M. (2022). Tropical tree mortality has increased with rising atmospheric water stress. Nature, 608(7923), 528–533. https://doi.org/10.1038/s41586-022-04737-7
dc.relation.referencesBrodribb, T. J., Powers, J., Cochard, H., & Choat, B. (2020). Hanging by a thread? Forests and drought. Science, 368(6488), 261–266. https://doi.org/10.1126/science.aat7631
dc.relation.referencesChamorro, C. (1989). Biologia de los suelos del Parque Nacional Natural Amacayacu, y zonas adjacentes, Amazonas-Colombia.
dc.relation.referencesChave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351–366.
dc.relation.referencesChuyong, G. B., Kenfack, D., Harms, K. E., Thomas, D. W., Condit, R., & Comita, L. S. (2011). Habitat specificity and diversity of tree species in an African wet tropical forest. Plant Ecology, 212(8), 1363–1374. https://doi.org/10.1007/s11258-011-9912-4
dc.relation.referencesComita, L. S., Condit, R., & Hubbell, S. P. (2007). Developmental changes in habitat associations of tropical trees. 482–492. https://doi.org/10.1111/j.1365-2745.2007.01229.x
dc.relation.referencesComita, L. S., & Engelbrecht, B. M. J. (2009). Seasonal and spatial variation in water availability drive habitat associations in a tropical forest. 90(10), 2755–2765.
dc.relation.referencesCondit. (1998). Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots.
dc.relation.referencesCondit, R. (1998). Tropical forest census plot. In Springer-verlag: Vol. CONDIT, R.
dc.relation.referencesCondit, Richard, Hubbell, S. P., & Foster, R. B. (1993). Identifying fast-growing native trees from the neotropics using data from a large, permanent census plot. Forest Ecology and Management, 62(1–4), 123–143. https://doi.org/10.1016/0378-1127(93)90046-P
dc.relation.referencesCondit, Richard, Hubbell, S. P., & Foster, R. B. (1995). Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecological Monographs, 65(4), 419–439. https://doi.org/10.2307/2963497
dc.relation.referencesCondit, Richard, Lao, S., Singh, A., Esufali, S., & Dolins, S. (2014). Data and database standards for permanent forest plots in a global network. Forest Ecology and Management, 316, 21–31.
dc.relation.referencesCondit, Richard, Pitman, N., Leigh, E. G., Chave, J., Terborgh, J., Foster, R. B., Núñez, P. V., Aguilar, S., Valencia, R., Villa, G., Muller-Landau, H. C., Losos, E., & Hubbell, S. P. (2002). Beta-diversity in tropical forest trees. Science, 295(5555), 666–669. https://doi.org/10.1126/science.1066854
dc.relation.referencesCosme, L. H. M., Schietti, J., Costa, F. R. C., & Oliveira, R. S. (2017). The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest. New Phytologist, 215(1), 113–125. https://doi.org/10.1111/nph.14508
dc.relation.referencesCosta, F., Schietti, J., Stark, S. C., & Smith, M. N. (2022). The other side of tropical forest drought: do shallow water table regions of Amazonia act as large-scale hydrological refugia from drought? New Phytologist. https://doi.org/10.1111/nph.17914
dc.relation.referencesCushman, K. C., Bunyavejchewin, S., Cárdenas, D., Condit, R., Davies, S. J., Duque, Á., Hubbell, S. P., Kiratiprayoon, S., Lum, S. K. Y., & Muller-Landau, H. C. (2021). Variation in trunk taper of buttressed trees within and among five lowland tropical forests. Biotropica, 53(5), 1442–1453. https://doi.org/10.1111/btp.12994
dc.relation.referencesDavies, S. J., Abiem, I., Abu Salim, K., Aguilar, S., Allen, D., Alonso, A., Anderson-Teixeira, K., Andrade, A., Arellano, G., Ashton, P. S., Baker, P. J., Baker, M. E., Baltzer, J. L., Basset, Y., Bissiengou, P., Bohlman, S., Bourg, N. A., Brockelman, W. Y., Bunyavejchewin, S., … Zuleta, D. (2021). ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation, 253(December 2020). https://doi.org/10.1016/j.biocon.2020.108907
dc.relation.referencesDeWitt, T. J., Sih, A., & Wilson, D. S. (1998). Costs and limits of phenotypic plasticity. Trends in Ecology and Evolution, 13(2), 77–81.
