El problema de Cauchy asociado a una ecuación del tipo Kuramoto-Sivashinsky bidimensional periódica

The Cauchy Problem Associated with a Bidimensional Kuramoto-Sivashinsky Type Equation in the Periodical Setting
JUVITSA CAMPOS1, OMAR DUQUE2, GUILLERMO RODRÍGUEZ-BLANCO3

1Universidad Nacional de Colombia, Bogotá, Colombia. Email:jmcamposp@unal.edu.co 
2Universidad Nacional de Colombia, Bogotá, Colombia. Email:oduqueg@unal.edu.co 
3Universidad Nacional de Colombia, Bogotá, Colombia. Email: grodriguezb@unal.edu.co 


Resumen

El propósito de este trabajo es abordar el buen planteamiento en los espacios de Sobolev Hs(T2) para s≥1 del problema de Cauchy asociado a una ecuación del tipo Kuramoto-Sivashinsky bidimensional periódica, que modela fenómenos físicos que ocurren en películas delgadas.

Palabras clave: Problema de Cauchy, espacios de Sobolev, ecuación de Kuramoto-Sivashinsky, localmente bien planteado, globalmente bien planteado.


2000 Mathematics Subject Classification: 53C21, 53C42.

Abstract

In this work, we deal with the local and global wellposedness in the Sobolev spaces Hs(T2) for s≥1 of the Cauchy problem associated to a bidimensional Kuramoto-Sivashinsky type equation, which models physical phenomena that occurs in thin films.

Key words: Cauchy problem, Solovev spaces, Kuramoto-Sivashinsky equation, Locally wellposedness, Globally wellposedness.


Texto completo disponible en PDF


Referencias

[1] E. A., `On the Benney Equation´, Proceedings of the Royal Society of Edinburgh 139A, (2009), 1121-1144.

[2] H. A. Biagioni, J. L. Bona, R. Iorio, and M. Scialom, `On the Korteweg-de Vries-Kuramoto-Sivashinsky Equation´, Adv. Diff. Eq. 1, (1996), 1-20.

[3] L. Frenkel and K. Indireshkumar, `Wavy Film Flows Down an Inclined Plane: Perturbation Theory and General Evolution Equation´, Phys. Rev. E 60, (1999), 41-43.

[4] A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, United States, 1976.

[5] A. Grünrock, M. Panthe, and J. Silva, `On KP-II Type Equations on Cylinders´, Ann. Inst. H. Poincaré Anal. Non Linéaire 26, (2009), 2335-2358.

[6] D. Henry, `Geometric Theory of Semilinear Parabolic Equation´, Lectures Notes in Mathematics 840, (1957).

[7] A. D. Ionescu and C. E. Kenig, `Local and Global Well-Posedness of Periodic KP-I Equations´, Ann. of Math. Stud. 163, (2007), 181-211.

[8] J. R. J. Iório and V. de Magalhães Iório, Fourier Analysis and Partial Differential Equations, Vol. 70, Cambridge studies in avanced mathematics, 2001.

[9] F. Linares, A. Pastor, and J. C. Saut, `Well-Posedness for the ZK Equation in a Cylinder and on the Background of a KdV Soliton´, Comm. PDE 35, (2010), 1674-1689.

[10] S. S., D. E., and K. S., `Two-Dimensional Wave Dynamics in Thin Films. I. Stationary Solitary Pulses´, Phys. Fluids 17, 117105 (2005), 1-16.

(Recibido en abril de 2010. Aceptado en enero de 2011)

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCMv45n1a01, 
    AUTHOR  = {Campos, Juvitsa and Duque, Omar and Rodríguez-Blanco, Guillermo}, 
    TITLE   = {{El problema de Cauchy asociado a una ecuación del tipo Kuramoto-Sivashinsky bidimensional periódica}}, 
    JOURNAL = {Revista Colombiana de Matemáticas}, 
    YEAR    = {2011}, 
    volume  = {45}, 
    number  = {1}, 
    pages   = {1-17} 
}