dc.relation.referencesDuffy, P. B., Brando, P., Asner, G. P., & Field, C. B. (2015). Projections of future meteorological drought and wet periods in the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 112(43), 13172–13177. https://doi.org/10.1073/pnas.1421010112
dc.relation.referencesDuque, A., Muller-landau, H. C., Valencia, R., Cardenas, D., Davies, S., Oliveira, A. De, Romero-saltos, H., & Vicentini, A. (2017). Insights into regional patterns of Amazonian forest structure , diversity , and dominance from three large. 669–686. https://doi.org/10.1007/s10531-016-1265-9
dc.relation.referencesEsteban, E. J. L., Castilho, C. V., Melgaço, K. L., & Costa, F. R. C. (2021). The other side of droughts: wet extremes and topography as buffers of negative drought effects in an Amazonian forest. New Phytologist, 229(4), 1995–2006. https://doi.org/10.1111/nph.17005
dc.relation.referencesFeeley, K. J., Rehm, E. M., & Machovina, B. (2012). perspective: The responses of tropical forest species to global climate change: acclimate, adapt, migrate, or go extinct? Frontiers of Biogeography, 4(2). https://doi.org/10.21425/f5fbg12621
dc.relation.referencesFeeley, K. J., & Zuleta, D. (2022). Changing forests under climate change. Nature Plants, 8(9), 984–985. https://doi.org/10.1038/s41477-022-01228-5
dc.relation.referencesFortunel, C., McFadden, I. R., Valencia, R., & Kraft, N. J. B. (2019). Neither species geographic range size, climatic envelope, nor intraspecific leaf trait variability capture habitat specialization in a hyperdiverse Amazonian forest. Biotropica, 51(3), 304–310. https://doi.org/10.1111/btp.12643
dc.relation.referencesFortunel, C., Timothy Paine, C. E., Fine, P. V. A., Mesones, I., Goret, J.-Y., Burban, B., Cazal, J., & Baraloto, C. (2016). There ’ s no place like home : seedling mortality contributes to the habitat specialisation of tree species across Amazonia. Ecology Letters, 1256–1266. https://doi.org/10.1111/ele.12661
dc.relation.referencesHarms, K. E., Condit, R., Hubbell, S. P., & Foster, R. B. (2001). Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89(6), 947–959. https://doi.org/10.1046/j.0022-0477.2001.00615.x
dc.relation.referencesHarms, K. E., Wright, S. J., Caldero, O., & Herre, E. A. (2000). Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. 30(1997), 493–495.
dc.relation.referencesHoldridge, L. R. (1978). Ecología : basada en zonas de vida. San José [Costa Rica] IICA 1978. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000741904&lang=es&site=eds-live
dc.relation.referencesHoorn, C. (1994). An environmental reconstruction of the palaeo-Amazon River system (Middle-Late Miocene, NW Amazonia). Palaeogeography, Palaeoclimatology, Palaeoecology, 112(3–4), 187–238. https://doi.org/10.1016/0031-0182(94)90074-4
dc.relation.referencesHubbell, S. P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography.
dc.relation.referencesHubbell, S. P., Foster, R. B., O’Brien, S. T., Harms, K. E., Condit, R., Wechsler, B., Wright, S. J., & Loo De Lao, S. (1999). Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science, 283(5401), 554–557. https://doi.org/10.1126/science.283.5401.554
dc.relation.referencesItoh, A., Nanami, S., Harata, T., Ohkubo, T., Tan, S., Chong, L., Stuart, J. D., & Yamakura, T. (2012). The Effect of Habitat Association and Edaphic Conditions on Tree Mortality during El Niño-induced Drought in a Bornean Dipterocarp Forest. 44(5), 606–617.
dc.relation.referencesJucker, T., Bongalov, B., Burslem, D. F. R. P., Nilus, R., Dalponte, M., Lewis, S. L., Phillips, O. L., Qie, L., & Coomes, D. A. (2018). Topography shapes the structure, composition and function of tropical forest landscapes. Ecology Letters, 21(7), 989–1000. https://doi.org/10.1111/ele.12964
dc.relation.referencesKenfack, D., Chuyong, G. B., Condit, R., Russo, S. E., & Thomas, D. W. (2014). Demographic variation and habitat specialization of tree species in a diverse tropical forest of cameroon. Forest Ecosystems, 1(1), 1–13. https://doi.org/10.1186/s40663-014-0022-3
dc.relation.referencesLenth, R. V. (2016). Least-squares means: The R package lsmeans. Journal of Statistical Software, 69(1). https://doi.org/10.18637/jss.v069.i01
dc.relation.referencesMalhi, Y., Aragão, L. E. O. C., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P., Sitch, S., McSweeney, C., & Meir, P. (2009). Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences of the United States of America, 106(49), 20610–20615. https://doi.org/10.1073/pnas.0804619106
dc.relation.referencesMazerolle, M. J. (2020). Model selection and multimodel inference using the AICcmodavg package. 1–22.
dc.relation.referencesMcDowell, J. M., & Simon, S. A. (2008). Molecular diversity at the plant-pathogen interface. Developmental and Comparative Immunology, 32(7), 736–744. https://doi.org/10.1016/j.dci.2007.11.005
dc.relation.referencesMcDowell, N., Sapes, G., Pivovaroff, A., Adams, H. D., Allen, C. D., Anderegg, W. R. L., Arend, M., Breshears, D. D., Brodribb, T., Choat, B., Cochard, H., De Cáceres, M., De Kauwe, M. G., Grossiord, C., Hammond, W. M., Hartmann, H., Hoch, G., Kahmen, A., Klein, T., … Xu, C. (2022). Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature Reviews Earth & Environment, 3(5), 294–308. https://doi.org/10.1038/s43017-022-00272-1
dc.relation.referencesMetcalf, C. J. E., Clark, J. S., & Clark, D. A. (2009). Tree growth inference and prediction when the point of measurement changes: modelling around buttresses in tropical forests. Journal of Tropical Ecology, 25(1), 1–12. https://doi.org/DOI: 10.1017/S0266467408005646
dc.relation.referencesOliveira, R. S., Costa, F. R. C., van Baalen, E., de Jonge, A., Bittencourt, P. R., Almanza, Y., Barros, F. de V., Cordoba, E. C., Fagundes, M. V., Garcia, S., Guimaraes, Z. T. M., Hertel, M., Schietti, J., Rodrigues-Souza, J., & Poorter, L. (2019). Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. New Phytologist, 221(3), 1457–1465. https://doi.org/10.1111/nph.15463
dc.relation.referencesOliveira, R. S., Eller, C. B., Barros, F. de V., Hirota, M., Brum, M., & Bittencourt, P. (2021). Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytologist, 230(3), 904–923. https://doi.org/10.1111/nph.17266
dc.relation.referencesPoorter, L., McDonald, I., Alarcón, A., Fichtler, E., Licona, J. C., Peña-Claros, M., Sterck, F., Villegas, Z., & Sass-Klaassen, U. (2010). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist, 185(2), 481–492. https://doi.org/10.1111/j.1469-8137.2009.03092.x
dc.relation.referencesRusso, S. E., Brown, P., Tan, S., & Davies, S. J. (2008). Interspecific demographic trade-offs and soil-related habitat associations of tree species along resource gradients. Journal of Ecology, 192–203. https://doi.org/10.1111/j.1365-2745.2007.01330.x
dc.relation.referencesRusso, S. E., Davies, S. J., King, D. A., & Tan, S. (2005). Soil-related performance variation and distributions of tree species in a Bornean rain forest. Journal of Ecology, 93(5), 879–889. https://doi.org/10.1111/j.1365-2745.2005.01030.x
dc.relation.referencesRusso, S. E., McMahon, S. M., Detto, M., Ledder, G., Wright, S. J., Condit, R. S., Davies, S. J., Ashton, P. S., Bunyavejchewin, S., Chang-Yang, C. H., Ediriweera, S., Ewango, C. E. N., Fletcher, C., Foster, R. B., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Hart, T., Hsieh, C. F., Hubbell, S. P., … Zimmerman, J. K. (2021). The interspecific growth–mortality trade-off is not a general framework for tropical forest community structure. Nature Ecology and Evolution, 5(2), 174–183. https://doi.org/10.1038/s41559-020-01340-9
dc.relation.referencesSantiago, L. S., De Guzman, M. E., Baraloto, C., Vogenberg, J. E., Brodie, M., Hérault, B., Fortunel, C., & Bonal, D. (2018). Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytologist, 218(3), 1015–1024. https://doi.org/10.1111/nph.15058
dc.relation.referencesSousa, T. R., Schietti, J., Coelho de Souza, F., Esquivel-Muelbert, A., Ribeiro, I. O., Emílio, T., Pequeno, P. A. C. L., Phillips, O., & Costa, F. R. C. (2020). Palms and trees resist extreme drought in Amazon forests with shallow water tables. Journal of Ecology, 108(5), 2070–2082. https://doi.org/10.1111/1365-2745.13377
dc.relation.referencesValencia, R., Condit, R., Muller-landau, H. C., Hernandez, C., & Navarrete, H. (2009). Dissecting biomass dynamics in a large Amazonian forest plot. Journal of Tropical Ecology, 473–482. https://doi.org/10.1017/S0266467409990095
dc.relation.referencesValencia, R., Foster, R. B., Villa, G., Condit, R., Svenning, J. C., Hernández, C., Romoleroux, K., Losos, E., Magård, E., & Balslev, H. (2004). Tree species distributions and local habitat variation in the Amazon: Large forest plot in eastern Ecuador. Journal of Ecology, 92(2), 214–229. https://doi.org/10.1111/j.0022-0477.2004.00876.x
dc.relation.referencesWright, J. S., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I. J., Bunker, D. E., Condit, R., Dalling, J. W., Davies, S. J., Diaz, S., Engelbrecht, B. M. J., Harms, K. E., Hubbell, S. P., Marks, C. O., Ruiz-Jaen, M. C., Salvador, C. M., & Zanne, A. E. (2010). Functional traits and the growth – mortality trade-off in tropical trees. Ecological Society of America, 91(12), 3664–3674.
dc.relation.referencesZanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., Miller, R. B., Swenson, N. G., Wiemann, M. C., & Chave, J. (2009). Global wood density database.
dc.relation.referencesZuleta, D., Duque, A., Cardenas, D., Muller-Landau, H. C., & Davies, S. (2017). Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology, 98(10), 2538–2546. https://doi.org/10.1002/ecy.1950
dc.relation.referencesZuleta, D., Muller-Landau, H. C., Duque, A., Caro, N., Cardenas, D., Leon-Pelaez, J. D., & Feeley, K. J. (In Press). Interspecific and intraspecific variation of tree branch, leaf, and stomatal traits in relation to topography in an aseasonal Amazon forest. Functional Ecology.
dc.relation.referencesZuleta, D., Russo, S. E., Barona, A., Barreto-Silva, J. S., Cardenas, D., Castaño, N., Davies, S. J., Detto, M., Sua, S., Turner, B. L., & Duque, A. (2020). Importance of topography for tree species habitat distributions in a terra firme forest in the Colombian Amazon. Plant and Soil, 450(1–2), 133–149. https://doi.org/10.1007/s11104-018-3878-0
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembEcología forestal - Amaonas (Colombia)
dc.subject.lembForest ecology - Amaonas (Colombia)
dc.subject.lembTree crops - Amazonas (Colombia)
dc.subject.lembCultivos forestales - Amazonas (Colombia)
dc.subject.proposalTree growth
dc.subject.proposalTree mortality
dc.subject.proposalTropical forests
dc.subject.proposalForest dynamics
dc.subject.proposalSpecies habitat associations
dc.subject.proposalCrecimiento de los árboles
dc.subject.proposalMortalidad de los árboles
dc.subject.proposalBosques tropicales
dc.subject.proposalDinámica forestal
dc.subject.proposalAsociaciones de hábitat de las especies
dc.subject.proposalAcquisitive-conservative strategies
dc.subject.proposalEstrategias adquisitivas-conservadoras
dc.title.translatedLos cambios en la topografía a escala local influyen en el crecimiento y la mortalidad de los árboles en un bosque de tierra firme del noroeste de la Amazonia
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentGrupos comunitarios
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentMedios de comunicación
dc.description.curricularareaÁrea Curricular en Bosques y Conservación Ambiental
dc.contributor.orcidZuleta, Daniel [0000-0001-9832-6188]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito