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ABSTRACT

This thesis is divided in three main parts. In the first part we provide a theoretical method to

determine the existence of the limit of a quotient of polynomial functions of three variables. An

algorithm to compute such limits in the case where the polynomials have rational coefficients, or

more generally, coefficients in a real finite extension of the rational numbers is also described.

In the second part, for any finite abelian group G, we present an exact formula to count the G-

graded twisted algebras satisfying certain symmetry condition.

Finally, in the third part we describe an algorithm to compute the F -rational locus of an affine

algebra over a field of prime characteristic p > 0 by computing first its global test ideal. As a

consequence we deduce the Openness of the F -rational locus, a result originally proved in [27].



Part I

LIMITS OF QUOTIENTS OF RATIONAL POLYNOMIAL

FUNCTIONS OF THREE VARIABLES



1. INTRODUCTION

Algorithms for computing limits of functions in one variable are studied in [15]. Similar algorithms

have been developed in [13], [14]. On the other hand, computational methods dealing with classical

objects like power series and algebraic curves have been developed by several authors during the last

two decades [6], [11]. In [5] a symbolic computation algorithm for computing local parametrization

of analytic branches and real analytic branches of a curve in n-dimensional space is proposed.

Necessary and sufficient conditions for the existence of limits of the form lim(x,y)→(a,b) f(x, y)/g(x, y)

are given in [1], under the hypothesis that f and g are real analytic functions near the point (a, b),

and g has an isolated zero at (a, b). The authors give a criterion which could be implemented in a

computer algebra system in the case where f and g are polynomials with rational coefficients, or

more generally, with coefficients in a real finite extension of the rationals.

We generalize the methods developed in [1]. A theoretical method for determining the exis-

tence of limits of the form lim(x,y,z)→(a,b,c) f(x, y, z)/g(x, y, z), where f and g are polynomials with

rational coefficients, or more generally, with coefficients in a real extension field of Q, defined as

in [1], page 203 is developed. The problem is solved by reducing to the case of functions of two

variables. We use Lagrange multipliers, as it appears in Proposition 1, pag 199 of [1], but for the

case of functions defined on a hypersurface. The final reduction to the two dimensional case is

achieved by using the fact that any algebraic curve is birational to a plane curve, and therefore

locally isomorphic. For this, we need a constructive version of this theorem.

A high level description of an algorithm for determining the existence of the limit as well as its

computation is provided. The main result is summarized in Theorem 2. Proofs are provided in a

constructive manner making it possible to implement the method in an algorithmic way.



2. PRELIMINARIES

2.1 Dimension of algebraic sets and the singular locus

Given an ideal I ⊂ R[x1, . . . , xn], V (I) will be denote the complex affine variety cut by I, in other

words, it is the set of complex zeros of polynomials of I.

However, in this thesis when we talk about the dimension of V (I), we are actually taking about

the dimension of V (I) as an algebraic set, that is to say,

dim(V (I)) = dim(R[x1, . . . , xn]/I).

When P ⊂ R[x1, . . . , xn] is a prime ideal, it is well known that the dimension of the integer domain

R[x1, . . . , xn]/P coincides with the transcendence degree of the field extension R ⊂ R(x, y, z), where

R(x, y, z) denotes the fraction field of R[x, y, z]/P . The transcendence degree of a field extension

K ⊂ L is denoted by trdegKL, and it is defined as the cardinal of the maximal algebraically

independent subset S ⊂ L such that K(S) ⊂ L is an algebraic field extension.

Therefore, the dimension of V (P ) defined as above is such that

dim(V (P )) = trdegRR(x, y, z).

Now we focus in a particular case that will be very important in the development of the first part

of this thesis.

Suppose that X ⊂ C3 is an affine variety cut by a prime ideal P ⊂ R[x, y, z] and such that

dim(V (P )) = 2, that is to say, dim(R[x, y, z]/P ) = 2.

This implies that P ⊂ R[x, y, z] is a prime ideal of height 1 and hence, P = (h) where h(x, y, z) ∈
R[x, y, z] is a real irreducible polynomial. Therefore X = V (h).

Definition 1. With the about notation, we define the singular locus of X = V (h) as the complex
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affine variety cut by the ideal IS = (h, ∂h/∂x, ∂h/∂y, ∂h/∂z) ⊂ R[x, y, z]. The singular locus of X

is denoted by SingX.

Remark 1. The dimension of SingX is smaller than the dimension of X.

Proof. Notice that ∂h/∂x /∈ (h), since the degree in the variable x of ∂h/∂x is less than the degree in

the variable x of h. Therefore, (h) ( IS what implies that dim(R[x, y, z]/IS) < dim(R[x, y, z]/(h)).

Hence, dim(SingX) < dim(X).

2.2 Discriminant variety

The existence of lim(x,y,z)→(a,b,c) f(x, y, z)/g(x, y, z) is obviously independent of the particular

choice of local coordinates. Hence, by a translation, there is no loss of generality in assuming

that (a, b, c) is the origin. Our objective is to compute

lim
(x,y,z)→(0,0,0)

f(x, y, z)

g(x, y, z)
(2.1)

where f(x, y, z) and g(x, y, z) are rational polynomial functions, and g has an isolated zero at

(0, 0, 0). If q(x, y, z) = f(x, y, z)/g(x, y, z), we define the discriminant variety X(q) associated to q

as the variety cut by the 2× 2 minors of the matrix

A =

 x y z

∂q/∂x ∂q/∂y ∂q/∂z

 . (2.2)

Notice that the 2 × 2 minors of A has the form xi∂q/∂xj − xj∂q/∂xi which are not polynomial

functions, however, as q = f/g then

xi∂q/∂xj − xj∂q/∂xi =
xi(g∂f/∂xj − f∂g/∂xj)

g2
− xj(g∂f/∂xi − f∂g/∂xi)

g2

and therefore if we define fxi,xj = xi(g∂f/∂xj − f∂g/∂xj) − xj(g∂f/∂xi − f∂g/∂xi) then X(q)

means the affine variety cut by the polynomial ideal

J = (fx,y, fx,z, fy,z).

The following proposition states that in order to determine the existence of the limit (2.1), it

suffices to analyze the behaviour of the function q(x, y, z) along the discriminant variety X(q).

Proposition 1. The limit lim(x,y,z)→0 q(x, y, z) exists and equals L ∈ R, if and only if for every

ε > 0 there is δ > 0 such that for every (x, y, z) ∈ X(q) with 0 < |(x, y, z)| < δ the inequality

|q(x, y, z)− L| < ε holds.
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Proof. The method of Lagrange multipliers applied to the function q(x, y, z) with the constraint

x2 + y2 + z2 = r2 where r > 0, guarantees that if Cr(0) = {(x, y, z) ∈ R3 : x2 + y2 + z2 = r2} then

the extreme values of q(x, y, z) on Cr(0) are achieved among those points p = (a, b, c) ∈ Cr(0) for

which (∂q/∂x(p), ∂q/∂y(p), ∂q/∂z(p)) = λ(a, b, c), and therefore among points of X(q).

Suppose that given ε > 0 there is δ > 0 such that for every (x, y, z) ∈ X(q) ∩ D∗δ the inequality

|q(x, y, z)−L| < ε holds, where D∗δ = {(x, y, z) ∈ R3 : 0 <
√
x2 + y2 + z2 < δ}. Let (x, y, z) ∈ D∗δ

and r =
√
x2 + y2 + z2. If t(r), s(r) ∈ Cr(0) are the maximum and minimum values of q(x, y, z)

subject to Cr(0) respectively, then

q(s(r))− L ≤ q(x, y, z)− L ≤ q(t(r))− L.

As t(r), s(r) ∈ X(q)∩Cr(0) ⊂ X(q)∩D∗δ , then −ε < q(s(r))−L and q(t(r))−L < ε and therefore

|q(x, y, z)− L| < ε.

The reciprocal is clear.

2.3 Algebraic plane curves

In this section we present some results that allow us to prove that every irreducible algebraic curve

is birationally equivalent to an irreducible plane curve, a result that plays a very important role in

this chapter since it is the main argument in the reduction to the case of bivariate functions.

In this section by an irreducible algebraic curve we mean a complex affine variety X ⊂ Cn cut

by a prime ideal P ⊂ R[x1, . . . , xn] and such that dim(X) = 1, where remain that dim(X) =

dim(R[x1, . . . , xn]/P ).

Proposition 2 (Existence of primitive elements). Let K be a field of characteristic zero, L a

finite algebraic extension of K. Then there is z ∈ L such that L = K(z).

Proof. As L is a finite extension of K then L = K(x1, . . . , xn) for some x1, . . . , xn ∈ L.

We argue by induction on n.

The case n = 1 is trivial. Now we discuss the case n = 2.

Suppose that L = K(x, y) where x, y ∈ L\K. As x and y are algebraic over K, there are monic

polynomials F (t), G(t) ∈ K[t] such that F (x) = 0 and G(y) = 0. We factor F (t) and G(t) in

some extension L′ ⊃ K, say F (t) =
∏k
i=1(t − xi) and G(t) =

∏s
j=1(t − yj) with xi, yj ∈

L′. Suppose that x = x1 ∈ L′ and y = y1 ∈ L′. As x, y ∈ L′ then L ⊂ L′.
As K is an infinite field there is some λ ∈ K such that xi + λyj 6= xt + λyl for all i 6= t

and j 6= l. Note that it is possible to choose such λ since it is enough to take λ 6= xt−xi
yj−yl for
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all t 6= i and j 6= l.

We claim that L = K(z), where z = x+ λy.

In fact, consider H(t) = F (z − λt) ∈ K(z)[t]. Note that H(y) = 0 since H(y) = F (x) =

0 and H(yj) 6= 0 for j 6= 1 since H(yj) = F (z − λyj) and z − λyj = x + λy − λyj 6=
xi for all i 6= 1 since x + λy 6= xi + λyj for all i, j 6= 1. Therefore the maximum common

divisor (H(t), G(t)) = t − y ∈ K(z)[t], thus y ∈ K(z) and hence L = K(z). Now suppose

that L = K(x1, . . . , xn) = K(x1, . . . , xn−1)(xn). By the induction hypothesis K(x1, . . . , xn−1) =

K(λ1x1 + · · · + λn−1xn−1) for some λi ∈ K and by the argument used for the case of two

variables we have that L = K(λ1x1 + · · ·+λn−1xn−1)(xn) = k(λ1x1 + · · ·+λn−1xn−1 +λnxn) for

some λn ∈ K.

Remark 2. From the proof of the above proposition, we can deduce that given K a field of charac-

teristic zero and L = K(y, z) a finite algebraic extension, it is always possible to find λ ∈ K such

that L = K(y + λz). Furthermore, the set {λ ∈ K : K(y + λz) 6= K(y, z)} is finite.

Corollary 1. Let X ⊂ Cn be an irreducible algebraic curve and let R(x, y, z) be the quotient

field of the integer domain R[X,Y, Z]/P . Then for any u ∈ R(x, y, z) \ R which is not

algebraic over R, R(x, y, z) is algebraic over R(u) and there is an element v ∈ R(x, y, z) such

that R(x, y, z) = R(u, v).

Proof. As X is an irreducible algebraic curve then dim(X) = trdegRR(x, y, z) = 1, therefore

there is w ∈ R(x, y, z) such that R(x, y, z) is algebraic over R(w). Take u ∈ R(x, y, z)\R such that

u is not algebraic over R. Since u is algebraic over R(w) there is a polynomial F (t) ∈ R(w)[t] such

that F (u) = 0. Cleaning denominators we have a polynomial F (s, t) ∈ R[s, t] such that F (w, u) =

0. As u is not algebraic over R the variable s has to appear in F (s, t), hence w is algebraic

over R(u). Now as R(x, y, z) is algebraic over R(w) then R(x, y, z) is algebraic over R(w, u).

(R(w) ⊂ R(w, u) ⊂ R(x, y, z)), thus we have R(x, y, z) algebraic over R(w, u) and R(w, u) =

R(u)(w) algebraic over R(u), which implies R(x, y, z) algebraic over R(u).

On the other hand, as R is a field of characteristic zero then R(u) has also characteristic zero.

Now, as R(x, y, z) is algebraic over R(u) and finitely generated over R(u), by Proposition (2)

there is v ∈ R(x, y, z) such that R(x, y, z) = R(u, v).

The following theorem states that every irreducible algebraic curve is birationally equivalent to

an irreducible plane curve. It is a well known fact. Notwithstanding, we include a constructive

proof, since we shall need it in the next section.
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Theorem 1. Let X be an irreducible algebraic curve X in C3 passing through the origin. Then,

there exists an irreducible algebraic plane curve Y ⊂ C2 crossing the origin, and a morphism of

varieties µ : X → Y such that:

1. The map µ is a birrational isomorphism that can be explicitly constructed.

2. There are open neighborhoods of the origin, in the Zariski topology, X0 ⊂ X and Y0 ⊂ Y such

that the restriction µ|X0
: X0 → Y0 is an isomorphism sending O ∈ X0 into O ∈ Y0.

Proof. Suppose that X = V (P ) where P ⊂ R[X,Y, Z] is a prime ideal. Since X is an irreducible

algebraic curve, then by definition dim(X) = dim(R[X,Y, Z]/P ) = 1. Denote by R(x, y, z) to the

fraction field of R[X,Y, Z]/P . Recall that dim(X) = trdegRR(x, y, z).

It is clear for dimensional reasons that some of the variables x, y, z has to be transcendental over R.

Suppose without loss of generality that x is transcendental over R. By Corollary 1, R(x) ⊂ R(x, y, z)

is an algebraic extension and by Proposition 2, we can always find u = y + λz, for some λ ∈ R(x),

such that R(x, y, z) = R(x, u). Moreover, since this is true for almost all λ, this element can be taken

to be any real constant, except for finitely many choices. Define ϕ : R[S, T ]→ R[x, u] ⊂ R(x, y, z)

as the R-algebra homomorphism that sends S → x and T → u. Clearly ϕ is surjective and therefore,

if J = ker(ϕ), there is an isomorphism of R-algebras ϕ : R[S, T ]/J
∼→ R[x, u], and consequently

J ∈ R[S, T ] is a prime ideal. Denote Y = V (J). The last isomorphism induces a field isomorphism

R(Y ) ∼= R(x, u) = R(x, y, z), and therefore dim(Y ) = dim(X) = 1. Hence Y = V (J) is an

irreducible algebraic plane curve which is birationally equivalent to X.

We also denote by ϕ its extension to the fraction field R(Y ) = R(s, t) :

ϕ : R(s, t)→ R(x, y, z),

which sends s 7→ x and t 7→ u = y+λz. This morphism induces a morphism of varieties µ : X → Y

defined as µ(a, b, c) = (x(a, b, c), u(a, b, c)) = (a, b+ λc).

On the other hand, since y, z ∈ R(x, u) then we can write y = f1(x, u)/g1(x, u) and z = f2(x, u)/g2(x, u),

for some polynomials f1, f2, g1, g2 ∈ R[X,U ].

We claim that we can express y as y = f1(x, u)/g1(x), with g1(x) 6= 0, for suitable choices of

f1(X,U) ∈ R[X,U ], and g1(X) ∈ R[X], and such that g1(0) 6= 0, where u = y + λz. In fact, since

x is transcendental over R, by Corollary 1, the extension R(x) ⊂ R(x)(u) is algebraic. Therefore,

since y ∈ R(x, u) we can write y as:

y =
a0(x)

b0(x)
+
a1(x)

b1(x)
u+ · · ·+ ar(x)

br(x)
ur,
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where r is smaller than the degree of the field extension [R(x)(u) : R(x)]. Taking b(x) = b0(x) · · · br(x)

we can rewrite the last equation as

b(x)y = c0(x) + c1(x)u+ · · ·+ cr(x)ur, (2.3)

for certain ci(x). Let us write b(x) = xlb′(x) and ci(x) = xlic′i(x), with l, li ≥ 0, and with b′(0) 6= 0,

c′i(0) 6= 0. If l > m =min{li : i = 0, . . . , r}, we could divide both sides of 2.3 by xm, and then, by

letting x = 0 we would obtain a nonzero polynomial equation for u over R, a contradiction. Thus,

l ≤ li, for all i = 0, . . . , r, and we could divide both sides of 2.3 by xl to obtain:

b′(x)y = d0(x) + d1(x)u+ · · ·+ dr(x)ur,

where di(x) = xli−lc′i(x). Since b′(0) 6= 0, we may take

f1(x, u) = d0(x) + d1(x)u+ · · ·+ dr(x)ur

and g1(x) = b′(x).

A similar argument shows that z = f2(x, u)/g2(x) with g2(0) 6= 0.

Summarizing, we have

y =
f1(x, u)

g1(x)
and z =

f2(x, u)

g2(x)
, where g1(0) 6= 0, g2(0) 6= 0.

These expressions induce a morphism τ : Y0 ⊂ Y → X, defined as τ(d, e) = (d, f1(d,e)g1(d)
, f2(d,e)g2(d)

),

where Y0 ⊂ Y is the Zariski open set

D(g1g2) = {(d, e) ∈ R2 : g1(d) 6= 0 and g2(d) 6= 0}.

Notice that (0, 0) ∈ Y0. Denote τ(Y0) by X0. The last morphism induces an R-algebra homomor-

phism ψ : R(X) → OY (Y0) given by ψ(x) = s, ψ(y) = f1(s, t)/g1(s), and ψ(z) = f2(s, t)/g2(s).

Clearly,

ϕ ◦ ψ(x) = x, ϕ ◦ ψ(y) =
f1(x, u)

g1(x)
= y, ϕ ◦ ψ(z) =

f2(x, u)

g2(x)
= z. (2.4)

Therefore, ϕ ◦ ψ = IdR(X), and thus ϕ ◦ ψ|X0 : OX |X0 → OY |Y0 is the identity. On the other

hand, ψ ◦ ϕ(s) = ψ(x) = s and ψ ◦ ϕ(t) = ψ(u). By (2.4) we have ϕ ◦ ψ(u) = u and ϕ(t) = u

which implies that t = ψ(u), since ϕ is injective. Hence, ψ ◦ ϕ(t) = t and we conclude that

ψ ◦ ϕ|Y0
: OY |Y0

→ OX |X0
is the identity. Therefore, ψ : OX |X0

→ OY |Y0
is the inverse of the

morphism ϕ : OY |Y0
→ OX |X0

, and thus the homomorphism ρ : Y0 → X0 induced by ψ is the

inverse of the restriction of µ : X0 → Y0.
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Finally, it is clear that the morphism µ : X0 → Y0 sends the real part of X0 into the real part of

Y0, and since µ−1 : Y0 → X0 is determined by the polynomials f1, f2, g1 and g2, which are all real

polynomials, then µ−1 also sends the real part of Y0 into the real part of X0.

2.4 Groebner bases

In this section we present some basic notions about Groebner bases and also some important results

above Elimination theory that we will need in order to develop an algorithm to compute limits of

quotients of polynomial functions of three varibles.

Let R denotes the polynomial ring in n-variables with coefficients in a field K, R = K[x1, . . . , xn],

and denote the set of monomials of R by M , where recall that a monomial of R is a term of the

form xa11 x
a2
2 · · ·xann .

Definition 2. A monomial order inR is a total order onM satisfying that given monomialsm1 > m2,

nm1 > nm2 > m2 for every monomial n 6= 1.

One important property of monomial orders is that every monomial order is Artinian, in other

words, every subset of M has a least element.

For a fixed monomial order > in R, we define the initial term of an element p ∈ R, as the

greatest term of p relative to >, and we denote it by in(p). In other words, if p ∈ R then in(p) =

αxa11 x
a2
2 · · ·xann , α ∈ K, a term of p with the property that xa11 x

a2
2 · · ·xann ≥ m for every monomial

m of p.

Given an ideal I ⊂ R we define in(I) as the ideal generated by the set {in(p) : p ∈ I}.

Definition 3. Let I ⊂ R be an ideal and fix a monomial order in R. We say that a set of elements

of I {f1, . . . , fk} is a Groebner basis for I if in(I) = (in(f1), . . . , in(fk)).

We list some interesting facts about Groebner bases.

Remark 3. 1. The word basis in the name Groebner basis come from the fact that the set of

monomials not in the ideal in(I) forms a basis for the K-vector space R/I.

2. There always exists a Grobner basis for an ideal I ⊂ R. As R is a Noetherian ring then

I is finitely generated, say, I = (f1, . . . , fk). Consider the ideal J = (in(f1), . . . , in(fk)). If

J = in(I) then {f1, . . . , fk} is a Groebner basis for I. Otherwise, we can find g1 ∈ in(I) such

that g1 /∈ J . As g1 ∈ in(I) then in(g1) = in(p1) for some p1 ∈ I, and we can consider now the

set {f1, . . . , fk, p1} and J = (in(f1), . . . , in(fk), in(p1)). We repeat this process until obtaining
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p1, . . . ps ∈ I such that in(I) = (in(f1), . . . , in(fk), in(p1), . . . , in(ps)). Notice that s is finite

since R is Noetherian.

3. If {f1, . . . , fk} is a Groebner basis for I then I = (f1, . . . , fk). Suppose that there is p ∈ I
such that p /∈ (f1, . . . , fk). We can take the element p with in(p) minimal. As in(I) =

(in(f1), . . . , in(fk)) and in(p) ∈ in(I) then in(fj)|in(p) for some 1 ≤ j ≤ k, hence in(p) =

min(fj) for some monomial m. Notice that the polynomial p − mfj /∈ (f1, . . . , fk) and

p−mfj ∈ I. However, in(p−mfj) < in(p) which is a contradiction.

4. There is a criterion that allows to compute algorithmically a Groebner basis for an ideal

I ⊂ R. This criterion is known as the Buchberger’s criterion (See [3], page 332).

5. Let I, J be ideals of R such that I ⊂ J . If in(I) = in(J) then I = J .

An example of a monomial order is the pure lexicography order which is defined in the fol-

lowing way. Fix an order between the variables, for example x1 > x2 > · · · > xn, and define

xa11 x
a2
2 · · ·xann > xb11 x

b2
2 · · ·xbnn if for the first j with aj 6= bj we have that aj > bj . This is the main

monomial order that we will use in this section.

Now we present an important result that will be needed later.

Consider the inclusion homomorphism K[x1, . . . , xn] ↪→ K[x1, . . . xn, y1, . . . , ys] and consider an

ideal I ⊂ K[x1, . . . xn, y1, . . . , ys]. Given a Groebner basis for I we want to compute a Groebner

basis for I ∩K[x1, . . . , xn]. For this we have to introduce the notion of an elimination order

Definition 4. A monomial order in K[x1, . . . xn, y1, . . . , ys] is called an elimination order if the

following condition holds: f ∈ K[x1, . . . xn, y1, . . . , ys] with in(f) ∈ K[x1, . . . , xn] implies f ∈
K[x1, . . . , xn].

Lemma 1. Let I ⊂ K[x1, . . . xn, y1, . . . , ys] be an ideal and let B = {f1, . . . , fk} be a Groebner basis

for I with respect to an elimination order. Assume that f1, . . . , ft with t ≤ k are all elements of B
such that f1, . . . , ft ∈ K[x1, . . . , xn]. Then {f1, . . . , ft} is a Groebner basis for I ∩K[x1, . . . , xn].

See [3], page 380 for a proof.

Remark 4. Suppose that we have a ring homomorphism ϕ : K[x1, . . . , xn] → K[y1, . . . , ys]/J

defined as ϕ(xi) = fi. Consider Fi ∈ K[y1, . . . , ys] such that Fi = fi in K[y1, . . . , ys]/J and
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define the ideal I = JT + (F1 − x1, . . . , Fn − xn) ⊂ T , where T = K[x1, . . . , xn, y1, . . . , ys]. Then

kerϕ = I ∩K[x1, . . . , xn] (See [3], page 358). Therefore the above lemma implies that kerϕ can be

computed algorithmically.



3. REDUCTION TO THE CASE OF BIVARIATE FUNCTIONS

In order to compute lim(x,y,z)→(0,0,0) q(x, y, z), where q(x, y, z) = f(x, y, z)/g(x, y, z), we introduced

the discriminant variety X(q) ⊂ C3 associated to q, as the variety cut by the 2× 2 minors of the

matrix A (2.2). As a variety, X(q) may be decomposed into its irreducible components:

X(q) = X1 ∪X2 ∪ · · · ∪Xn.

We are only interested in those components that contain the origin O = (0, 0, 0). Suppose these are

X1, X2, . . . , Xk. We consider three possible cases:

1. dim Xi = 0: in this case, if Xi = V (Pi) then R[X,Y, Z]/Pi is a field and therefore Xi = {O}.
Hence, Xi does not contribute to any trajectory in R3 that approach O.

2. dim Xi = 1: in this case Xi is an irreducible algebraic curve.

3. dim Xi = 2: in this case Xi is an hypersurface, i.e., Xi = V (Pi), where Pi is a principal ideal.

We only have to study cases 2 and 3.

Let us first deal with case 2. Suppose that we have q defined on an irreducible affine variety

X = V (P ) of dimension 1, i.e., X is an irreducible space curve. By Theorem 1 the irreducible

algebraic curve X is birationally equivalent to a plane curve Y , and furthermore, there exist a

neighborhood X0 of the origin in X and a neighborhood Y0 of the origin in Y , and a homeomorphism

µ : X0 → Y0 sending the origin to the origin and such that µ and µ−1 send real tuples in real tuples.

Thus, the existence of the limit of q as (x, y, z) → O along the space curve X is equivalent to the

existence of the limit of q ◦ µ−1(u, v) as (u, v)→ (0, 0) along the plane curve Y . Moreover,

lim

(x, y, z)→ O

(x, y, z) ∈ X

q(x, y, z) = lim

(u, v)→ 0

(u, v) ∈ Y

q ◦ µ−1(u, v).

Therefore, the problem of computing the last limit can be solved using the methods developed in

[1].
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Given Xi an irreducible component of X(q) going through the origin O and of dimension 1, we

denote by Yi to the corresponding irreducible plane curve which is birationally equivalent to Xi

and by µXi : Xi → Yi to the corresponding local isomorphism (as in Theorem 1).

We have then proved the following:

Proposition 3. Let Xi be an irreducible component of X(q) of dimension 1. Then the existence

as well as the value of the limit of q(x, y, z) as (x, y, z)→ O along Xi is determined by the limit of

q ◦ µ−1Xi (x, y) as (x, y)→ (0, 0) along the irreducible plane curve Yi.

Now let us consider case 3. We want to see that this case may be reduced to case 2. Suppose

that we have a rational function q(x, y, z) defined on an irreducible hypersurface X = V (h) where

h is a real polynomial function of three variables and q has an isolated zero at 0. Let S = Sing(X)

be the singular locus of X. By Remark 1, S must be a variety of dimension strictly less than two.

Hence, if S contains the origin, the limit of q as (x, y, z)→ O along S can be computed as in case

2.

Now, we restrict our analysis to the nonsingular locus of X, that we will denote by N = X \ S.

Without loss of generality we may assume that N approaches the origin, otherwise there is nothing

to analyze.

Define a family of real ellipsoids Er = {(x, y, z) ∈ R3 : Ax2 + By2 + Cz2 − r2 = 0}, A,B,C > 0,

r 6= 0, where we denote pr(x, y, z) = Ax2 +By2 + Cz2 − r2.

Definition 5. Let X = V (h) ⊂ C3 and Er = {(x, y, z) ∈ R3 : Ax2 + By2 + Cz2 − r2 = 0}, r 6= 0

as above. The critical set Cr(q) will be the set of all real points in Er ∩X where q(x, y, z) attains

its maxima and minima. The union ∪r>0Cr(q) of all critical sets will be denote by CritX(q).

Since each Er ∩X is a compact set, and by hypothesis O is an isolated zero of q, then CritX(q)

is a well defined subset of X.

We have an analogous of Proposition 1.

Proposition 4. The limit lim(x,y,z)→O q(x, y, z) along X exists and equals L if and only if for every

ε > 0 there is δ > 0 such that for every 0 < r < δ the inequality |q(x, y, z) − L| < ε holds for all

(x, y, z) ∈ Cr(q) ∩X.

Proof. Each point in the critical set must lie in some Er, since p = (a, b, c) is obviously contained

in Er, with r =
√
Aa2 +Bb2 + Cc2. The rest of the proof is elementary, and follows identical lines

as in Proposition 1.
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Our objective is to determine CritX(q). We may decompose this set as CritN (q) = CritX(q)∩N
and CritX(q) ∩ S. Since CritX(q) ∩ S ⊂ S and the limit along S can be determined as in case 2,

then we focus on CritN (q).

First, we want to determine the nonsingular part of CritN (q) by using Lagrange multipliers, as in

[1]. For this we define X = V (J) ⊂ X, the zero set of the ideal J generated by h and the determinant

d(x, y, z) =

∣∣∣∣∣∣∣∣
∂pr/∂x ∂pr/∂y ∂pr/∂z

∂h/∂x ∂h/∂y ∂h/∂z

∂q/∂x ∂q/∂y ∂q/∂z

∣∣∣∣∣∣∣∣ .
As the points of X already satisfy ∇q(x, y, z) = λ(x, y, z), (where ∇q denotes the gradient of q),

and since ∇pr(x, y, z) = (2Ax, 2By, 2Cz), the affine variety X is then cut by the ideal generated by

h and by the following determinant

D(x, y, z) =

∣∣∣∣∣∣∣∣
Ax By Cz

x y z

∂h/∂x ∂h/∂y ∂h/∂z

∣∣∣∣∣∣∣∣ .
That is, X = V (D,h). This variety is precisely the set of regular points of X that are critical points

of q.

Proposition 5. (Notations as above) Let us assume O ∈ N . Then it is possible to choose (in a

generic way) suitable positive constants A,B and C such that the height of the ideal J = (D,h) in

the polynomial ring R[x, y, z] is grater than one, and consequently dimX < 2.

Proof. It suffices to show that for a suitable choice of positive constants A,B,C there is at least

one point p 6= O in N such that D(p) 6= 0.

First, let us see that there is at least one point p ∈ N different from the origin such that the

gradient of h does not point in the direction of p, i.e, such that ∇h(p) 6= λp, for all λ ∈ R. Indeed,

suppose on the contrary that for every p ∈ N there exists λ(p) 6= 0 such that ∇h(p) = λ(p)p.

Since each p is a regular point of X, ∇h(p) 6= 0. Hence, after making an appropriated change

of coordinates that fixes O (a rotation, and then a homothety) we may assume without loss of

generality that ∂h/∂z(0, 0, 1) 6= 0, and that p = (0, 0, 1). Hence, by the implicit function theorem

there would exist U0 ⊂ R2, a neighborhood of (0, 0), and a smooth function u(x, y) in U0 such

that u(0, 0) = 1, and h(x, y, u(x, y)) = 0, for all (x, y) ∈ U0. Since ∇h(p) = λ(p)p, we must have

∂h/∂x(0, 0, 1) = ∂h/∂y(0, 0, 1) = 0, and consequently ∂u/∂x(0, 0) = 0 = ∂u/∂y(0, 0).
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Let Wp be the graph Wp = {(x, y, u(x, y)) : (x, y) ∈ U0}. For any t ∈Wp the normal vector at

t is given by

n(t) =
(−ux,−uy, 1)√
u2x + u2y + 1

.

Henceforth, if µ(t) = λ(t)/‖∇h(t)‖ we have that ∇h(t) = µ(t)‖∇h(t)‖t, and consequently n(t) can

be written as

n(t) =
(x, y, u(x, y))√
x2 + y2 + u2(x, y)

.

From this, we deduce:

1√
u2x + u2y + 1

=
u(x, y)√

x2 + y2 + u2(x, y)
,

−ux√
u2x + u2y + 1

=
x√

x2 + y2 + u2(x, y)
,

and
−uy√

u2x + u2y + 1
=

y√
x2 + y2 + u2(x, y)

.

This implies ux = −x/u(x, y), and uy = −y/u(x, y). Hence, u(x, y) =
√

1− x2 − y2, since

u(0, 0) = 1. We conclude that Wp would be a neighborhood of p in N which is part of a sphere

centered at the origin. But on the other hand, a theorem of Whitney asserts that N can only

have finitely many connected components (see [4]). This would then imply that N could not pass

through the origin, a contradiction.

Therefore, we may assume there exists a point p 6= O in N such that ∇h(p) 6= λp, for all λ 6= 0.

After applying a rotation, if necessary, we may also assume that a, b, c are all nonzero.

With this preliminaries, it is clear how to choose positive constants A,B and C such that the

determinant ∣∣∣∣∣∣∣∣
Aa Bb Cc

a b c

∂h/∂x(a, b, c) ∂h/∂y(a, b, c) ∂h/∂z(a, b, c)

∣∣∣∣∣∣∣∣
does not vanish: The vectors ∇h(p) and p = (a, b, c) generate a plane H, since they are not parallel.

Therefore, it suffices to choose any point (α, β, γ) outside H and such that A = α/a, B = β/b, and

C = c/γ are positive.

As before, for the limit lim(x,y,z)→O q(x, y, z) to exist along X it is necessary that it exists along

any real curve that crosses O. In particular, they should exist along any component of X, and they
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all must be equal. By the previous proposition dim(X) < 2, hence, this last problem reduces to the

cases 1 and 2.

Let Z be the affine variety defined by the ideal generated by h and by the minors 2×2 of the matrix Ax By Cz

∂h/∂x ∂h/∂y ∂h/∂z

 .
The set Z∩Er∩N defines the locus of those real points where Er andN do not intersect transversely.

Outside this set, Er ∩N is a 1-dimensional manifold (See [42], page 30) that we shall denote by Σ.

Clearly, the vanishing of these two by two minors forces the vanishing of the determinant D(x, y, z).

Henceforth, Z ⊂ X, and consequently dim(Z) < 2, by Proposition 5.

Again, for the existence of the limit lim(x,y,z)→O q(x, y, z) it is required, in particular, its existence

along any component of Z that crosses O, and the problem reduces again to the cases 1 and 2. This

take care of the subset of CritN (q) inside Z.

As for those points in CritN (q) that lie outside Z, we notice that they are contained in the 1-

dimensional manifold Σ, then by Lagrange multipliers, they are part of X, since this variety is

precisely those regular points where q attains an extreme value. Thus, the points in CritN (q) that

lie outside Z must be contained in X, and thus the problem reduces again to the cases 1 and 2.

We summarize the discussion above in the following proposition:

Proposition 6. Let X be an irreducible component of dimension 2 of the discriminant variety X(q)

passes through the origin O. Consider S, X, and Z defined as above. Then, the limit of q(x, y, z)

as (x, y, z)→ O along X exists, and equals L, if and only if, the limit of q(x, y, z) as (x, y, z)→ O

exists and equals L along each one of the components of the curves S, X, and Z.

We are ready to state our main result.

Theorem 2. Let q(x, y, z) = f(x, y, z)/g(x, y, z), where f and g are rational polynomial functions.

Let X(q) be the discriminant variety associated to q, and let us denote by {X1, . . . , Xk} the ir-

reducible components of dimension one of X(q) that cross the origin, and by {Xk+1, . . . , Xn} the

irreducible components of dimension two of X(q) that pass through the origin. Then, the limit of q

as (x, y, z)→ O exists, and equals L, if and only if the limit of q(x, y, z) as (x, y, z)→ O along Xi

exists, and equals L, for all i = 1, 2, . . . , n. Moreover:

1. For the components Xi, i = 1, 2, . . . , k, the limit of q(x, y, z) as (x, y, z) → (0, 0, 0) along Xi

is determined as in Proposition 3.
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2. For the components Xj , j = k + 1, . . . , n, the limit of q(x, y, z) as (x, y, z) → (0, 0, 0) along

Xj is determined as in Proposition 6.



4. A HIGH LEVEL ALGORITHM

In this chapter, using some ideas from Groebner bases, we develop an algorithm to compute the

limit of a quotient of rational polynomial functions of three variables.

Using the ideas showed in the preliminaries in the section of Groebnes bases, we will show

that given X = V (P ) ⊂ C3 an irreducible space curve, if R(x, y, z) denotes the fraction field

of R[X,Y, Z]/P and if x is transcendental over R, we can check algorithmically if given λ ∈ R,

R(x, u) = R(x, y, z) where u = y + λz. Furthermore, we will see that if the last equality holds, it

is algorithmically possible to compute the irreducible plane curve Y which is birrationally equiv-

alent to X and also to compute the local isomorphism µ : X → Y , induced by the equality

R(x, u) = R(x, y, z).

Suppose that we have X = V (P ) ⊂ C3 an irreducible algebraic curve, and denote the fraction

field of R[X,Y, Z]/P by R(x, y, z). By Proposition 2 and Corollary 1, we know that if x is tran-

scendental over R there exists λ ∈ R(x) such that R(x, y, z) = R(x, u) where u = y + λz. Also, by

Theorem 1, if we consider ϕ : R[X,U ]→ R[X,Y, Z]/P defined by ϕ(X) = x, ϕ(U) = y + λz, then

kerϕ defines the irreducible plane curve Y that is birrationally equivalent to X. Now, as we saw

in the preliminaries in the section of Groebner bases, kerϕ = (PT + (U − (Y + λZ))) ∩ R[X,U ]

where T = R[X,U, Y, Z] is algorithmically computable. On the other hand, the ring homomorphism

R[X,U ]/ kerϕ→ R[X,Y, Z]/P induces a morphism of varieties µ : X → Y . As we saw in the proof

of Theorem 1, since y, z ∈ R(x, u) then y = f1(x, u)/g1(x) and z = f2(x, u)/g2(x) for some f1, f2, g1

and g2 with real coefficients. Also in that proof, we saw that the local isomorphism µ : X → Y is

determined by those polynomials.

Remark 5. We can always assume that x, y and z are transcendental over R, since otherwise the

algebraic curve is actually a plane curve.

Remark 6. Let X = V (P ) ⊂ R3 be an irreducible algebraic curve and denotes the fraction field

of R[X,Y, Z]/P by R(x, y, z). Let T = R[X,U, Y, Z] and consider the lexicography order with
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Z > Y > U > X. Let I = {h1, . . . , ht} be a Groebner basis for the ideal I = PT + (U − (Y + λZ))

where λ ∈ R. Then there exist i, j ∈ {1, 2, . . . , t} such that hi ∈ R[X,U, Y ] and hj ∈ R[X,U,Z]

involve the variable Y and Z respectively.

Proof. Notice that if hj ∈ R[X,U ] for all j = 1, 2, . . . , t, then in(hj) = αjU
ajXbj and as U − (Y +

λZ) ∈ I then UajXbj divides Z for some j = 1, 2, . . . , t which is a contradiction. Hence, some hj

involves the variable Z or Y . Assume that h1, . . . , hk ∈ R[X,U ] and that hk+1, . . . , ht /∈ R[X,U ].

Thus in(hi) = αUaiXbi with ai 6= 0 for i = 1, 2, . . . , k and in(hj) = αjZ
ajY bjU cjXdj with aj 6= 0

or bj 6= 0 for j = k + 1, . . . , t. As y and z are algebraic over R(x) there are non-null polynomials

p(X,Y ) ∈ P ∩ R[X,Y ] ⊂ I ∩ R[X,Y ] and q(X,Z) ∈ P ∩ R[X,Z] ⊂ I ∩ R[X,Z], thus in(p) =

αY aXb ∈ (in(h1), . . . , in(ht)) and in(q) = βZcXd ∈ (in(h1), . . . , in(ht)) where a, c 6= 0. Therefore

in(hi)|Y aXb and in(hj)|ZcXd for some i, j = 1, 2, . . . , t. Notice that in(hj) divides neither Y aXb

nor ZcXd for j = 1, 2, . . . , k, therefore ZajY bjU cjXdj |Y aXb for some j = k+1, . . . , t which implies

that aj = 0 and thus bj 6= 0 and in(hj) = αjY
bjU cjXdj with bj 6= 0, hence hj ∈ R[X,Y, U ] and

hj involves the variable Y . In the same way, ZaiY biU ciXdi |ZcXd for some i = k + 1, . . . , t which

implies that bi = 0 and thus ai 6= 0 and in(hi) = αiZ
aiU ciXdi with ai 6= 0, hence hi ∈ R[X,U,Z]

and hi involves the variable Z.

The following lemma shows that given λ ∈ R, it is possible to verify algorithmically if the

equality R(x, y + λz) = R(x, y, z) holds.

Lemma 2. Let X = V (P ) ⊂ C3 be an irreducible algebraic curve and denotes the fraction field

of R[X,Y, Z]/P by R(x, y, z). Let T = R[X,U, Y, Z] and consider the lexicography order with

Z > Y > U > X. Let B = {h1, . . . , ht} be a Groebner basis for the ideal I = PT + (U − (Y + λZ))

where λ ∈ R. Then R(x, u) = R(x, y, z) where u = y + λz if and only if there are i, j ∈ {1, 2, . . . , t}
such that hi ∈ R[X,U, Y ], hj ∈ R[X,U,Z] have degree 1 in the variable Y and Z when they are

viewed as polynomials in the variable Y and Z respectively. Furthermore, if R(x, u) = R(x, y, z),

then the values f1(x, u), f2(x, u), g1(x), g2(x) described in Theorem 1 are given precisely by the

elements hi, hj ∈ B satisfying that hi ∈ R[X,U, Y ] and hj ∈ R[X,U,Z] have degree 1 in the variable

Y and Z respectively.

Proof. Suppose that R(x, u) = R(x, y, z) where u = y + λz. We saw in the proof of Theorem

1, that y = f(x, u)/g(x) for some f(X,U) ∈ R[X,U ], g(X) ∈ R[X], where g(x, u) 6= 0, and

g(0) 6= 0. Thus g(x)y−f(x, u) = 0 in R(x, u), then g(x)y−f(x, y+λz) = 0 in R(x, y, z). Therefore

g(X)Y −f(X,Y +λZ) ∈ P ⊂ I. Thus, g(X)Y −f(X, (Y +λZ−U)+U) ∈ I and as Y +λZ−U ∈ I
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then we get that g(X)Y − f ′(X,U) ∈ I. If p = g(X)Y − f ′(X,U) then since p ∈ I, in(hj) divides

in(p) for some j = 1, 2, . . . , t. Suppose that in(p) = XaY , then the initial term of hj need to have

the form in(hj) = XcY . Hence, the other monomials of hj involving the variable Y have the form

XkY . Thus, hj = r(X)Y + t(X,U), and clearly r(X) /∈ I since x is not algebraic over R.

The reciprocal is clear.

4.1 Description of the Algorithm

Let q(X,Y, Z) = f(X,Y, Z)/g(X,Y, Z) where f and g are rational polynomial functions of three

variables. Consider X(q) the discriminant variety associated to q described in (2.2). We decompose

X(q) into its irreducible components and we choose only the irreducible components {X1, . . . , Xn}
going through the origin.

For the irreducible components of dimension 1 the algorithm do the following:

Suppose dimX = 1 where X = V (P ). Denote the fraction field of R[X,Y, Z]/P by R(x, y, z).

For random values λ ∈ R, the algorithm verifies using the method described in Lemma 2, if

R(x, u) = R(x, y, z), where u = y + λz. Notice that by Remark 2 discussed in the preliminaries,

there are only finitely many values λ ∈ R such that R(x, u) 6= R(x, y, z). If R(x, u) = R(x, y, z),

the algorithm compute the kernel of the map ϕ : R[X,U ]→ R[X,Y, Z]/P given by ϕ(X) = x and

ϕ(U) = u = y+λz. As we saw before, this kernel is precisely the ideal (PT+(U−(Y+λZ)))∩R[X,U ]

where T = R[X,U, Y, Z], which is computable using Groebner bases. The plane curve which is

birrationally equivalent to X is the variety Y cut by the ideal kerϕ.

Finally, the algorithm find the local isomorphism µ : X → Y induced by the equality R(x, u) =

R(x, y, z). Again by Lemma 2 this morphism is computable. The existence of the limit

lim
(X,Y,Z)→(0,0,0)

q(X,Y, Z)

along the irreducible space curve X is determined by the existence of the limit

lim
(X,U)→(0,0)

q ◦ µ−1(X,U)

along the irreducible plane curve Y and when the limits exist they are equal. The last limit is

computed using the algorithm developed in [1].

For the irreducible components of dimension 2 the algorithm do the following:

Suppose that dimX = 2. Then X is an affine variety cut by a principal ideal P = (h). For random
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positive values A, B and C the algorithm compute the height of the ideal J = (h,D) where

D =

∣∣∣∣∣∣∣∣
Ax By Cz

x y z

∂h/∂x ∂h/∂y ∂h/∂z

∣∣∣∣∣∣∣∣ .
As we saw in the reduction to plane curves, there always exist positive constants A,B and C such

that ht(J) ≥ 2. Since dim(X) ≤ 1, X = V (J), then we compute the limit of q(x, y, z) as (x, y, z)→ O

along X using the above description for algebraic curves.

Since S = SingX, the affine variety defined by the ideal (h, ∂h∂x ,
∂h
∂y ,

∂h
∂z ) has dimension smaller

than the dimension of X, then S is also an algebraic curve, and again we can compute the limit

of q(x, y, z) as (x, y, z) → O along S using the description of the algorithm for algebraic curves.

(Recall that it is possible to have X = S)

Now, the affine variety Z defined by the ideal generated by the minors 2× 2 of the matrix Ax By Cz

∂h
∂x

∂h
∂y

∂h
∂z


and the polynomial h, has also dimension less than 2. Hence, the limit of q(x, y, z) as (x, y, z)→ O

along Z is computed using the description of the algorithm for algebraic curves.

Finally, if the limit of q(x, y, z) as (x, y, z) → O along each irreducible component of X(q) of

dimension one and two containing the origin exists and equals L, then we say that the limit of

q(x, y, z) as (x, y, z)→ O is L. Otherwise, we say that this limit does not exists.



5. EXAMPLE

In this chapter we present an example of how the algorithm computes limits of quotients of rational

polynomial functions of three varibales.

Suppose that we want to compute the following limit

lim
(X,Y,Z)→(0,0,0)

Y X − ZY + ZX

X2 + Y 2 + Z2
.

If q(X,Y, Z) = Y X −ZY +XZ/X2 +Y 2 +Z2, then in maple using the command PrimeDecom-

position(X(q)) we get the irreducible components of X(q):

V ((Y−X+Z)), V ((X2+Y 2+Z2)), V ((X+Y,Z−2X)), V ((X+Y, Z+X)) and V ((X+Y,Z2+2X2)).

Using in Maple the command HilbertDimension(Q) we see that for example the irreducible

component V (X +Y, Z +X) has dimension 1. Let us see that for λ = 1, R(x, u) = R(x, y, z) where

u = y + z. Here R(x, y, z) denotes the fraction field of the coordinate ring of V (X + Y,Z + X).

Consider the ideal I = (X + Y,Z + X)T + (U − (Y + Z)) where T = R[X,Y, Z, U ]. In Maple the

command EliminationIdeal(I,{U,X}) produces the ideal J = (2X + U). On the other hand,

the command Basis(I,plex(Z,Y,U)) gives us a Groebner basis for I respect to the lexicography

monomial order with Z > Y > U . In this particular case we obtain the following basis {2X +

U, Y +X,Z +X}. From this basis we can deduce that y = −x and z = −x as elements of R(x, u).

Therefore R(x, u) = R(x, y, z) and the ideal J = (2X+U) defines the irreducible plane curve which

is birrationally equivalent to V (X+Y,Z+X). Also, y = −x and z = −x determine the isomorphism

µ−1 : V (2X + U) → V (X + Y,Z + X). Therefore, the limit of q(X,Y, Z) as (X,Y, Z) → (0, 0, 0)

along V (X+Y,Z+X) is equivalent to the limit of q ◦ρ(X,U) as (X,U)→ (0, 0) along V (2X+U).

The last limit can be computed using the algorithm developed in [1], however in this case it is easy

to see that the value of this limit is −1 since q ◦ µ−1(X,U) = q(X,−X,−X) = −1. Therefore, the

limit of q(X,Y, Z) as (X,Y, Z)→ (0, 0, 0) along V (X + Y, Z +X) is −1.
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Now, for the irreducible component of dimension 2, V (Y −X +Z), if h(X,Y, Z) = Y −X +Z then

with the positive constants A = 1, B = 2 and C = 1, using the command HilbertDimension(P)

with P = (h,D), where D =

∣∣∣∣∣∣∣∣
X 2Y Z

X Y Z

∂h
∂X

∂h
∂Y

∂h
∂Z

∣∣∣∣∣∣∣∣, we obtain that the variety cut by the ideal P =

(h,D) has dimension 1. In this case V (P ) = V (−XY − Y Z, Y − X + Z). Using again the

command PrimeDecomposition(P) we obtain the irreducible components of the variety V (P ),

V (P ) = V (Y,−X + Z) ∪ V (2X − Y, Y + 2Z) where each of these components has dimension 1.

Therefore we can apply the algorithm for irreducible algebraic curves, and it is not difficult to see

following the same procedure as for the variety V (Y + X,Z + X) that the limit of q(X,Y, Z) as

(X,Y, Z)→ (0, 0, 0) along the variety V (Y,−X + Z) is 1/2.

Hence, we conclude that

lim
(X,Y,Z)→(0,0,0)

Y X − ZY + ZX

X2 + Y 2 + Z2

does not exist.



6. COMPUTATIONS OVER REAL EXTENSIONS OF Q

In this section we show how to extend the methods thus developed to compute the limit of quotients

of polynomials, when their coefficients lie in a real extension of the rationals. This is a standard

procedure that is independent of the number of variables involved, and it was already discussed in

great detail in [1]. Hence, we will just limit ourselves to recall how this could be achieved. We refer

the reader to [1] for a thorough discussion.

Let Q ⊂ E be any finite field extension of the rationals. E will be called a real extension if there

is an embedding of fields λ : E → R. Let g(z) be an irreducible polynomial in E[z]. The class of z in

the quotient F [z]/(g(z)) will be called a symbolic root of g. Symbolic roots will be denoted by lower

case letters, so that, for instance, E(b) will denote the extension field E(b) ' E[z]/(g(z)). If E is a

real extension, we speak of b as a real symbolic root over E if any given embedding λ : E → R can

be extended to an embedding λ′ : E(b)→ R.

Let λ : E → R be an embedding of a finite field extension of the rationals, and let b be a symbolic

root over E. Since any extension of the rationals is principal, there exists b′ such that E(b) = Q(b′),

an element that can be computed as a linear combination with rational coefficients of a finite set

of generators of E(b). From this, its minimal polynomial over Q can also be effectively determined.

Sturm’s Theorem [7] can then be used to effectively determine if the minimal polynomial of b′ over

the rationals has a real root, and consequently to determine if b is a real symbolic root over E.

Suppose now that q(X,Y, Z) = f(X,Y, Z)/g(X,Y, Z) is a quotient of polynomial functions with

coefficients that lie in possibly different real extensions of Q. Without lost of generality, we may

assume that they are all contained in a larger real extension E. We want to compute the limit of

q(X,Y, Z), as (X,Y, Z)→ (0, 0, 0). For this, we notice that the discriminant variety X(q) associated

to q is defined by an ideal also generated by polynomials with coefficients that turn out to be in E.

Thus, when we decompose X(q) into its irreducible components, the varieties obtained also have

all their coefficients in E. Once the problem has been reduced to the case of two variables, the

necessary computations are all carried out within E, as shown in [1].



Part II

CLASSIFICATION OF G-GRADED TWISTED ALGEBRAS



7. INTRODUCTION

G-graded twisted algebras were introduced in [17], and independently in [19], as distinguished

mathematical structures which arise naturally in theoretical physics [20], [21], [22], [23], [24] and

[18]. A G-graded twisted algebra W is an algebra over a commutative ring R with a G-grading, i.e.,

W = ⊕g∈GWg, with WaWb ⊂ Wab. Each Wg is assumed to be a free R-module of rank one, and

we demand that W is free of zero monomial divisors, i.e., wa · wb 6= 0 for every non-zero elements

wa ∈ Wa, wb ∈ Wb. We also demand that W has an identity element 1 ∈ We, where We denotes

the graded component corresponding to the identity element e ∈ G.

We deal with the classification problem for non-associativeG-graded twisted algebras that satisfy

a particular type of symmetry condition. In Theorem 10 we provide an exact formula to count (up

to graded isomorphisms) all symmetric algebras that are graded over an abelian group. This

generalizes the main result obtained in [26] for cyclic groups.



8. PRELIMINARIES

8.1 Group Cohomology

We start recalling the standard definition of the group cohomology.

Let G be a group and A a G-module.

Consider the left exact functor from the category G−mod of G-modules to the category Ab of

abelian groups, G : G−mod→ Ab defined as AG = {a ∈ A : g · a = a for all g ∈ G} and given

a morphism of G-modules f : A→ B, fG : AG → BG is the morphism of abelian groups defined

as fG(a) = f(a).

We write H∗(G,A) for right derived functors R∗( G) and call them the cohomology groups

of G with coefficients in A.

It is not difficult to see that if we consider Z as a trivial G-module then we have that AG ∼=
HomZ[G](Z, A) and therefore H∗(G,A) ∼= Ext∗Z[G](Z, A).

We will show a particular projective resolution of Z[G]-modules for Z as a trivial G-module and

with this resolution we will compute Ext∗Z[G](Z, A) and hence the cohomology groups of G with

coefficients in A.

8.1.1 A particular free resolution for Z

Define Fn as the free abelian group generated by the elements (g0, g1, . . . , gn) ∈ Gn+1 and

consider the boundary Z-homomorphisms ∂n : Fn → Fn−1 defined as

∂n(g0, . . . , gn) =

n∑
i=0

(−1)i(g0, . . . , gi−1, ĝi, gi+1, . . . , gn).

An straightforward computation shows that ∂n−1 ◦ ∂n = 0, thus we have the following complex of

free Z-modules

· · · // Fn
∂n // Fn−1

∂n−1 // Fn−2 // · · · // F1
∂1 // F0

// 0 (8.1)

Note that F0 = Z[G]. If we consider the augmentation of the complex (8.1), that is to say,

define E : F0 = Z[G] → Z as the Z-homomorphism that sends every g ∈ G to 1 ∈ Z and
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consider the following new complex

· · · // Fn
∂n // Fn−1

∂n−1 // Fn−2 // · · · // F1
∂1 // F0

E // Z // 0 (8.2)

We claim that (8.2) is a resolution of free Z-modules for Z.

Indeed, if F• denotes the complex (8.2), let us see that the morphisms of complexes id : F• →
F• and 0 : F• → F• are homotopic.

Define h−1 : Z→ F0 as h−1(1) = e ∈ G and for n = 0, 1, 2, . . . define

hn : Fn → Fn+1 as hn(g0, . . . , gn) = (e, g0, . . . , gn).

· · · // Fn+1

0,id

��

∂n+1 // Fn
hn

||
0,id

��

∂n // Fn−1

0,id

��

hn−1

||

· · · // F1

0,id

��

∂1 // F0

h0

~~

E //

0,id

��

Z
h−1

��
0,id

��

// 0

· · · // Fn+1
∂n+1

// Fn
∂n

// Fn−1 // · · · // F1
∂1

// F0 E
// Z // 0

It is an easy exercise to verify that id− 0 = id = ∂n+1 ◦ hn + hn−1 ◦ ∂n for n = 0, 1, 2, . . . where

∂0 = E .

Therefore the induced maps in the homologies are the same, i.e., id : ker(∂n)
im(∂n+1)

→ ker(∂n)
im(∂n+1)

and

0 : ker(∂n)
im(∂n+1)

→ ker(∂n)
im(∂n+1)

are the same maps and hence ker(∂n)
im(∂n+1)

= 0.

Thus we have that the complex (8.2) is actually a resolution of free Z-modules for Z.

On the other hand, note that each Fn is a G-module with the action g · (g0, . . . , gn) =

(gg0, . . . , ggn) and Z is a G-module with the trivial action.

Let us see that each Fn is a free Z[G]-module.

We have an action of G over Gn+1. Note that every (g0, g1, . . . , gn) = g0·(e, g−10 g1, . . . g
−1
0 gn), and

(e, g1, . . . , gn) 6= g · (e, g′1, . . . , g′n) for all g 6= e.

Therefore the orbits given by this action are O(e,g1,...,gn) with gi ∈ G for i = 1, 2, . . . , n and

thus

Gn+1 =
⊔

(g1,...,gn)∈Gn
O(e,g1,...,gn).

Hence

Fn = Z[Gn+1] = Z[
⊔

(g1,...,gn)∈Gn
O(e,g1,...,gn)]

∼=
⊕

(g1,...,gn)∈Gn
Z[O(e,g1,...,gn)],

but O(e,g1,...,gn)
∼= G/G(e,g1,...,gn) where G(e,g1,...,gn) = {g ∈ G : g·(e, g1, . . . , gn) = (e, g1, . . . , gn)} =

{e}. Thus O(e,g1,...,gn)
∼= G.



8. Preliminaries 34

We conclude that

Fn ∼=
⊕

(g1,...,gn)∈Gn
Z[G].

Also note that the set {(e, g1, . . . , gn) : (g1, . . . , gn) ∈ Gn} is a basis for Fn as a Z[G]-module

since each (e, g1, . . . , gn) generates its own orbit O(e,g1,...,gn) and they are linear independent.

Finally what we have is that the resolution of free Z-modules for Z given in (8.2) is actually a

resolution of free Z[G]-modules for Z viewed as a G-module with the trivial action.

8.1.2 The bar resolution for Z

We saw above that {(e, g1, . . . , gn) : (g1, . . . , gn) ∈ Gn} is a basis for Fn as a Z[G]-module.

Now we change this basis for another basis that we call the bar basis for Fn.

Define [g1|g2| · · · |gn] := (e, g1, g1g2, . . . , g1g2 · · · gn).

We claim that the set {[g1|g2| · · · |gn] : (g1, . . . , gn) ∈ Gn} is also a basis for Fn. In

fact, this set is clearly linear independent and note that there is a bijection between the old ba-

sis {(e, g1, . . . , gn) : (g1, . . . , gn) ∈ Gn} and the set {[g1|g2| · · · |gn] : (g1, . . . , gn) ∈ Gn},
since (e, g1, g2, . . . , gn) = (e, g′1, g

′
1g
′
2, . . . , g

′
1g
′
2 · · · g′n) = [g′1|g′2| · · · |g′n] where g′i = g−1i−1gi for i =

1, 2, . . . , n.

Therefore {[g1|g2| · · · |gn] : (g1, . . . , gn) ∈ Gn} is a basis for Fn as a Z[G]-module and we say it

is the bar basis for Fn.

Now, if we compute the boundary homomorphisms ∂n : Fn → Fn−1 given in (8.2) in the bar

basis, we get the following equation:

∂n([g1|g2| · · · |gn]) = ∂n(e, g1, g1g2, . . . , g1g2 · · · gn) = (g1, g1g2, . . . , g1g2 · · · gn) +

+

n−1∑
i=1

(−1)i(e, g1, . . . , g1g2 · · · gi−1, ̂g1g2 · · · gi, g1g2 · · · gi+1, . . . , g1g2 · · · gn)

+ (−1)n(e, g1, g1g2, . . . , g1g2 · · · gn−1)

= g1[g2| · · · |gn] +

n−1∑
i=1

(−1)i[g1| · · · |gi−1|gigi+1|gi+2| · · · |gn] +

+ (−1)n[g1| · · · |gn−1].

Thus we have that ∂n : Fn → Fn−1 in the bar basis is given by

∂n([g1| · · · |gn]) = g1[g2| · · · |gn] +

n−1∑
i=1

(−1)i[g1| · · · |gi−1|gigi+1|gi+2| · · · |gn] + (−1)n[g1| · · · |gn−1].

(8.3)
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The resolution given in (8.2)

· · · // Fn
∂n // Fn−1

∂n−1 // Fn−2 // · · · // F1
∂1 // F0

E // Z // 0 (8.4)

in the bar basis is what we call the bar resolution for Z.

(Note that {[e] = (e)} is the bar basis for F0).

8.1.3 Another way to compute the cohomology of groups

From now on, we consider Fn with the bar basis.

For n = 0, 1, 2, . . . define Cn(G,A) = {ϕ : Gn → A} the set of functions from Gn to A.

(G0 = {e}).
Cn(G,A) is an abelian group since A is an abelian group and also Cn(G,A) has a structure

of G-module where (gϕ)(x) = gϕ(x) for g ∈ G and ϕ ∈ Cn(G,A).

Let us see that Cn(G,A) is isomorphic to HomZ[G](Fn, A) as G-modules.

Indeed, define

µ : Cn(G,A) → HomZ[G](Fn, A)

ϕ 7→ µ(ϕ)

where µ(ϕ)([g1| · · · |gn]) = ϕ(g1, . . . , gn).

It is a Z[G]-homomorphism with inverse

µ−1 : HomZ[G](Fn, A) → Cn(G,A)

ψ 7→ µ−1(ψ)

where µ−1(ψ)(g1, . . . , gn) = ψ([g1| · · · |gn]).

Therefore we have the following commutative diagram:

HomZ[G](Fn, A)

µ

��

∂∗n+1 // HomZ[G](Fn+1, A)

µ

��
Cn(G,A)

∂n // Cn+1(G,A)

where ∂∗n+1(ψ) = ψ ◦ ∂n+1, µ is an isomorphism and ∂n = µ ◦ ∂∗n+1 ◦ µ−1.

If we compute explicitly the morphism ∂n we have:

∂n(ϕ)(g1, . . . , gn+1) = µ ◦ ∂∗n+1 ◦ µ−1(ϕ)(g1, . . . , gn+1) = µ ◦ ∂∗n+1 ◦ ϕ([g1| · · · |gn+1])

= µ ◦ ϕ(∂n+1([g1| · · · |gn+1]))
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and by (8.3)

∂n([g1| · · · |gn]) = g1[g2| · · · |gn] +

n−1∑
i=1

(−1)i[g1| · · · |gi−1|gigi+1|gi+2| · · · |gn] + (−1)n[g1| · · · |gn−1].

hence

∂n(ϕ)(g1, . . . , gn+1) = µ ◦ ϕ(∂n+1([g1| · · · |gn+1]))

= µ ◦ ϕ(∂n([g1| · · · |gn+1]) = g1[g2| · · · |gn+1] +

n∑
i=1

(−1)i[g1| · · · |gi−1|gigi+1|gi+2| · · · |gn+1] + (−1)n+1[g1| · · · |gn])

= µ(g1ϕ([g2| · · · |gn+1]) +

n∑
i=1

(−1)iϕ([g1| · · · |gi−1|gigi+1|gi+2| · · · |gn+1]) + (−1)n+1ϕ([g1| · · · |gn]))

= g1ϕ(g2, . . . , gn+1) +

n∑
i=1

(−1)iϕ(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1) + (−1)n+1ϕ(g1, . . . , gn).

(8.5)

As Hn(G,A) is isomorphic to ExtnZ[G](Z, A) then we can compute Hn(G,A) taking a

resolution of projective Z[G]-modules for Z, applying the functor HomZ[G]( , A) and taking

homology.

Using the bar resolution for Z we have

· · ·
∂∗n−1// HomZ[G](Fn−1, A)

∂∗n //

µ

��

HomZ[G](Fn, A)
∂∗n+1 //

µ

��

HomZ[G](Fn+1, A)

µ

��

// · · ·

· · · ∂n−2
// Cn−1(G,A)

∂n−1
// Cn(G,A)

∂n // Cn+1(G,A) // · · ·

where the squares commutes.

Thus {C•(G,A), ∂•} is a complex with

∂n(ϕ)(g1, . . . , gn+1) = g1ϕ(g2, . . . , gn+1)+
n∑
i=1

(−1)iϕ(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1)+(−1)n+1ϕ(g1, . . . , gn)

and

Hn(G,A) ∼= ExtnZ[G](Z, A) ∼=
ker(∂n)

im(∂n−1)
.

8.2 G-graded twisted algebras

Definition 6. LetG denote a group. AG-graded twisted algebraW is an algebra over a commutative

ring R with a G-grading, i.e., W = ⊕g∈GWg, with WaWb ⊂Wab. Each Wg is assumed to be a free
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R-module of rank one, and we demand that W is free of zero monomial divisors, i.e., wa · wb 6= 0

for every non-zero elements wa ∈ Wa, wb ∈ Wb. We also demand that W has an identity element

1 ∈We, where We denotes the graded component corresponding to the identity element e ∈ G.

As each graded component Wg is a vector space of dimension one, each choice of a non zero

element wg ∈ Wg, for each g ∈ G, produces a graded basis B = {wg : g ∈ G} for W . For each

such basis there is a structure constant associated to it, CB : G×G→ A, defined by the identity:

wa ·wb = CB(a, b)wab. Here A ⊂ K∗ must be a subgroup of the multiplicative group of all nonzero

elements of K, since W has no zero divisor monomials. From now on we will omit the subscript B
if a particular basis is clear in the context.

Given a structure constant C : G×G → A, we define two important functions q : G×G → A

and r : G×G×G→ A as:

q(a, b) = C(a, b)C(b, a)−1

r(a, b, c) = C(b, c)C(ab, c)−1C(a, bc)C(a, b)−1.
(8.6)

The associativity of elements of W can be described in terms of the function r : G × G × G → A

as follows: wa · (wb · wc) = r(a, b, c)(wa · wb) · wc. When G is an abelian group, the commutativity

of elements of W is given in terms of the function q : G×G→ A as wa · wb = q(a, b)wb · wa.

Definition 7. A morphism between two G-graded twisted K-algebras W = ⊕g∈GWg and V =

⊕g∈GVg is an unitarian homomorphism of K-algebras ϕ : W → V . If the homomorphism preserves

the grading, i.e., ϕ(Wg) ⊂ Vg, we say the morphism is graded.

The following theorem relates the associative G-graded twisted algebras with elements of the

second group of cohomology H2(G,A). This is fundamental in the classification of all associative

G-graded twisted algebras.

Theorem 3. Let V = ⊕g∈GVg and W = ⊕g∈GWg be two G-graded twisted K-algebras. Let us fix

bases B1 and B2 for V and W , respectively, and let C1, C2 : G×G→ K∗ be the respective structure

constants. Then V is graded-isomorphic to W if and only if the function C1C
−1
2 belongs to the

kernel of ∂2 : C2(G,K∗) → C3(G,K∗) and the equivalence class [C1C
−1
2 ] is trivial in H2(G,K∗),

where K∗ is viewed as a G-module with the trivial action.

Proof. Suppose that V and W are graded-isomorphic as K-algebras, this means that there is a

grading preserving isomorphism ψ : V → W . This isomorphism induces a function ϕ : G → K∗

defined as ϕ(g) ∈ K∗ is the unique element satisfying ψ(vg) = ϕ(g)wg. As ψ is a homomor-

phism then ψ(va)ψ(vb) = ψ(va · vb) which implies ϕ(a)ϕ(b)wa · wb = C1(a, b)ϕ(ab)wab, and thus
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ϕ(a)ϕ(b)C2(a, b) = C1(a, b)ϕ(ab). Therefore, C1(a, b)C2(a, b)−1 = ϕ(a)ϕ(ab)−1ϕ(b). Now, notice

that ∂1(ϕ)(a, b) = ϕ(a)ϕ(ab)−1ϕ(b), hence C1C
−1
2 ∈ C2(G,K∗) is such that C1C

−1
2 = ∂1(ϕ), thus

C1C
−1
2 ∈ im(∂1) which implies that C1C

−1
2 ∈ ker ∂2, and [C1C

−1
2 ] = 1 in H2(G,K∗).

Reciprocally, if ∂2(C1C
−1
2 ) = 1 and [C1C

−1
2 ] = 1 in H2(G,K∗), then C1C

−1
2 ∈ im(∂1) and therefore

there exists ϕ ∈ C1(G,K∗) such that ∂1(ϕ) = C1C
−1
2 , then C1(a, b)C2(a, b)−1 = ϕ(a)ϕ(ab)−1ϕ(b).

This last equation implies that the homomorphism of K-vector spaces ψ : V → W defined as

ψ(vg) = ϕ(g)wg is a homomorphism of K-algebras. As ϕ(g) 6= 0 for every g ∈ G it follows that ψ

is injective, and as V and W are K-vector spaces of the same dimension we conclude that ψ is an

isomorphism.

Remark 7. If W = ⊕g∈GWg is a G-graded twisted K-algebra with a fixed basis B = {wg : g ∈ G}
and structure constant C : G×G→ A, the function r : G×G×G→ A defined in (8.6) is precisely

∂2(C).

As a consequence of the last theorem we have the following corollaries:

Corollary 2. Let W = ⊕g∈GWg be a G-graded twisted K-algebra, and let B and B′ be bases for

W , with associated structure constants C and C ′ respectively. Then the corresponding associative

functions r and r′ defined as in (8.6), are the same. In other words, the associative function of W

does not depend on any chosen basis.

Proof. Consider the identity homomorphism i : W → W which is clearly graded. By Theorem

3, C ′C−1 ∈ ker ∂2 and [C ′C−1] = 1 in H2(G,K∗). Hence, ∂2(C ′C−1) = 1 which implies that

∂2(C) = ∂2(C ′). Thus, r = r′.

Corollary 3. Let V = ⊕g∈GVg and W = ⊕g∈GWg two associative G-graded twisted K-algebras,

and let B and B′ be bases for V and W , respectively, and let C1 and C2 the respective associated

structure constants. Then V is graded-isomorphic to W if and only if [C1] = [C2] in H2(G,K∗),

where K∗ is viewed as a G-module with the trivial action.

Proof. As V and W are associative algebras, then the associative functions r and r′ for V and

W , are 1. Therefore, ∂2(C1) = 1 and ∂2(C2) = 1, i.e., C1, C2 ∈ ker ∂2. Hence, [C1C
−1
2 ] = 1 in

H2(G,K∗) is equivalent to [C1] = [C2] in H2(G,K∗), and the result follows from Theorem 3.



9. CLASSIFICATION OF (1, 2)-SYMMETRIC G-GRADED TWISTED

C-ALGEBRAS.

In [26], it was proved that for G ∼= Zn, a cyclic group, the number of non-(graded) isomorphic (1, 2)-

symmetric G-graded twisted C-algebras with structure constants taking values in a finite subgroup

A ⊂ C∗ is given by |Rn||G|−2 = |Rn|n−2, where Rn denotes the set of n-th roots of unity in A. In

this chapter, we provide a generalization of the arguments used in [26] that will allow us to state

an equivalent result for the case of any finite abelian group. For the sake of clarity we first focus

on groups that are the product of only two cyclic groups. At the end of this chapter we deal with

finite abelian groups in general.

Definition 8. Let W be a G-graded twisted K-algebra. We say that W is (1, 2)-symmetric if

r(a, b, c) = r(b, a, c) for every a, b, c ∈ G.

9.1 Classification of (1, 2)-symmetric Zm × Zn- graded twisted C-algebras.

Suppose G is presented as a product Zm × Zn, and consider W =
⊕

a,b∈GWa,b a (1, 2)-symmetric

G-graded twisted C-algebra, with a fixed basis {xa,b : xa,b ∈ Wa,b} and structure constant

C̃ : G × G → A ⊂ C∗, A a subgroup of C∗. When G = Zn is a cyclic group with generator

g ∈ G, a basis for W was called standard in [26] if it had the form {1, w(1)
g , w

(2)
g , . . . , w

(n−1)
g } where

w
(i)
g = wg · w(i−1)

g and wg · w(n−1)
g = 1 [26]. We generalize this construction as follows. We may
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think of the graduation of W as an array of the following form:

W0,0 W0,1 W0,2 · · · W0,n−1

W1,0 W1,1 W1,2 · · · W1,n−1

...
...

... · · ·
...

Wm−1,0 Wm−1,1 Wm−1,2 · · · Wm−1,n−1

.

As in the cyclic case, we choose standard bases for the first row and first column. These two bases

will be denoted by {1, w0,1, w0,2, . . . , w0,n−1} and {1, w1,0, w2,0, . . . , wm−1,0}, respectively. Now for

the i-th row define wi,j = w0,1 ·wi,j−1 for j = 1, . . . , n−1. We notice that w0,1 ·wi,n−1 ∈Wi,0. Hence,

w0,1 ·wi,n−1 = αi ·wi,0, for some αi ∈ A. We call B = {wi,j : i = 0, . . . ,m− 1, j = 0, . . . , n− 1} a

standard basis for W .

Define Ti,j : W → W to be the linear transformation given by Ti,j(x) = wi,j · x. For T0,1, its

rational form consists of m-blocks where each one looks like

0 0 0 · · · 0 αi

1 0 0 · · · 0 0

0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0


,

where α0 = 1, α1, . . . , αm−1 are elements in A such that T0,1(wi,n−1) = αi · wi,0. Let us denote by

{ei,j}j=0,...,n−1 the n-th roots of αi, for i = 0, . . . ,m− 1. we claim that ei,j is an eigenvalue of T0,1

with eigenvector

zi,j =

n−1∑
k=0

e−ki,j · wi,k. (9.1)
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In fact,

T0,1(zi,j) =

n−1∑
k=0

e−ki,j T0,1(wi,k)

=

n−2∑
k=0

e−ki,j wi,k+1 + e
−(n−1)
i,j αiwi,0

=

n−1∑
k=1

e−k+1
i,j wi,k + ei,jwi,0

= ei,j

n−1∑
k=0

e−ki,j wi,k = ei,jzi,j .

(9.2)

From now on, the elements of the group G will be denoted by products of the form arbs, with

0 ≤ r ≤ m− 1, 0 ≤ s ≤ n− 1. Also we will write wr,s · wi,j = C(arbs, aibj) · wr+i,s+j .
We claim that Tr,s ◦ Ti,j(x) = q(arbs, aibj) · Ti,j ◦ Tr,s(x) for every x ∈ W . It is enough to prove it

for the basis elements. Indeed,

Tr,s ◦ Ti,j(wg) = wr,s · (wi,j · wg) = r(arbs, aibj , g)(wr,s · wi,j) · wg

= r(arbs, aibj , g)q(arbs, aibj)(wi,j · wr,s) · wg

= r(arbs, aibj , g)q(arbs, aibj)r(aibj , arbs, g)−1wi,j · (wr,s · wg)

= q(arbs, aibj)Ti,j ◦ Tr,s(wg),

(9.3)

since r(arbs, aibj , g) = r(aibj , arbs, g).

In particular,

T0,1(Tr,s(zi,j)) = q(b, arbs)Tr,s(T0,1(zi,j)) = q(b, arbs)Tr,s(ei,jzi,j)

= q(b, arbs)ei,jTr,s(zi,j).

Hence, Tr,s(zi,j) is an eigenvector of T0,1 associated to the eigenvalue q(b, arbs)ei,j . Since

Tr,s(zi,j) = wr,s ·
n−1∑
k=0

e−ki,j wi,k =

n−1∑
k=0

e−ki,j C(arbs, aibk))w[r+i],[s+k], (9.4)

where [ ] denotes the equivalence class in Zn or Zm, we deduce that

Tr,s(zi,j) = ηi,jr,s · z[r+i],l, (9.5)

for some l = 0, 1, . . . , n−1 and some ηi,jr,s ∈ K∗. Also, since q(b, arbs)ei,j is an eigenvalue associated

to Tr,s(zi,j) we see that

q(b, arbs)ei,j = e[r+i],l. (9.6)
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By definition eni,j = αi. Therefore,

q(b, arbs)nαi = α[r+i]. (9.7)

It follows from the definition of a standard basis that C(b, arbs) = 1, if s 6= n − 1, and that

C(b, arbn−1) = αr. Therefore, from equation (9.7) we obtain αr = C(arbs, b)−n, r = 1, 2, . . . ,m,

when s 6= n − 1, and αn−1r = C(arbn−1, b)n, r = 1, 2, . . . ,m. Hence, as q(b, arbs) = C(arbs, b)−1,

when s 6= n − 1, by replacing q(b, arbs) in equation (9.7), we get αrαi = α[r+i]. From this we see

that αi = αi1. Finally, notice that αi = C(a, b)−in. Since αm1 = 1, then C(a, b)mn = 1.

We summarize below what we have obtained so far:

αi = αi1,

αi = C(a, b)−in,

C(arbs, b)−n = αr = (C(a, b)−r)n, for s 6= n− 1,

C(arbn−1, b)n = αn−1r = (C(a, b)−r(n−1))n,

C(bs, b)n = 1, (cyclic case)

C(ar, a)m = 1, (cyclic case)

C(a, b)mn = 1.

(9.8)

On the other hand, by equation (9.6) it follows that

ηi,jr,s · Z[r+i],l =

n−1∑
k=0

ηi,jr,s · e−k[r+i],l · w[r+i],k =

n−1∑
k=0

ηi,jr,s · q(b, arbs)−k · e−ki,j · w[r+i],k.

Equations (9.4) and (9.5) imply the following identity:

n−1∑
k=0

e−ki,j C(arbs, aibk)w[r+i],[s+k] =

n−1∑
k=0

ηi,jr,s · q(b, arbs)−k · e−ki,j · w[r+i],k.

But the last equation is equivalent to the following two equations:

n−1∑
k=s

e
−(k−s)
i,j C(arbs, aibk−s)w[r+i],k =

n−1∑
k=s

ηi,jr,s · q(b, arbs)−k · e−ki,j · w[r+i],k,

and

s−1∑
k=0

e
−(n+k−s)
i,j C(arbs, aibn+k−s)w[r+i],k =

s−1∑
k=0

ηi,jr,s · q(b, arbs)−k · e−ki,j · w[r+i],k for s 6= 0.

Therefore, the equations

e
−(k−s)
i,j · C(arbs, aibk−s) = ηi,jr,s · q(b, arbs)−k · e−ki,j for k = s, s+ 1, . . . , n− 1, (9.9)
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and

e
−(n+k−s)
i,j · C(arbs, aibn+k−s) = ηi,jr,s · q(b, arbs)−k · e−ki,j for k = 0, 1, . . . , s− 1, for s 6= 0 (9.10)

hold.

From (9.9) if we let k = s, we deduce that ηi,jr,s = C(arbs, ai) · q(b, arbs)s · esi,j . Replacing the last

equation in (9.9) and in (9.10) we get that:

C(arbs, aibl) = C(arbs, ai) · C(b, arbs)−l · C(arbs, b)l, if 0 ≤ l < n− s, (9.11)

and

C(arbs, aibl) = C(arbs, ai) ·C(b, arbs)n−l ·C(arbs, b)l−n · αi, if n− s ≤ l ≤ n− 1; s 6= 0. (9.12)

Now we take in account the symmetry condition of r: r(a, b, c) = r(b, a, c) for every a, b, c ∈ G.

For any three general elements arbs, aibk, ajbl ∈ G the symmetry condition looks like:

C(aibk, ajbl)C(arbs, ai+jbk+l)C(arbs, aibk)−1 = C(arbs, ajbl)C(aibk, ar+jbs+l)C(aibk, arbs)−1.

(9.13)

Taking k = 0 and l = 0 in the above equation, and using the equation (9.11) and the fact that

C(ai, aj) = C(ai, a)j (cyclic case, see [26]) we obtain: C(arbs, ai+j) = C(arbs, ai)C(arbs, aj). Then,

recursively, we get C(arbs, aj) = C(arbs, a)j , and therefore C(arbs, a)m = 1. Also, notice that since

C(arbs, b)−n = αr when s 6= n−1 and C(arbn−1, b)−n = α1−n
r , we can rewrite equations (9.11) and

(9.12) in the following manner:

C(arbs, aibl) = C(arbs, a)iC(arbs, b)l, for 0 ≤ l ≤ n− s− 1,

C(arbs, aibl) = C(arbs, a)iC(arbs, b)lαrαi, for n− s ≤ l ≤ n− 1 and s 6= n− 1,

C(arbn−1, aibl) = C(arbs, a)iC(arbs, b)lα1−l
r αi.

We conclude that for a (1, 2)-symmetric Zm×Zn-graded twisted C-algebra the structure constant
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C : G×G→ A referred to a standard basis B must satisfy the following equations:

C(arbs, aibl) = C(arbs, a)iC(arbs, b)l, for 0 ≤ l ≤ n− s− 1,

C(arbs, aibl) = C(arbs, a)iC(arbs, b)lαrαi, for n− s ≤ l ≤ n− 1 and s 6= n− 1, s 6= 0,

C(arbn−1, aibl) = C(arbn−1, a)iC(arbn−1, b)lα1−l
r αi if 1 ≤ l ≤ n− 1,

C(arbs, a)m = 1,

αi = αi1,

αi = C(a, b)−in,

C(arbs, b)−n = αr = (C(a, b)−r)n, for s 6= n− 1,

C(arbn−1, b)n = αn−1r = (C(a, b)−r(n−1))n,

C(bs, b)n = 1, (cyclic case)

C(ar, a)m = 1, (cyclic case)

C(a, b)mn = 1.

(9.14)

Now we prove that two (1, 2)-symmetric G-graded twisted algebras W1 and W2 are graded-

isomorphic if and only if their structure constants referred to standard bases are the same.

Theorem 4. Let W1 and W2 be (1, 2)-symmetric G-graded twisted C-algebras with standard bases

B1 and B2, respectively, and associated structure constants C1, C2 : G × G → A. Then, W1 is

graded-isomorphic to W2 if and only if C1 = C2.

Proof. Suppose that W1 is graded-isomorphic to W2. By Corollary 3, r1 = r2 and [C1] =

[C2] in H2(G,A). If [C1] = [C2], then there exists ρ : G→ A such that C1 = ∂1(ρ)C2. That is:

C1(arbs, aibk) = ρ(aibk)ρ(ar+ibs+k)−1ρ(arbs)C2(arbs, aibk). (9.15)

Since the structure constants C1, C2 are referred to standard bases, the following equalities hold

for j = 1, 2:

Cj(1, a
ibk) = Cj(a

ibk, 1) = 1, for all i, k.

Cj(a, a
i) = 1, for i = 0, 1, . . . ,m− 1.

Cj(b, a
ibk) = 1, for i = 0, 1, . . . ,m− 1, k = 0, 1, . . . , n− 2.

Cj(b, a
ibn−1) = αi,(j).

These identities together with equation (9.15) yield: ρ(ai) = ρ(a)i for all i = 0, 1, 2, . . . , n− 1. In
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particular, ρ(1) = 1 and ρ(a)m = 1, and

ρ(aibk) = ρ(a)iρ(b)k for k 6= n.

Moreover, ρ(bi) = ρ(b)i for i = 0, 1, . . . , n, since

1 = C1(b, bi) = ρ(bi)ρ(bi+1)−1ρ(b)C2(b, bi)

= ρ(bi)ρ(bi+1)−1ρ(b).

Therefore, ρ(b)n = ρ(bn) = 1. All this can be summarize by saying that ρ : G → A is a group

homomorphism. It immediately follows ∂1(ρ) ≡ 1 what implies that C1 = C2.

The reciprocal is clear.

Finally, we want to see that if C : G×G→ A is a function satisfying the identities stated in (9.14)

then the vector space Cm ×Cn, endowed with the structure of a G-graded twisted algebra defined

by the functions C (referred to the canonical basis of Cm × Cn) is a (1, 2)-symmetric G-graded

twisted C-algebra.

Theorem 5. Let G = Zm×Zn and let A ⊂ C∗ be a finite subgroup. Suppose that we choose values

in A for C(arbs, a) and C(arbs, b) satisfying the identities in (9.14). Then W = Cm × Cn with

the multiplication given by C (referred to the canonical basis of Cm × Cn) is a (1, 2)-symmetric

G-graded twisted C- algebra.

Proof. For 0 ≤ r, i ≤ m− 1 and 0 ≤ s, l ≤ n− 1 define

f(r, s, i, l) =


1 if 0 ≤ l ≤ n− s− 1

αrαi if n− s ≤ l ≤ n− 1, and s 6= n− 1

α1−l
r αi if s = n− 1, 1 ≤ l ≤ n− 1

Therefore, by equation (9.14) we have

C(arbs, aibl) = C(arbs, a)iC(arbs, b)lf(r, s, i, l).

We know that r(arbs, aibk, ajbl) = r(aibk, arbs, ajbl) if and only if

C(aibk, ajbl)C(arbs, ai+jbk+l)C(arbs, aibk)−1 = C(arbs, ajbl)C(aibk, ar+jbs+l)C(aibk, arbs)−1

and therefore if and only if

f(i, k, j, l)f(r, s, i+ j, [k + l])f(r, s, i, k)−1C(arbs, b)[k+l]−(k+l) =

= f(r, s, j, l)f(i, k, r + j, [s+ l])f(i, k, r, s)−1C(aibk, b)[s+l]−(s+l)
, (9.16)
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where [ ] denotes the class module n.

In order to check the above equation, we have to consider several cases:

1) [k + l] + s < n and [s+ l] + k < n:

In this case we can rewrite (9.16) as:

f(i, k, j, l)f(r, s, i, k)−1C(arbs, b)[k+l]−(k+l) = f(r, s, j, l)f(i, k, r, s)−1C(aibk, b)[s+l]−(s+l).

(9.17)

i) k 6= n− 1 and s 6= n− 1:

Notice that in this case we have f(r, s, i, k) = f(i, k, r, s), hence (9.17) is equivalent to

f(i, k, j, l)C(arbs, b)[k+l]−(k+l) = f(r, s, j, l)C(aibk, b)[s+l]−(s+l). (9.18)

Now, suppose k + l ≥ n. If s+ l < n then as [s+ l] + k < n and [s+ l] = s+ l, we

have s + l + k < n and therefore k + l < n − s ≤ n. But also note that s 6=
0 since s = 0 implies [s+ l] +k = l+k < n, which is a contradiction. Hence, k+ l ≥
n implies s+ l ≥ n.

In the same way, s+ l ≥ n implies k + l ≥ n.

Thus, we only have to check the cases k + l ≥ n, s+ l ≥ n and k + l < n, s+ l < n.

In these two cases, the equation (9.18) is equivalent to αiαjαr = αrαjαi and 1 =

1 respectively.

ii) k = n− 1:

If s + l ≥ n then s 6= 0 and l 6= 0; and as [k + l] + s = [l − 1] + s = l − 1 + s <

n then s+ l < n+ 1. Hence s+ l = n.

As we saw above, s+ l ≥ n implies k+ l ≥ n. Also, as s 6= 0 then k+ s = n−1 + s ≥
n. Thus, the equation (9.17) is equivalent to

α1−l
i αjα

−1
r α−1i αr = αrαjα

s−1
i α−1r α1−n

i ⇔ α0
i = 1

when s 6= n− 1 and equivalent to

α1−l
i αjα

k−1
r α−1i α1−n

r = α1−l
r αjα

s−1
i α−1r α1−n

i ⇔ α0
r = α0

i

when s = n− 1, since s = n− 1 implies l = 1.

If s+ l < n then as [s+ l] + k < n we have s+ l+ n− 1 < n and therefore s+ l <

1. Hence s = 0 and l = 0. Hence equation (9.17) is equivalent to:

1 = 1.
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iii) s = n− 1:

This case is symmetric with the last case.

2) [k + l] + s < n and [s+ l] + k ≥ n:

Notice that in this case, the cases k + l < n, s+ l < n, k + l ≥ n, s+ l ≥ n and

s+ l ≥ n, k + l < n are not possible.

Therefore we only have to check the case k + l ≥ n, s+ l < n.

Notice that as k + l ≥ n then l ≥ 1, and as s+ l < n then s 6= n− 1.

i) k 6= n− 1:

In this case f(r, s, i, k) = f(i, k, r, s) and therefore the equation (9.16) is equivalent to

αiαjαr = αiαr+j ⇔ 1 = 1.

ii) k = n− 1:

If s 6= 0 then k + s = n− 1 + s ≥ n. Therefore equation (9.16) is equivalent to:

α1−l
i αjα

−1
r α−1i αr = α

1−[s+l]
i αr+jα

s−1
i α−1r ⇔ 1 = 1.

If s = 0, then equation (9.16) is equivalent to:

α1−l
i αjαr = α1−l

i αr+j ⇔ 1 = 1.

3) [k + l] + s ≥ n and [s+ l] + k < n:

This case is symmetric with the last case.

4) [k + l] + s ≥ n and [s+ l] + k ≥ n:

Notice that the cases k + l ≥ n, s+ l < n and k + l < n, s+ l ≥ n are not possible, since

if for example k + l ≥ n and s + l < n, then as [k + l] + s ≥ n we have k + l + s ≥
2n, but s + l < n implies k + l + s < n + k ≤ 2n − 1, which is a contradiction; and

if k + l < n and s+ l ≥ n, then as [s+ l] + k ≥ n we have k + l + s ≥ 2n, but k + l <

n implies k + l + s < n+ s ≤ 2n− 1, which is a contradiction.

i) k 6= n− 1 and s 6= n− 1:

As f(r, s, i, k) = f(i, k, r, s), equation (9.16) is equivalent to

f(i, k, j, l)f(r, s, i+j, [k+l])C(arbs, b)[k+l]−(k+l) = f(r, s, j, l)f(i, k, r+j, [s+l])C(aibk, b)[s+l]−(s+l)

(9.19)
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If k + l ≥ n, s+ l ≥ n, then equation (9.19) is equivalent to

αiαjαrαi+jαr = αrαjαiαr+jαi ⇔ 1 = 1.

If k + l < n, s+ l < n then equation (9.19) is equivalent to

αrαi+j = αiαr+j ⇔ 1 = 1.

ii) k = n− 1:

If k + l ≥ n, s+ l ≥ n:

If s = n− 1:

In this case the equation (9.16) is equivalent to

α1−l
i αjα

1−[k+l]
r αi+jα

k−1
r α−1i α1−n

r = α1−l
r αjα

1−[s+l]
i αr+jα

s−1
i α−1r α1−n

i ⇔ 1 = 1.

If s 6= n− 1:

In this case the equation (9.16) is equivalent to

α1−l
i αjαrαi+jα

−1
r α−1i αr = αrαjα

1−[s+l]
i αr+jα

s−1
i α−1r α1−n

i ⇔ 1 = 1.

If k + l < n then as k = n− 1 we have l = 0 , and therefore s+ l = s < n.

If s 6= n− 1, equation (9.16) is equivalent to

αrαi+jα
−1
r α−1i = α1−s

i αr+jα
s−1
i α−1r ⇔ 1 = 1.

If s = n− 1, then we have that equation (9.16) is equivalent to

α1−k
r αi+jα

k−1
r α−1i = α1−s

i αr+jα
s−1
i α−1r ⇔ 1 = 1.

We conclude that W = Cm×Cn with the multiplication given by C (referred to the canonical basis

of Cm × Cn) is a (1, 2)-symmetric G-graded twisted C- algebra.

We are ready to state the main theorem of this section.

Theorem 6. The number of (graded) isomorphism classes of (1, 2)-symmetric Zm × Zn-graded

twisted C-algebras with structure constants taking values in a finite subgroup A ⊂ C∗ is given by:

|Rm|mn−3|Rn|mn−3|Rmn|,

where Rk denotes the set of k-th roots of unity: {ω ∈ A : ωk = 1}.
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Proof. From the discussion above, a (1, 2)-symmetric Zm×Zn-graded twisted C-algebra is deter-

mined, up to graded isomorphisms, by the structure constant that is defined with respect to a stan-

dard basis. In turn, this function is completely determined by all possible choices of C(arbs, a) and

C(arbs, b), satisfying the identities in (9.14). As C(arbs, a)m = 1 for all 0 ≤ r ≤ m− 1, 0 ≤ s ≤
n− 1, and

1 = C(1, a) = C(a, a) = C(b, a),

then we see that there are |Rm|mn−3 possible choices for C(arbs, a). Similarly, as C(bs, b)n =

1 for 0 ≤ s ≤ n−1, and C(1, b) = 1 = C(b, b), then C(bs, b) may be chosen in |Rn|n−2 possible

ways. Since C(a, b)mn = 1, there are |Rmn| possible values for C(a, b). In the case where s 6=
n− 1 and r 6= 0, the identities in (9.14) tell us that

C(arbs, b)n = C(a, b)rn = (C(a, b)r)n.

Therefore, C(arbs, b) = ωC(a, b)r, where ω is some fixed n-th root of unity. Thus, there

are |Rn|(n−1)(m−1)−1 possible choices for C(arbs, b), if s 6= n− 1 and r 6= 0.

Finally, again by using (9.14) we obtain: C(arbn−1, b)n = (C(a, b)−r(n−1))n, and there-

fore C(arbn−1, b) = ωC(a, b)−r(n−1), where ωn = 1. Hence, if r ≥ 1, the value of C(arbn−1, b) can

be chosen in |Rn|m−1 possible manners. In conclusion, the number of algebras satisfying the hy-

pothesis of the theorem is given by

|Rm|mn−3|Rn|n−2+(n−1)(m−1)−1+m−1|Rmn| = |Rm|mn−3|Rn|mn−3|Rmn|.

Remark 8. If m and n are relatively prime, then Zm×Zn ∼= Zmn, and since |Rmn| = |Rm||Rn|, the

above number is equal to |Rmn|mn−2 which gives the correct number of non-isomorphic algebras in

the cyclic case, as provided in [26].

Now, we discuss the general case of any finite abelian group, presented as G = Zn1
× · · · ×Znk .

9.2 Classification of (1, 2)-symmetric G-graded twisted C-algebra, for G any finite

abelian group

First, we start by defining a generalized standard basis for a G-graded twisted algebra W . We

proceed by induction on the number of factors. SupposeG = G1×Znk , whereG1 = Zn1
×· · ·×Znk−1

.

Fix ai ∈ Zni a generator. We define a standard basis for W as a basis of the form {wg,j}, where
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we,j = w
(j)
ak (e denotes the identity element of G1), as it was defined in the cyclic case, and where

{wg,0 = wg : g ∈ G1} is a standard basis for W restricted to G1, and wg,j = w
(1)
ak · wg,j−1, for

g 6= e and j 6= 0. So for each g ∈ G1 there is αg ∈ A such that w
(1)
ak · wg,nk−1 = αg · wg.

Remark 9. Notice that since B was defined recursively, its restriction to H = Zn1
× · · · × Znt with

1 ≤ t ≤ k, is a standard basis for W |H .

Let W be a (1, 2)-symmetric G-graded twisted C-algebra, with standard basis B and structure

constant C : G × G → A. Consider as before Tak : W → W the linear transformation given by

Tak(x) = wak · x. For each g ∈ G1, let {eg,j} denotes the set of nk-th roots of αg. Notice that

αe = 1 and therefore {ee,j} is the set of nk-roots of unity. Define

zg,j =

nk−1∑
µ=0

e−µg,jwg,µ. (9.20)

Similarly as in (9.2), we can see that zg,j is an eigenvector of Tak associated to the eigenvalue eg,j .

Also, since W is (1, 2)-symmetric, following the same argument described in (9.3) we see that

Tak(Tg′,s(zg,j)) = q(ak, g
′ · ask) · eg,j · Tg′,s(zg,j).

Therefore Tg′,s(zg,j) is an eigenvector of Tak associated to the eigenvalue q(ak, g
′ · ask) · eg,j . Here,

Tg′,s denotes the linear transformation given by Tg′,s(x) = wg′,s · x. Since

Tg′,s(zg,j) =

nk−1∑
µ=0

e−µg,j · C(g′ · ask, g · a
µ
k) · wg′g,[s+µ] (9.21)

where [ ] denotes residue classes in Znk , then it holds that

Tg′,s(zg,j) = ηg,jg′,s · zg′g,l, for some 0 ≤ l ≤ nk − 1. (9.22)

Hence,

q(ak, g
′ · ask) · eg,j = eg′g,l. (9.23)

This last equation is the generalization of equation (9.6). As in that case, we may derive the

following identities: If g = ar11 a
r2
2 . . . a

rk−1

k−1 , then

αg = C(a1, ak)−r1nk · · ·C(ak−1, ak)−rk−1nk

αai = C(ai, ak)−nk

C(ak, g · ank−1k ) = αg = C(g, ak)−nk

C(g · ask, ak) = ωg,s · C(a1, ak)r1 · · ·C(ak−1, ak)rk−1 , for s 6= nk − 1, where ωnkg,s = 1

C(g · ank−1k , ak) = ωg · C(a1, ak)−r1(nk−1) · · ·C(ak−1, ak)−rk−1(nk−1) where ωnkg = 1

C(ai, ak)nink = 1.

(9.24)
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Now, equations (9.21), (9.22) and (9.23) imply:

nk−1∑
µ=0

e−µg,j · C(g′ · ask, g · a
µ
k) · wg′g,[s+µ] = ηg,jg′,s · zg′g,l

=

nk−1∑
µ=0

ηg,jg′,s · e
−µ
g′g,l · wg′g,µ

=

nk−1∑
µ=0

ηg,jg′,s · q(ak, g
′ · ask)−µ · e−µg,j · wg′g,µ

Similarly, as in the case of a product of two cyclic groups, the last equation implies that for every

g, g′ ∈ G1,

C(g′ · ask, g · alk) = C(g′ · ask, g) · C(g′ · ask, ak)l, if 0 ≤ l < nk − s.

C(g′ · ask, g · alk) = C(g′ · ask, g) · C(g′ · ask, ak)l−nk · αg, if nk − s ≤ l ≤ nk − 1; s 6= 0, s 6= nk − 1.

C(g′ · ank−1k , g · alk) = C(g′ · ank−1k , g) · C(g′ · ank−1k , ak)l−nk · αnk−lg′ · αg.
(9.25)

That proves the following theorem:

Theorem 7. Suppose that G = Zn1
× Zn2

× · · · × Znk , and fix generators a1, a2, . . . , ak, ai ∈ Zni .

Suppose that W is a (1, 2)-symmetric G-graded twisted C-algebra. If B is a standard basis for W

with structure constant C : G×G→ C∗, then:

If 0 ≤ l < nk − s :

C(g′ · ask, g · alk) = C(g′ · ask, g) · C(g′ · ask, ak)l,

If nk − s ≤ l ≤ nk − 1, s 6= 0, s 6= nk − 1 :

C(g′ · ask, g · alk) = C(g′ · ask, g) · C(g′ · ask, ak)l−nk · αg.

For s = nk − 1 :

C(g′ · ank−1k , g · alk) = C(g′ · ank−1k , g) · C(g′ · ank−1k , ak)l−nk · αnk−lg′ · αg.

If the element g is written as g = ar11 a
r2
2 . . . a

rk−1

k−1 then:
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αg = C(a1, ak)−r1nk · · ·C(ak−1, ak)−rk−1nk

αai = C(ai, ak)−nk ,

C(ak, g · ank−1k ) = αg = C(g, ak)−nk .

For s 6= nk − 1, where ωnkg,s = 1 :

C(g · ask, ak) = ωg,s · C(a1, ak)r1 · · ·C(ak−1, ak)rk−1 ,

C(g · ank−1k , ak) = ωg · C(a1, ak)−r1(nk−1) · · ·C(ak−1, ak)−rk−1(nk−1)

C(ai, ak)nink = 1.

As in the case of a product of two factors, the (1, 2)-symmetry provides some extra information

about the structure constant C that we summarize in the following two lemmas.

Lemma 3. Suppose that G = Zn1 × Zn2 × · · · × Znk , and fix generators a1, a2, . . . , ak, ai ∈
Zni . Suppose that W is a (1, 2)-symmetric G-graded twisted C-algebra. Then if B is a standard

basis for W with structure constant C : G×G→ C, then:

C(g1 · ask, g2g3) = C(g1 · ask, g2) · C(g1 · ask, g3) · C(g2, g3)−1 · C(g2, g1g3) · C(g2, g1)−1

for every g1, g2, g3 ∈ Zn1 × Zn2 × · · · × Znk−1
.

Furthermore, if g = ar11 · · · a
ri
i · · · a

rk−1

k−1 and we denote g̃ = ar11 · · · a
ri−1

i−1 , then

C(g · ask, a
j
i ) = C(g · ask, ai)j · C(ai, g̃ · arii )−(j−1) · C(ai, g̃ · ari+1

i ) · · ·C(ai, g̃ · ari+j−1i ).

Hence,

C(g · ask, a
j
i ) = C(g · ask, ai)j · C(g̃, ai)

(j−1)ni if ri = ni − 1,

and if ri 6= ni − 1, then

C(g · ask, a
j
i ) = C(g · ask, ai)j · C(g̃, ai)

−ni or C(g · ask, a
j
i ) = C(g · ask, ai)j .

In particular,

C(g · ask, ai)ni = C(ai, g̃ · arii )ni−1 · C(ai, g̃ · ari+1
i )−1 · · ·C(ai, g̃ · ari+ni−1i )−1.

Therefore,

C(g · ask, ai)ni = (C(g̃, ai)
−(ni−1))ni if ri = ni − 1,

C(g · ask, ai)ni = C(g̃, ai)
ni if ri 6= ni − 1.
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Proof. Remember that r(g1 · ask, g2 · a
j
k, g3 · avk) = r(g2 · ajk, g1 · ask, g3 · avk) is equivalent to:

C(g2·ajk, g3·a
v
k)C(g1·ask, g2g3·a

j+v
k )C(g1·ask, g2·a

j
k)−1 = C(g1·ask, g3·avk)C(g2·ajk, g1g3·a

s+v
k )C(g2·ajk, g1·a

s
k)−1.

Now, with j = 0 = v in the last equation we obtain:

C(g2, g3)C(g1 · ask, g2g3)C(g1 · ask, g2)−1 = C(g1 · ask, g3)C(g2, g1g3 · ask)C(g2, g1 · ask)−1,

and therefore

C(g1 · ask, g2g3) = C(g1 · ask, g2) · C(g1 · ask, g3) · C(g2, g3)−1 · C(g2, g1g3 · ask) · C(g2, g1 · ask)−1.

By the first equation in (9.25) we have that C(g2, g1g3 ·ask) = C(g2, g1g3)·C(g2, ak)s, and C(g2, g1 ·
ask) = C(g2, g1) · C(g2, ak)s, thus we have:

C(g1 · ask, g2g3) = C(g1 · ask, g2) · C(g1 · ask, g3) · C(g2, g3)−1 · C(g2, g1g3) · C(g2, g1)−1.

This proves the first part of the lemma.

In order to prove the second part, notice that if we take g2 = ai = g3, for i = 1, 2, . . . , k−1, then

we obtain:

C(g · ask, a2i ) = C(g · ask, ai)2 · C(ai, g · ai) · C(ai, g)−1,

since C(ai, ai) = 1.

Therefore, recursively and using the fact that C(ai, a
j
i ) = 1, we get:

C(g · ask, a
j
i ) = C(g · ask, ai)j · C(ai, g)−(j−1) · C(ai, g · ai) · C(ai, g · a2i ) · · ·C(ai, g · aj−1i ). (9.26)

Thus, if g = ar11 · · · a
ri
i · · · a

rk−1

k−1 and g̃ = ar11 · · · a
ri−1

i−1 , then using the first equation in Theorem

7, we have

C(ai, g · ali) = C(ai, a
r1
1 · · · a

ri+l
i · · · ark−1

k−1 )

= C(ai, a
r1
1 · · · a

ri+l
i · · · ark−2

k−2 ) · C(ai, ak−1)rk−1

= C(ai, a
r1
1 · · · a

ri−1

i−1 a
ri+l
i ) · C(ai, ai+1)ri+1 · C(ai, ai+2)ri+2 · · ·C(ai, ak−1)rk−1

= C(ai, g̃ · ari+li ) · C(ai, ai+1)ri+1 · C(ai, ai+2)ri+2 · · ·C(ai, ak−1)rk−1

= C(ai, g̃ · ari+li ) ·M

where M = C(ai, ai+1) · C(ai, ai+2)ri+2 · · ·C(ai, ak−1)rk−1 .

Therefore, replacing in (9.26) we get:

C(g · ask, a
j
i ) = C(g · ask, ai)j · C(ai, g̃ · arii )−(j−1) ·M−(j−1) · C(ai, g̃ · ari+1

i ) ·M · · ·C(ai, g̃ · ari+j−1i ) ·M

= C(g · ask, ai)j · C(ai, g̃ · arii )−(j−1) · C(ai, g̃ · ari+1
i ) · · ·C(ai, g̃ · ari+j−1i ) ·M−(j−1) ·M j−1

= C(g · ask, ai)j · C(ai, g̃ · arii )−(j−1) · C(ai, g̃ · ari+1
i ) · · ·C(ai, g̃ · ari+j−1i )
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Now, if ri = ni−1 then ri+j 6= ni−1 in Zni for j = 1, 2, . . . , ni−1. Therefore C(ai, g̃·ali) = 1 for

every l = 1, 2, . . . , ni − 1. But from Theorem 7, C(ai, g̃ · ani−1i ) = C(g̃, ai)
−ni , hence,

C(g · ask, a
j
i ) = C(g · ask, ai)j · C(g̃, ai)

(j−1)ni , if ri = ni − 1.

If ri 6= ni − 1, two things can occur:

1. There is a unique l ∈ {1, 2, . . . , j − 1} such that ri + l = ni − 1 in Zni :

In this case C(ai, g̃ ·ari+ti ) = 1 for every t 6= l, and C(ai, g̃ ·ari+li ) = C(g̃, ai)
−ni . Therefore,

C(g · ask, a
j
i ) = C(g · ask, ai)j · C(g̃, ai)

−ni .

2. ri + l 6= ni − 1 in Zni for every l = 0, 1, 2, . . . , j − 1:

In this case C(ai, g̃ · ari+li ) = 1 for l = 0, 1, 2, . . . , j − 1. Therefore,

C(g · ask, a
j
i ) = C(g · ask, ai)j .

Finally, with j = ni, it is not difficult to see that:

C(g · ask, ai)ni = (C(g̃, ai)
−(ni−1))ni , if ri = ni − 1,

and

C(g · ask, ai)ni = C(g̃, ai)
ni , if ri 6= ni − 1.

Lemma 4. Suppose that G = Zn1
×· · ·×Znk , and fix generators a1, a2, . . . , ak, ai ∈ Zni . Suppose

that W is a (1, 2)-symmetric G-graded twisted C-algebra. Then the constants C(g ·ask, g′) always can

be expressed in terms of the constants C(g ·ask, ai), 1 ≤ i ≤ k−1 and C(aj , at), 1 ≤ j, t ≤ k−1, for

every g, g′ ∈ Zn1 × Zn2 × · · · × Znk−1
.

Proof. Suppose that g′ = ar11 a
r2
2 · · · a

rk−1

k−1 .

We argue by induction on n = r1 + r2 + · · ·+ rk−1.

If n = 1, then g′ = ai for some i = 1, 2, . . . , k − 1, and in this case the lemma is trivial.

Suppose that the result is true for n, and let us see that it is true when r1 + · · ·+ rk−1 = n+ 1.

Indeed, C(g·ask, g′) = C(g·ask, a
r1
1 · · · a

rk−1

k−1 ). Now, assume that ri ≥ 1, and rj = 0 for j < i, thus

we can write

C(g · ask, g′) = C(g · ask, ai · (a
ri−1
i · · · ark−1

k−1 )).
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By Lemma 3, we have that

C(g · ask, ai · (a
ri−1
i · · · ark−1

k−1 )) =

C(g · ask, ai) · C(g · ask, a
ri−1
i · · · ark−1

k−1 ) · C(ai, a
r1−1
i · · · ark−1

k−1 )−1 · C(ai, g · ari−1i · · · ark−1

k−1 ) · C(ai, g)−1.

Now, the Theorem 7, allows us to compute:

C(ai, a
t1
1 a

t2
2 · · · a

tk−1

k−1 ) = C(ai, a
t1
1 · · · a

ti
i ) · C(ai, ai+1)ti+1 · · ·C(ai, ak−1)tk−1 ,

and again by Theorem 7,

C(ai, a
t1
1 · · · a

ti−1

i−1 a
ti
i ) =

 1 if ti 6= ni − 1

C(a1, ai)
−t1ni · · ·C(ai−1, ai)

−ti−1ni if ti = ni − 1

Hence, C(ai, a
r1−1
i · · · ark−1

k−1 ), C(ai, g · ari−1i · · · ark−1

k−1 ), C(ai, g)−1 can be written as a combina-

tion of terms of the form C(at, aj) with 1 ≤ t, j ≤ k − 1; and by the inductive hypothesis,

C(g · ask, a
ri−1
i · · · ark−1

k−1 ) is a combination of terms of the form C(g · ask, al) with 1 ≤ l ≤
k − 1, and C(at, aj) with 1 ≤ t, j ≤ k − 1, what completes the proof.

The following theorem summarizes the above discussion:

Theorem 8. Let G be presented as Zn1×Zn2×· · ·×Znk , and fix generators a1, a2, . . . , ak, ai ∈ Zni .

Suppose that W is a (1, 2)-symmetric G-graded twisted C-algebra. If B is a standard basis for W

with structure constant C : G×G→ C∗, then the values of C(g · ask, ai), C(g · ask, ak) and C(at, aj),

with 1 ≤ i, t, j ≤ k− 1, g ∈ G1 = Zn1
× · · · ×Znk−1

completely determine the structure constant C.

Furthermore, the following identities generalize the ones obtained in (9.14):

If 0 ≤ l < nk − s, then

C(g · ask, g′ · alk) = C(g · ask, g′) · C(g · ask, ak)l.

If nk − s ≤ l ≤ nk − 1, s 6= 0, s 6= nk − 1, then

C(g · ask, g′ · alk) = C(g · ask, g′) · C(g · ask, ak)l−nk · αg′ .

If s = nk − 1 then
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C(g · ank−1k , g′ · alk) = C(g · ank−1k , g′) · C(g · ank−1k , ak)l−nk · αnk−lg · αg′ .

If g is written as g = ar11 a
r2
2 . . . a

rk−1

k−1 then

αg = C(a1, ak)−r1nk · · ·C(ak−1, ak)−rk−1nk

αai = C(ai, ak)−nk

C(ai, ak)nink = 1.

C(ak, g · ank−1k ) = αg = C(g, ak)−nk

C(g · ank−1k , ak) = ωg · C(a1, ak)−r1(nk−1) · · ·C(ak−1, ak)−rk−1(nk−1), where ωnkg = 1.

For the case where s 6= 0 and g 6= aj , for j = 1, 2, . . . , k :

C(g · ask, ak) = ωg,s · C(a1, ak)r1 · · ·C(ak−1, ak)rk−1 , for s 6= nk − 1, where ωnkg,s = 1.

For the case s 6= 0 and g 6= aj for j = 1, 2, . . . , k − 1, and i = 1, 2, . . . , k − 1 we have:

C(g · ask, ai) = ωg,sC(a1, ai)
r1 · · ·C(ai−1, ai)

ri−1 if ri 6= ni − 1, where ωnig,s = 1.

C(g · ask, ai) = ωg,s · (C(a1, ai)
r1 · · ·C(ai−1, ai)

ri−1)−(ni−1), if ri = ni − 1, where ωnig,s = 1.

Before starting our next theorem we notice that as in Theorem 4, two (1, 2)-symmetric Zn1 ×
· · ·×Znk -graded twisted algebras are graded-isomorphic if and only if they have the same structure

constants in their respective standard bases.

Lemma 5. Let G = Zn1
× · · · × Znk and suppose that we have two (1, 2)-symmetric G-graded

twisted C-algebras W1 and W2 with fixed standard bases and structure constants C1, C2 : G×G→
A, A ⊂ C∗ finite subgroup. Then, W1 is isomorphic to W2 as graded algebras, if and only if

C1 = C2.

Proof. Clearly, if C1 = C2 then W1 is isomorphic to W2 as graded algebras.

Now let us see that if W1
∼= W2 as graded algebras, then C1 = C2.

We argue by induction on n = k.

If k = 1, G = Zn1 is a cyclic group, and the result follows from [26].

Assume that the result holds for n < k.

Now, if W1 is isomorphic to W2 as graded algebras, then r1 = r2 and [C1 · C−12 ] =
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[1] in H2(G,A).

Therefore, there exists ρ : G→ A such that C1 ·C−12 = ∂1(ρ). Remember that ∂1ρ(g ·ask, g′ ·alk) =

ρ(g′ · alk)ρ(gg′ · as+lk )−1ρ(g · ask), where g, g′ ∈ G1 = Zn1
× · · · × Znk−1

, and ai is a generator

of Zni . Furthermore, the function ρ is given by the isomorphism ϕ.

Hence

C1(g · ask, g′ · alk) = ρ(g′ · alk)ρ(gg′ · as+lk )−1ρ(g · ask)C2(g · ask, g′ · alk). (9.27)

By the inductive hypothesis, as W1|G1
is isomorphic to W2|G1

as graded algebras, then C1|G1×G1
=

C2|G1×G1 , and hence, ρ|G1 is a group homomorphism, thus

ρ(gg′) = ρ(g)ρ(g′).

On the other hand, from the way we define the standard bases, we can deduce the following

properties in terms of the structure constants C1 and C2: for j = 1, 2

Cj(1, g · ask) = 1 = Cj(g · ask, 1)

Cj(ai, a
j
i ) = 1, for i = 1, 2, . . . , k

Cj(ak, g · ask) = 1, for s 6= nk − 1.

Thus, as Cj(ak, g · ask) = 1 for s 6= n− k − 1, then using equation (9.27) we have

ρ(g · ask) = ρ(ak) · ρ(g · as−1k ) for s 6= nk,

and recursively we get:

ρ(g · ask) = ρ(ak)s · ρ(g), for s 6= nk.

Now, using that Cj(ak, a
j
k) = 1 and equation (9.27) we have

ρ(ajk) = ρ(ak)j .

In particular, ρ(ak)nk = 1.

Hence,

ρ(g · ask) = ρ(ak)s · ρ(g), for every s.

Finally, notice that the above implies that ρ is a group homomorphism, since

ρ(g · ask, g′ · alk) = ρ(gg′ · as+lk ) = ρ(ak)s+l · ρ(gg′)

= ρ(ak)s · ρ(g) · ρ(ak)l · ρ(g′)

= ρ(g · ask) · ρ(g′ · alk).

As ρ : G→ A is a group homomorphism, then by equation (9.27) we conclude that C1 = C2.
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The following theorem generalizes Theorem 5 when G is a product of an arbitrary number of

cyclic groups. Its proof follows the same lines as the proof of Theorem 5 and will be omitted.

Theorem 9. Let G = Zn1
× · · · × Znk and let A ⊂ C∗ be a finite subgroup. Suppose that we

choose values in A for C(g · ask, ak), C(ai, aj) and C(g · ask, ai) satisfying the identities in Theorem

8. Then W = Cn1 × · · · ×Cnk with the multiplication given by C (referred to the canonical basis of

Cn1 × · · · × Cnk) is a (1, 2)-symmetric G-graded twisted C- algebra.

Finally, we may state our main theorem:

Theorem 10. The number of non-(graded) isomorphic (1, 2)-symmetric G = Zn1
×· · ·×Znk -graded

twisted C-algebras with structure constants taking values in a finite subgroup A ⊂ C∗ is given by

the product:
k∏
i=1

|Rni ||G|−(k+1)
∏

1≤i<j≤k

|Rninj |,

where Rni denotes the set {ω ∈ A : ωni = 1}.

Proof. With the same notation, G1 = Zn1
× · · · × Znk−1

and ai is a generator of Zni .

After all the above discussion, we know that in order to produce this kind of algebras in an standard

basis, we only have to give a table with the values C(g · ask, ak), C(ai, aj) with 1 ≤ i < j ≤
k and C(g · ask, ai) with 1 ≤ i ≤ k − 1, satisfying the equations in Theorem 8.

As C(ai, aj)
ninj = 1 for every 1 ≤ i < j ≤ k, we have∏

1≤i<j≤k

|Rninj |

possible values for these constants.

Now, for every i = 1, 2, · · · , k − 1, as

C(g · ask, ai) = ωg,s ·Mg,s,

where Mg,s is an expression in terms of C(ai, aj) with 1 ≤ i < j ≤ k − 1, and ωnig,s = 1, then

we have

|Rni ||G1|nk−(k+1) = |Rni ||G|−(k+1)

possibilities for these constants, since when s = 0 we have k terms, C(al, ai) for 1 ≤ l ≤ k−1 that

we do not have to take in account, and also we do not have to count C(ak, ai) = 1 and C(1, ai).

Finally, as

C(g · ask, ak) = ωg,s ·Mg,s,
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where ωnkg,s = 1 and Mg,s is an expression in terms of C(ai, aj) with 1 ≤ i < j ≤ k − 1, then

we have

|Rnk ||G1|nk−(k+1) = |Rnk ||G|−(k+1)

possibilities for these constants, since we do not have to take in account the constants C(ai, ak) for 1 ≤
i ≤ k and C(1, ak) = 1.

Hence, the number of non- (graded) isomorphic (1, 2)-symmetric G-graded twisted C-algebras with

structure constants taking values in a finite subgroup A ⊂ C∗ is given by

k∏
i=1

|Rni ||G|−(k+1)
∏

1≤i<j≤k

|Rninj |.



10. CLASSIFICATION OF (2, 3)-SYMMETRIC G-GRADED TWISTED

C-ALGEBRAS

Here we discuss the classification of (2, 3)-symmetric G-graded twisted C-algebras, for G any finite

abelian group.

Definition 9. A G-graded twisted K-algebras W is called (2, 3)-symmetric if r(a, b, c) = r(a, c, b)

for every a, b, c ∈ G.

Between the Lie algebras, there are two important kind of algebras called Left Symmetric al-

gebras and Right Symmetric algebras denoted by LSA and RSA. It is well known that there is a

bijective correspondence between these algebras. In the theory of G-graded twisted algebras, the

LSA are related with the (1, 2)-symmetric G-graded twisted algebras and the RSA are related with

the (2, 3)-symmetric G-graded twisted algebras. Following exactly the same arguments developed

in the last chapter, with the only difference that r now satisfies the condition r(a, b, c) = r(a, c, b)

for every a, b, c ∈ G, we deduce the following theorem:

Theorem 11. The number of non-(graded) isomorphic (2, 3)-symmetric G = Zn1
×· · ·×Znk -graded

twisted C-algebras with structure constants taking values in a finite subgroup A ⊂ C∗ is given by

the product:
k∏
i=1

|Rni ||G|−(k+1)
∏

1≤i<j≤k

|Rninj |,

where Rni denotes the set {ω ∈ A : ωni = 1}.

Therefore for the case of G-graded twisted C-algebras, we also have a bijective correspon-

dence between the (1, 2)-symmetric G-graded twisted C-algebras and the (2, 3)-symmetric G-graded

twisted C-algebras.



11. LEFT SYMMETRIC ALGEBRAS AND THEIR RELATIONSHIP WITH

(1, 2)-SYMMETRIC G-GRADED TWISTED ALGEBRAS

Definition 10. Given W an algebra, we define the associator (X,Y, Z) as:

(X,Y, Z) = (XY )Z −X(Y Z), for X,Y, Z ∈W.

Definition 11. We say that an algebra W is a Left Symmetric Algebra (LSA) if

(X,Y, Z) = (Y,X,Z), for every X,Y, Z ∈W.

Suppose that G is any abelian group, and consider W a G-graded twisted algebra with

structure constant C : G × G → A, where C(a, b) ∈ A is such that wawb = C(a, b)wab. Re-

member that we have two important functions associated to each G-graded twisted algebra, the

functions q and r, where

q(a, b) = C(a, b)C(b, a)−1,

and

r(a, b, c) = C(b, c)C(ab, c)−1C(a, bc)C(a, b)−1.

Also, remind that W is (1, 2)-symmetric if

r(a, b, c) = r(b, a, c), for every a, b, c ∈W.

Theorem 12. Let W be a (1, 2)-symmetric G-graded twisted algebra with structure constant C :

G×G→ A, where C(a, b) ∈ A is such that wawb = C(a, b)wab.

Then, W is a Left Symmetric Algebra if and only if

(q(a, b)− 1)(1− r(a, b, c)) = 0

for every wa, wb, wc ∈W .

Proof. W Left Symmetric Algebra is equivalent to

(wa, wb, wc) = (wb, wa, wc), for every wa, wb, wc ∈W,
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and this is equivalent to

(wawb)wc − wa(wbwc) = (wbwa)wc − wb(wawc).

The last equation is equivalent to

C(a, b)C(ab, c)− C(a, bc)C(b, c) = C(b, a)C(ba, c)− C(b, ac)C(a, c).

Multiplying both sides by C(ab, c)−1C(a, b)−1 we get

1− r(a, b, c) = C(b, a)C(a, b)−1 − C(b, ac)C(a, c)C(ab, c)−1C(a, b)−1

= q(a, b)−1 − C(a, c)C(ab, c)−1C(b, ac)C(b, a)−1q(a, b)−1

= q(a, b)−1(1− r(b, a, c))

and as by hypothesis r(a, b, c) = r(b, a, c), then this is equivalent to

(q(a, b)− 1)(1− r(a, b, c)) = 0.

Now, the following theorem asserts that any (1, 2)-symmetric G-graded twisted C-algebra which

is Left Symmetric is associative, when G is any finite cyclic group.

Theorem 13. Let W be a (1, 2)-symmetric Zn-graded twisted C-algebra with structure constant

C : Zn × Zn → A, where A ⊂ C∗ is a finite subgroup. Suppose that W is also Left Symmetric.

Then, W is an associative algebra.

Proof. By Theorem 18, (q(ar, as)− 1)(1− r(ar, as, at)) = 0, for every ar, as, at ∈ Zn.

By the classification of (1, 2)-symmetric G-graded twisted algebras for cyclic groups, we know that

the structure constant C is totally determined by the values C(ar, a), since C(ar, as) = C(ar, a)s

(See [26]).

We claim that C(ar, a) = 1 for r = 1, 2, . . . , n− 1, what proves that the associative function r ≡ 1,

and therefore W is an associative algebra.

Indeed, suppose that C(ar, a) 6= 1 for some r ∈ {1, 2, . . . , n− 1}. Therefore,

(q(ar, a)− 1)(1− r(ar, a, a)) = 0.

Thus, as C(a, ar) = 1 then from the last equation we obtain that (C(ar, a)−1)(1−C(ar+1, a)−1C(ar, a)) =

0. Hence, C(ar+1, a) = C(ar, a) 6= 1. In this way, if we repeat the same for C(ar+1, a) 6= 1, we

get that C(ar+2, a) 6= 1. Going on until r + i = n, we obtain C(1, a) 6= 1, which is clearly a

contradiction. Therefore, we conclude that W is an associative algebra.
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We will prove that the last theorem can be generalized to any product of two finite cyclic groups.

Theorem 14. Suppose that G = Zm ×Zn and that W is a (1, 2)-symmetric G-graded twisted

C-algebra with structure constant C : G×G→ A, where A ⊂ C∗ is a finite subgroup. Suppose that

W is also Left Symmetric. Then, W is an associative algebra.

Proof. Here, we use the properties of the structure constant C : G×G→ A referred to a standard

basis B, described in (9.14). We start proving that αi = 1 for i = 1, 2, . . . ,m.

We can assume that C(a, b) 6= 1 since if C(a, b) = 1 then α1 = C(a, b)−n = 1 and hence αi =

αi1 = 1.

As C(a, b) 6= 1 then C(ab, a) = 1, since

(q(a, b)− 1)(1− r(a, b, a)) = 0

and thus

(C(a, b)− 1)(1− C(ab, a)−1C(a, ab)C(a, b)−1) = 0.

But notice that C(a, ab) = C(a, a)C(a, b) = C(a, b), therefore as C(a, b) 6= 1 then C(ab, a) = 1.

On the other hand, if i 6= n− 1 then C(b, abi) = 1, hence as

(q(b, abi)− 1)(1− r(b, abi, a)) = 0

then

(C(abi, b)−1 − 1)(1− C(abi, a)C(abi+1, a)−1C(b, a2bi)C(b, abi)−1) = 0

and thus

(C(abi, b)−1 − 1)(1− C(abi, a)C(abi+1, a)−1) = 0.

Notice that c(abi, b) = 1 implies α1 = 1, since C(abi, b)−n = α1. Therefore we can suppose

that C(abi, b) 6= 1 and hence

C(abi+1, a) = C(abi, a), for every i 6= n− 1.

As we saw above, C(ab, a) = 1 and thus recursively we have that

C(abi, a) = 1 for every i.

In particular, C(abn−1, a) = 1.

Now, we know that

(q(b, abn−1)− 1)(1− r(b, abn−1, a)) = 0,
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thus

(α1C(abn−1, b)−1 − 1)(1− C(b, a2bn−1)C(b, abn−1)−1) = 0.

If α1 = C(abn−1, b) then as C(abn−1, b)n = αn−11 we have that αn1 = αn−11 and therefore α1 = 1.

We can assume that α1C(abn−1, b) 6= 1 and thus we conclude that C(b, a2bn−1)C(b, abn−1)−1 =

1, and therefore α2α
−1
1 = α2

1α
−1
1 = α1 = 1.

We have just proved that αi = 1 for every i = 1, 2, . . . ,m and therefore

C(arbs, aibk) = C(arbs, a)iC(arbs, b)k.

Also, it is not difficult to see that

C(arb, a) = 1, for every r.

In fact, if we suppose that C(a, b) 6= 1, then as

(q(a, b)− 1)(1− r(a, b, a)) = 0

we have that

(C(a, b)− 1)(1− C(ab, a)−1) = 0,

and thus C(ab, a) = 1.

In this way, using the fact that

(q(ab, a)− 1)(1− r(ab, a, a)) = 0,

we get

(C(a, b)−1 − 1)(1− C(a2b, a)−1) = 0,

and thus C(a2b, a) = 1.

Recursively we have that C(arb, a) = 1 for every r.

Now, if C(a, b) = 1 then as

(q(am−1b, a)− 1)(1− r(am−1b, a, a)) = 0

we have that

(C(am−1b, a)− 1)(1− C(am−1b, a)) = 0

and therefore C(am−1b, a) = 1.

As

(q(am−2b, a)− 1)(1− r(am−2b, a, a)) = 0,
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then we get that

C(am−2b, a) = 1.

In this way, recursively we get that C(arb, a) = 1 for every r.

Now, we claim that C(arbs, a) = 1 for every r, s.

In order to prove this we have to consider two cases:

If C(a, b)t = 1, then as

(q(a, bt)− 1)(1− r(a, bt, a)) = 0

we have

(C(bt, a)−1 − 1)(1− C(bt, a)) = 0

and therefore C(bt, a) = 1.

Now, as

(q(am−1bt, a)− 1)(1− r(am−1bt, a, a)) = 0,

then

(C(am−1bt, a)− 1)(1− C(am−1bt, a)) = 0

and hence C(am−1bt, a) = 1.

Now, as

(q(am−2bt, a)− 1)(1− r(am−2bt, a, a)) = 0,

then

(C(am−2bt, a)− 1)(1− C(am−2bt, a)) = 0

and thus C(am−2bt, a) = 1.

Recursively we conclude that C(arbt, a) = 1 for every r.

If C(a, b)t 6= 1, then as

(q(abt, a)− 1)(1− r(abt, a, a)) = 0

we have

(C(a, b)−t − 1)(1− C(a2bt, a)−1) = 0,

and therefore C(a2bt, a) = 1.

Now, as

(q(a2bt, a)− 1)(1− r(a2bt, a, a)) = 0,

then

(C(a, b)−t − 1)(1− C(a3bt, a)−1) = 0
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and hence C(a3bt, a) = 1.

Recursively we get that C(arbt, a) = 1 for every r.

We conclude that

C(arbs, a) = 1, for every r, s.

Therefore we have

C(arbs, aibk) = C(arbs, b)k.

With these simplifications, if we compute the function r we obtain:

r(arbs, aibk, ajbl) = C(aibk, b)lC(ar+ibs+k, b)−lC(arbs, b)l.

Therefore, if we are trying to prove that the algebra is associative, then we have to check that

r(arbs, aibk, ajbl) = 1, hence it is enough to prove that

C(ar+ibs+k, b) = C(arbs, b)C(aibk, b). (11.1)

First of all, let us see that C(arbs, b) = C(ar, b).

Indeed, if C(ar, b) 6= 1, then as (q(ar, b)− 1)(1− r(ar, b, b)) = 0 we get

(C(ar, b)− 1)(1− C(arb, b)−1C(ar, b)) = 0,

and thus C(arb, b) = C(ar, b).

Now, as C(arb, b) 6= 1 and (q(arb, b)−1)(1−r(arb, b, b)) = 0, then C(arb2, b) = C(arb, b) = C(ar, b).

In this way, recursively we obtain that

C(arbs, b) = C(ar, b) when C(ar, b) 6= 1.

If C(ar, b) = 1 then C(arbs, b) = 1, since if C(arbs, b) 6= 1 for some s, the fact that

(q(arbs, b)− 1)(1− r(arbs, b, b)) = 0

implies that C(arbs+1, b) = C(arbs, b) and therefore, C(arbs+1, b) 6= 1. But going on in this way,

for s = n− 1 we obtain that C(ar, b) 6= 1, which is a contradiction.

Therefore, if C(ar, b) = 1 then C(arbs, b) = 1. Hence, C(arbs, b) = C(ar, b).

We conclude that in general,

C(arbs, b) = C(ar, b), for all s = 1, 2, . . . , n.

Thus, the equation (13.1) is equivalent to

C(ar+i, b) = C(ar, b)C(ai, b). (11.2)



11. Left Symmetric Algebras and their relationship with (1, 2)-symmetric G-graded twisted algebras 67

Notice that C(a, b) = 1 implies C(ar, b) = 1 for all r, since if we assume that C(ar, b) 6= 1 for some r,

then as (q(ar, ab)−1)(1−r(ar, ab, b)) = 0, we obtain that (C(ar, b)−1)(1−C(ar+1, b)−1C(ar, b)) = 0,

and therefore C(ar+1, b) = C(ar, b) 6= 1. In this way we get that C(am−1, b) 6= 1, and hence

C(a, b) 6= 1, which is a contradiction.

Therefore when C(a, b) = 1, equation (11.2) holds trivially.

Now, suppose that C(a, b) 6= 1. Let us see that C(ar, b) = C(a, b)r. In fact, as C(a, b) 6= 1, then

(q(ab, a)− 1)(1− r(ab, a, b)) = 0 implies C(a, b)C(a2, b)−1C(a, b) = 1, thus C(a2, b) = C(a, b)2.

As (q(a2b, a)−1)(1− r(a2b, a, b)) = 0, then C(a, b)C(a3, b)−1C(a2, b) = 1, and therefore, C(a3, b) =

C(a, b)3.

Recursively, we obtain that C(ar, b) = C(a, b)r, and thus the equation (11.2) holds.

This proves that r(arbs, aibk, ajbl) = 1 for all arbs, aibk, ajbl ∈ G, and hence, the algebra W is

associative.

Finally, we propose a conjecture above the general case of any finite abelian group G = Zn1 ×
· · · × Znk .

Conjecture. Suppose that G = Zn1
×· · ·×Znk is any finite abelian group and that W is a (1, 2)-

symmetric G-graded twisted C-algebra with structure constant C : G×G→ A, where A ⊂ C∗ is a

finite subgroup. Suppose that W is also Left Symmetric. Then, W is an associative algebra.



Part III

COMPUTATION OF THE F -RATIONAL LOCUS



12. INTRODUCTION

In this part we describe an algorithm to compute the F-rational locus of an affine algebra over a

field of prime characteristic p > 0 by first computing its global test ideal. As a consequence we

deduce the Openness of the F-rational locus, a result originally proved in [27].

Let A denote the polynomial ring in n variables over a field of prime characteristic p, and let m

be any maximal ideal of A. Let us denote by R = Âm the completion of Am, the localization of A

at the maximal ideal m.

If we start with any ideal I ⊂ A, we will present a constructive procedure to explicitly calculate

the parameter test ideal of the ring T = R/IR. We will regard T as an R[θ]-module, where

θ : T → T is the natural Frobenius map on T that sends t ∈ T to its p-th power. In Section 13.2,

we will see how to extend this action to an action on Hd
m(T ), the top local cohomology module of

T . As will see in Theorem 19, to compute the tight closure of a parameter ideal J = (x1, . . . , xd)

of T amounts to compute 0∗Hdm(T ), the tight closure of the zero submodule 0 in Hd
m(T ). But this

submodule can be characterized as the largest R[θ]-submodule N of H that is annihilated by c2.

We show how to calculate globally the Matlis dual of NJ = 0∗Hdm(T ) Theorem 25, by computing

appropriated matrices Es×l, Us×s, Q, with entries in A, so that if Ω denotes the submodule defined by

the image of Q in As, then Ω is the smallest submodule of As satisfying that (c2As+im(Es×l)) ⊂ Ω

and Us×sΩ ⊂ Ω[p], where Ω[p] = im(Q[p]). From this we obtain a way of computing the F-rational

locus of A/I, where A = K[x1, . . . , xn] is the polynomial ring over a field K of prime characteristic

p > 0, and I ⊂ A a prime ideal.



13. PRELIMINARIES

In this part of this thesis, we will use some basic notions of Commutative Algebra and Homological

Algebra, classic notions like localization, completion, derived functors, Koszul cohomology, the

injective hull, and so on. The reader may consult [3].

13.1 Local Cohomology

In this section, we present briefly some basic notions related with the Local Cohomology Theory,

as well as some important results that will be needed in the next sections. The reader may consult

[32], for more details.

13.1.1 The injective hull of the residue field of a local ring

Definition 12. Let R be a ring. A homomorphism of R-modules τ : M → N is called an essential

extension if it is injetive and the following equivalent conditions hold:

(1) Every nonzero submodule of N has nonzero intersection with τ(M).

(2) Every nonzero element of N has a nonzero multiple in τ(M).

(3) If ψ : N → Q is a homomorphism and ψ ◦ τ is injective then ψ is injective.

The following proposition summarizes the main properties of essential extensions.

Proposition 7. Let M,N , and Q be R-modules.

(1) If M ⊂ N ⊂ Q then M ⊂ Q is essential if and only if M ⊂ N and N ⊂ Q are both essential.

(2) If M ⊂ N and {Ni}i is a family of submodules of N each containing M such that N =
⋃
iNi,

then M ⊂ N is essential if and only if M ⊂ Ni is essential for every i.

(3) The identity map on M is an essential extension.

(4) If M ⊂ N then there is a maximal submodule N ′ of N such that M ⊂ N ′ is essential



13. Preliminaries 71

The last item in the above Proposition is an immediate consequence of the Zorn’s Lemma, and

allows to introduce the notion of a maximal essential extension.

Given M an R-module, there exists an injective R-module E such that M ⊂ E. We consider a

maximal submodule ER(M) ⊂ E such that M ⊂ ER(M) is essential. The extension M ⊂ ER(M)

is absolutely essential, in the sense that there are no essential extensions of ER(M). The definition

of ER(M) seems to depend on the injective module E, however, it is not difficult to see that if

M ⊂ E′ for some injective module E′, then ER(M) ∼= E′R(M), in other words, ER(M) is unique

up to isomorphisms. This motivates the following definition:

Definition 13. Let M be an R-module, we define the injective hull of M , denoted by ER(M) as a

maximal essential extension of M

Now, suppose that (R,m) is a local ring, we denote ER by an injective hull of the residue field

R/m, i.e., ER = ER(R/m).

13.1.2 Local Cohomology

Suppose that R is a Noetherian ring, I ⊂ R an ideal, and M an R-module. The decreasing

sequence of idelas · · · ⊂ Ik+1 ⊂ Ik ⊂ Ik−1 ⊂ · · · induces a family of homomorphisms {R/Ik →
R/Ik−1}k. Given any R-module N , we have a family of homomorphisms {HomR(R/Ik−1, N) →
HomR(R/Ik, N)}k. Recall that the module ExtiR(A,B) can be computed taking any projective

resolution of A

· · · // Pn // Pn−1 // · · · // P0
// A // 0

removing A, applying the functor HomR( , B) and taking the i-th homology.

Therefore, if

· · · // Pn // Pn−1 // · · · // P0
// R/It // 0

and

· · · // Qn // Qn−1 // · · · // Q0
// R/It+1 // 0

are projective resolutions, then the homomorphism θt+1 : R/It+1 → R/It induces a map in

the homology ExtiR(R/It,M) → ExtiR(R/It+1,M). Hence, we have a family of homomorphisms

{ExtiR(R/It,M)→ ExtiR(R/It+1,M)}t.
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Definition 14. Let R be a Noetherian ring and let M be an arbitrary module. For I ⊂ R an ideal,

we define the i-th local cohomology module of M with support in I as the direct limit

Hi
I(M) = lim

→
t

ExtiR(R/It,M).

In the following theorem we exhibit some important properties of Hi
I(M).

Theorem 15. Let R be a Noetherian ring.

(1) If I, J are ideals of R with the same radical, then Hi
I(M) ∼= Hi

J(M) canonically for all i and

for all R-module M .

(2) Let I ⊂ R an ideal and let M be any R-module. Then every element of Hi
I(M) is killed by a

power of I.

(3) Let R → S be a homomorphism of Noetherian rings, let I ⊂ R be an ideal and let M be an

S-module. Then Hi
I(M) ∼= Hi

IS(M) as S-modules.

(4) Let S be a flat Noetherian R-algebra, and let I be an ideal of R and M an R-module. Then

S ⊗R Hi
I(M) ∼= Hi

I(S ⊗RM) ∼= Hi
IS(S ⊗RM).

Let (R,m) be a local ring. The Matlis dual is a contravariant functor denoted by ( )∨ and

defined as

M∨ = HomR(M,ER),

where recall that ER is an injective hull of the residue field R/m.

The proof of the following two theorems may be consulted in [34], pages 12, 16.

Theorem 16 (Matlis duality). Let (R,m) be a Noetherian complete local ring.

(1) Any Artinian R-module M is isomorphic to a submodule of EsR for some integer s. (For this

R does not have to be complete)

(2) If M is a module with ACC then M∨ has DCC, while if M has DCC then M∨ has ACC.

Moreover, if M has either ACC or DCC then the obvious map M →M∨∨ is an isomorphism.

Theorem 17 (local duality for Gorenstein rings). Let (R,m, k,E) be a Gorenstein local ring

of dimension n. Let M be a finitely generated R-module. Then

Hn−i
m (M) ∼= ExtiR(M,R)∨

for 0 ≤ i ≤ n.
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As a consequence of this last theorem, it follows that for every finitely generated R-module M ,

Hi
m(M) has DCC, i.e., every descending chain of submodules stabilizes.

Remark 10. Let (R,m) be a Noetherian local ring of dimension d, and let x1, . . . , xd be a system

of parameters. It is well known (See [35] , page 100), that the top local cohomology module with

support in m, Hd
m(R) can be seen as the following direct limit

Hd
m(R) ∼= lim

→
t

R/(xt1, . . . , x
t
d),

where the map R/(xt1, . . . , x
t
d)→ R/(xt+1

1 , . . . , xt+1
d ) is given by multiplication by x1x2 · · ·xd.

13.2 The Frobenius Functor

Let R be a commutative ring of prime characteristic p > 0. The map θ : R → R that sends r into

rp is a homomorphism of rings, called the Frobenius homomorphism. This homomorphism endows

R of structure of R-module by restriction of scalars: r · s = θ(r)s = rps. The ring R endowed with

the last multiplication will be denoted by S. Notice that S = R, but S is viewed as a R-module

with the multiplication given by the Frobenius homomorphism θ.

Definition 15. Let M be an R-module. We define FR(M) = S ⊗RM , where rps⊗m = s⊗ r ·m.

Clearly FR(M) is an S-module with the multiplication s′ · (s⊗m) = s′s⊗m.

In general, for any natural number e, we define FeR(M) = S ⊗RM , where rp
e ⊗m = s⊗ r ·m,

and S is the ring R but with the R-module structure given by r · s = rp
e

s.

If we remember that S = R, then M is obviously an S-module with its original structure, and

therefore FeR( ) defines a covariant right exact functor from the category of S-modules to itself.

The functor FeR( ) : SMod → SMod is called the Frobenius or Peskine-Szpiro functor. We will

omit the subscript R when R is clear from the context.

Remark 11. (1) FeR(Rn) ∼= Rn, since FeR(Rn) is by definition S⊗RRn which is clearly isomorphic

to Rn.

(2) If I ⊂ R is a ideal then F eR(R/I) ∼= R/I [p
e], where I [p

e] denotes the ideal generated by the

pe-th powers of the elements of I. This is clear since FeR(R/I) = S ⊗R R/I ∼= S/IS, and as

the action of R on S is given by r · s = rp
e

s then S/IS ∼= R/I [p
e].
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Proposition 8. Let M be the cokernel of a matrix A, that is to say, M = Rn/im(A) where

Rm
A // Rn . Then, FeR(Rn/im(A)) = Sn/im(A[pe]), where A[pe] denotes the matrix obtained

from A by raising all entries of A to the pe-th power.

Proof. We have an exact sequence Rm
A // Rn // M // 0 . Applying the Frobenius functor

FeR( ) we obtain a sequence Sm
ϕ // Sn // FeR(M) // 0 . Let us compute the map ϕ.

Consider ei = (0, . . . 1, . . . 0) ∈ Sm the vector with 1 in the i-th position and zero elsewhere. Notice

that ϕ(ei) = 1 · Aei = (1 · a1i, . . . , 1 · ain) = (ap
e

1i , . . . , a
pe

in), where (a1i, . . . , ain) is the i-th column

of A. This proves that the homomorphism ϕ is given by the matrix A[pe]. Therefore we have the

following commutative diagram

Sm

��

A[p]
// Sn

��

// FeR(M)

��

// 0

Sm
A[p]
// Sn // Sn/im(A[pe]) // 0

hence, FeR(Rn/im(A)) ∼= Sn/im(A[pe]).

Remark 12. A well known theorem of Kunz (See [36], page 247) guarantees that the Frobenius

functor FeR( ) is an exact functor when R is a regular ring. Moreover, it can be readily seen that

FeR( ) also commutes with direct sums and direct limits.

Now we define what is known as a Frobenius map.

Definition 16. Let M be an R-module. A morphism of abelian groups φ : M → M such that

φ(rm) = rpφ(m), is called a Frobenius map on M .

The first example of a Frobenius map that comes to mind is the map θ defined above, θ : R→ R,

θ(r) = rp. This map provides an obvious Frobenius map on Rn defined as θ(r1, . . . , rn) =

(rp1 , . . . , r
p
n).

The following proposition allows us to move back and forth from Frobenius maps to ordinary

R-linear maps.

Proposition 9. Let R be a commutative ring of characteristic p > 0. Let M be any R-module, and

let φ : M →M be a Frobenius map on M . Then, there is an S-linear map φ̃ : FR(M)→M given

by φ̃(s ⊗m) = sφ(m). Reciprocally, for any S-linear map β : FR(M) → M , the map φ : M → M

defined by φ(m) = β(1⊗m) is a Frobenius map on M . Any Frobenius map φ arises in this way for

an appropriate β.
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Proof. Suppose that φ : M →M is a Frobenius map on M . Let us see that φ̃ is S-linear. Indeed, if

we see M as a R-module with the multiplication r ·m = rpm, then the map β : S×M →M given as

β(s,m) = sφ(m) is R-bilinear, since β(r · s,m) = β(srp,m) = srpφ(m) = sφ(rm), and r ·β(s,m) =

rpβ(s,m) = srpφ(m) = sφ(rm). In the same way, β(s, rm) = sφ(rm) = srpφ(m) = r · β(s,m).

Therefore this R-bilinear map induces the morphism φ̃ : S⊗RM →M , and this morphism is clearly

S-linear.

On the other hand, suppose that we have β : S⊗RM →M an S-homomorphism. Define φ : M →M

as φ(m) = β(1 ⊗ m). Notice that φ(rm) = β(1 ⊗ rm) = β(rp ⊗ m) = β(rp(1 ⊗ m)) = rpφ(m).

Therefore, φ is a Frobenius map on M .

Remark 13. (1) If M = R/I, where I ⊂ R is an ideal, then the natural Frobenius map θ : R→ R

induces a Frobenius map on R/I, θ : R/I → R/I given by θ(r) = rp. By the last proposition,

this Frobenius map on R/I induces the R-linear map θ̃ : F(R/I)→ R/I defined by θ̃(s⊗r) =

srp. As F(R/I) ∼= R/I [p] by the isomorphism given by s⊗ r 7→ rps, then the morphism θ̃ is

just the R-homomorphism induced by the inclusion of ideals I [p] ⊂ I.

(2) In the same way, if M = Rn/im(A) then θ induces a Frobenius map on Rn/im(A). An

again, the map θ̃ : Rn/im(A[p]) → Rn/im(A) is the natural map induced by the inclusion of

submodules im(A[p]) ⊂ im(A).

(3) Let R be any commutative ring of characteristic prime p > 0, I ⊂ R an ideal, and let M

be any R/I-module. Given φ : M → M a Frobenius map on M , as M is a R-module

with the multiplication given by r ·m = rm, then φ is also a Frobenius map on M viewed

as a R-module. As we saw in Proposition 9, φ induces an S-linear map S ⊗R M
φ̃→ M

defined as φ̃(s ⊗ m) = sφ(m). Reciprocally, given any S-linear map β : S ⊗R M → M ,

φ : M → M defined by φ(m) = β(1 ⊗m) is a Frobenius map on the R/I-module M , since

φ(rm) = β(1⊗ rm) = β(rp(1⊗m)) = rpβ(1⊗m) = rpφ(m).

(4) Let (T, η) be any complete local ring of dimension d of prime characteristic p > 0. Let

x1, . . . , xd be a fixed system of parameters for T . By Remark 10, the d-th local cohomology

with support on η can be calculated as the direct limit Hd
η(T ) = limt T/(x

t
1, . . . , x

t
d) where

the maps are given by multiplication by x = x1 · · ·xd. If u = [a + (xt1, . . . , x
t
d)] denotes the

class in the direct limit of the coset a + (xt1, . . . , x
t
d), the map θ(u) = [ap + (xpt1 , . . . , x

pt
d )] is

well defined, and clearly satisfies the condition θ(ru) = rpθ(u). Hence, it is a Frobenius map

on Hd
η(T ) that we will call the natural Frobenius map on Hd

η(T ).
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Since T is a complete local ring, by the Cohen Structure Theorem (See [3], page 190), we may

write T = R/I, where (R,m) is the ring of power series with coefficients on a field of charac-

teristic p > 0, for some ideal I ⊂ R. By (3), the Frobenius map θ on Hd
η(T ) can be obtained

from the R-linear map S ⊗R Hd
η(T )

θ̃→ Hd
η(T ). On the other hand, the local cohomology can

also be computed as Hd
η(T ) = Hd

mT (R/I). Since R is regular the morphism R→ S is flat (See

[36], page 247), and consequently S ⊗R Hd
η(T ) ∼= Hd

η[p](S ⊗R T ) = Hd
mT (R/I [p]). It can be

readily seen that θ̃ is the map induced by the R/I-homomorphism Hd
mT (R/I [p])→ Hd

mT (R/I)

obtained by applying the covariant functor Hd
mT ( ) to the canonical morphism R/I [p] → R/I

defined by the inclusion of ideals I [p] ⊂ I.

(5) In general, by applying the covariant functor Hi
m( ) to the morphism R/I [p] → R/I one

obtains an R/I-map S ⊗R Hi
η(T ) ∼= Hi

η[p](S ⊗R T ) = Hi
mT (R/I [p])→ Hi

mT (R/I).

The Frobenius map induced by this homomorphism will be called the natural Frobenius map

on Hi
η(T ). We will also denote it by θ.

The next proposition is Lemma 4.1 of [37]. It shows that over a complete local ring the functors

FR( ) and dualization with ER the injective hull of the residue field of R commute. More precisely:

Proposition 10. Let (R,m) be a complete local ring of prime characteristic. Let ER be an injective

hull of the residue field of R. Let us denote by ∨ dualization with ER, i.e., ∨ = HomR( , ER). If

M is an artinian R-module, then there is a canonical isomorphism FR(M∨) ∼= FR(M)∨.

Proof. (See Lemma 4.1 of [37]).

13.3 R[t]-Structures

Let M be an R-module where R is a ring of prime characteristic p > 0, let φ : M → M be a

Frobenius map on M , and let us denote by R[t] the (noncommutative) polynomial ring where the

identity t · a = apt holds for every a ∈ R. It is clear that any Frobenius map on M induces an

R[t]-module structure in M , since the action of the variable t on M , given by t · u = φ(u), is well

defined: t · (ru) = φ(ru) = rpφ(u) = (t · r) ·u. The subring R[φ] of HomZ(M,M) generated by φ to-

gether with the homomorphisms given by multiplication by elements of R is clearly a homomorphic

copy of R[t], since φr = rpφ. Hence, the R[t]-structure of M descends to a natural R[φ]-module

structure for M .

As we saw in Remark 13 (4), the top cohomology Hd
η(T ) of a complete local ring (T, η) can be

given a natural R[t]-structure via the natural Frobenius map θ. If T is a regular local ring, this top
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cohomology module coincides with the injective hull of the residue field ET (T/η) (See [32], page

40). Hence, ET (T/η) becomes an R[t]-module, and so does any direct sum of copies of it, E⊕rT .

If (R,m) is a complete regular local ring of prime characteristic p > 0, then R must be a power

series ring R = k[[x1, . . . , xn]] over a field of prime characteristic p > 0. In this case, the injective

hull of its residue field ER can be identified with the R-module of all “negative”power series, that

is, elements of the form u =
∑
α cαx

α1
1 · · ·xαnn , where αi < 0, with the structure of R-module given

by:

(xα1
1 · · ·xαnn )(xβ1

1 · · ·xβnn ) =

 0 if αi + βi ≥ 0 for some i

xα1+β1

1 · · ·xαn+βnn otherwise

It is not difficult to see that the natural Frobenius map on ER is obtained raising any negative

power series to the power p, i.e., θ : ER → ER where θ(
∑
α cαx

α1
1 · · ·xαnn ) =

∑
α cαx

pα1

1 · · ·xpαnn ,

and clearly this Frobenius map induces a Frobenius map on E⊕rR .

Also, it follows that any other Frobenius map on E⊕rR , φ : E⊕rR → E⊕rR , has the form φ = uθ, where

u is an r × r matrix with coefficients in R.

Remark 14. Let (T, η) be a complete local ring of prime characteristic p > 0, and of dimension d.

By the Cohen Structure Theorem, we know that T = R/I for some ideal I ⊂ R, and where R is the

power series ring k[[x1, . . . , xn]] with k a field of prime characteristic p > 0. Consider θ the natural

Frobenius map on Hd
η(T ), defined in Remark 13 (4). Then, any other Frobenius map on Hd

η(T ),

φ : Hd
η(T )→ Hd

η(T ) has the form φ = uθ, where u is a matrix with coefficients in R.

Proof. As Hd
η(T ) is an artinian T -module, then by Theorem 16, Hd

η(T ) ↪→ ErT for some r. On the

other hand, it is not difficult to see that ET = AnnERI ⊂ ER. Hence, Hd
η(T ) ↪→ ErT ⊂ ErR. Let φ

be any Frobenius morphism on Hd
η(T ). As we saw before, this Frobenius map is induced from an

S-linear map S ⊗R Hd
η(T )

φ̃→ Hd
η(T ), where S is the ring R with the R-module structure given by

the Frobenius action. Since R is regular, then S ⊗R Hd
η(T ) ↪→ S ⊗R ErR is also an injection, and

since ErR is an injective R-module, there exists an S-linear map ψ̃ such that the following diagram

commutes:

S ⊗R Hd
η(T )

� � //

φ̃

��

S ⊗R ErR

ψ̃

��
Hd
η(T ) �

� // ErR

Thus, the Frobenius map ψ : ErR → ErR, induced by the S-linear map ψ̃, restricted to Hd
η(T )
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coincides with φ. But as we saw above, ψ = uθ, for some r× r matrix. Hence, φ = uθ|Hdη(T ), where

θ|Hdη(T ) is precisely the natural Frobenius map on Hd
η(T ).

13.4 Tight Closure and Parameter Ideals

In this section we present some definitions and some results related with the Tight Closure Theory,

that we will use later.

13.4.1 Tight Closure

Definition 17. Let R be a Noetherian ring of prime characteristic p > 0. Given I ⊂ R an ideal, the

tight closure of I denoted by I∗, is the ideal defined by the rule: x ∈ I∗ if there is c ∈ R such that

c does not belong to any minimal prime ideal, satisfying that c · xpe ∈ I [pe] for all sufficiently large

integers e.

Notice that in the above definition, the element c depend on I and x ∈ I∗. However, as R is a

Noetherian ring then I∗ is finitely generated, and therefore the element c can be taken depending

only on the ideal I.

Before to start taking about the properties of Tight Closure, we present the following proposition,

which asserts that we can reduce the study of Tight Closure Theory to Noetherian domains of prime

characteristic.

Proposition 11. Let R be a Noetherian ring of prime characteristic p > 0, and assume that

P1, . . . , Pk are the minimal prime ideals of R. Let I ⊂ R be an ideal, then r ∈ I∗ if and only if

r + [Pi] ∈ I∗(R/Pi) for every i = 1, 2, . . . , k, where r + [Pi] denotes the equivalence class of r in

R/Pi.

Proof. Suppose that r + [Pi] ∈ I∗(R/Pi) for every i = 1, 2, . . . , k. Then, for each i there is ci /∈ Pi
such that cir

pe ∈ I [p
e] + Pi for e >> 0. By the prime avoidance theorem, we can find di /∈ Pi

such that di ∈ Pj for each j 6= i. Therefore, cidir
pe ∈ I [pe] + Nil(R). Taking n with the property

Nil(R)n = 0, we see that (cidi)
nrp

ne ∈ I [pne]. Notice that if we call si = (cidi)
n, then si /∈ Pi and

si ∈ Pj for each j 6= i. Hence, the element c = s1 + · · ·+ sk does not belong to any minimal prime

Pj , and crp
ne ∈ I [pne]. Thus, r ∈ I∗.

The reciprocal is clear.

Some basic properties of Tight Closure are presented below:
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Remark 15. Let R be a Noetherian ring of prime characteristic p > 0, and let I, J be ideals of R.

(1) I∗ ⊂ R is an ideal.

(2) I ⊂ I∗.

(3) (I∗)∗ = I∗.

(4) If I ⊂ J , then I∗ ⊂ J∗.

(5) When R is regular, I∗ = I.

(6) If R ⊂ S is a module-finite extension, IS ∩R ⊂ I∗.

(7) (I ∩ J)∗ ⊂ I∗ ∩ J∗.

(8) (I + J)∗ = (I∗ + J∗)∗.

(9) (IJ)∗ = (I∗J∗)∗.

It is well known that for Cohen-Macaulay rings, the colon capturing property holds, in other

words, if R is a Cohen-Macaulay ring and x1, . . . , xd is a system of parameters, then

((x1, . . . , xi) : xi+1) ⊂ (x1, . . . , xi)

for all i = 1, 2, . . . , d−1. There is a version of the colon capturing property of tight closure which is

a kind of generalization of the colon capturing property, in the sense that it holds for more general

rings, rings that do not have to be Cohen-Macaulay.

Proposition 12. Let (R,m) be an equidimensional complete local ring. If x1, . . . , xd, xd+1 are

parameters in R, then ((x1, . . . , xd)
∗ : xd+1) ⊂ (x1, . . . , xd)

∗.

Proof. See [38] for a proof.

The last Proposition is more general, it is true for excellent rings, however in this chapter we

focus on complete local rings. Every complete local ring is an excellent ring.

Now, the Frobenius functor FeR( ) defined above, allows to extend the Tight Closure notion to

modules.

Let R be a Noetherian ring of prime characteristic p > 0, and let M be an R-module. For N ⊂M
an R-submodule, we define the R-module N

[pe]
M , as the image of the map Fe(N) → Fe(M). The



13. Preliminaries 80

tight closure N∗M of N in M , is defined as the elements x ∈M for which there is c ∈ R not in any

minimal prime ideal, such that

cxp
e

∈ N [pe]
M ⊂ FeR(M)

for all sufficiently large e, where xp
e

denotes the image of x under the natural map M → Fe(M)

that sends x 7→ 1 ⊗ x, in other words, xp
e

= 1 ⊗ x ∈ Fe(M). Therefore, with the above notation

we see that (rx)p
e

= rp
e

xp
e

, for r ∈ R, x ∈M .

Here are some properties of the tight closure for modules.

Remark 16. Let R be a Noetherian ring of prime characteristic p > 0.

(1) If N ⊂M are R-modules, then N∗M is an R-module.

(2) If N ⊂M are R-modules, then N ⊂ N∗M and (N∗M )∗M = N∗M .

(2) If N ⊂M ⊂ Q are R-modules, then N∗Q ⊂M∗Q and N∗M ⊂ N∗Q.

(3) If I ⊂ R is an ideal and N ⊂M are R-modules, then I∗N∗M ⊂ (IN)∗M .

The following proposition allows to reduce problems related with the tight closure for modules

to the study of the tight closure of the zero submodule.

Proposition 13. Let R be a Noetherian ring of prime characteristic and let N ⊂M be R-modules.

Then, the image of N∗M/N in M/N coincides with the tight closure of the zero submodule in M/N ,

in other words, N∗M/N = O∗M/N in M/N .

Proof. As Fe( ) is a covariant right exact functor, then the sequence

Fe(N) // Fe(M) // Fe(M/N) // 0

is exact. By definition N
[pe]
M is the image of the first morphism, therefore

Fe(M/N) ∼= Fe(M)/N
[pe]
M . (13.1)

Consider x ∈ O∗M/N , then there is c ∈ R not in any minimal prime ideal, such that cxp
e

∈ O[pe]
M/N =

O, for e sufficiently large, and by equation (13.1), this implies cxp
e ∈ N

[pe]
M for e >> 0. Thus,

x ∈ N∗M , and therefore x ∈ N∗M/N .

Reciprocally, if x ∈ M/N with x ∈ N∗M , then, there is c ∈ R not in any minimal prime ideal such

that cxp
e ∈ N [pe]

M for e >> 0. Therefore, cxp
e

= 0 in Fe(M)/N
[pe]
M
∼= Fe(M/N) for e >> 0. Hence,

x ∈ O∗M/N .
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13.4.2 Test elements

In the definition of Tight Closure, we saw that the element c may depend on the ideal I and x ∈ I∗.
However, for some special rings, it is possible to find an element c that works for any ideal I and

any element x ∈ I∗. This kind of elements will be called test elements.

Definition 18. Let R be a Noetherian ring of prime characteristic p > 0. We say that c ∈ R not

in any minimal prime ideal is a test element, if for every finitely generated module M and every

submodule N , x ∈ N∗M implies cxp
e ∈ N [pe]

M for all e ≥ 0.

The set of test elements together with 0 form an ideal called the test ideal.

For reduced complete local rings, the following theorem assures the existence of test elements.

Theorem 18. Let R be a reduced complete local ring of prime characteristic p > 0. Then, there

always exist test elements.

See [28], Theorem 6.1

Let (T, η) be a reduced equidimensional complete local ring of dimension d of prime characteristic

p > 0. By the Cohen Structure Theorem, T is isomorphic to R/I where R is the power series ring

over a field of prime characteristic p > 0.

We want to prove, that with the above notation, given J = (x1, . . . , xd) a system of parameters

of T , for any element u ∈ T , u ∈ J∗ implies v = [u+ (x1, . . . , xd)] ∈ O∗Hdη(T )
, the tight closure of the

zero submodule of Hd
η(T ), and if v = [u+ (xs1, . . . , x

s
d)] ∈ O∗Hdη(T )

, then u ∈ J∗.
We need the following lemma:

Lemma 6. With the above hypothesis,

((xq1, . . . , x
q
d)
∗ : xt1 · · ·xtd) ⊂ (xq−t1 , . . . , xq−td )∗,

for all t < q.

Proof. By induction on t. For t = 1, suppose that α ∈ ((xq1, . . . , x
q
d)
∗ : x1 · · ·xd), then αx1 · · ·xd ∈

(xq1, . . . , x
q
d)
∗. Hence, if c ∈ T is a test element, then cαp

e

xp
e

1 · · ·x
pe

d ∈ (xqp
e

1 , . . . , xqp
e

d ), for all

e ≥ 0. Thus, cαp
e

xp
e

1 · · ·x
pe

d = r1x
qpe

1 + · · ·+ rdx
qpe

d and then xp
e

d (cαp
e

xp
e

1 · · ·x
pe

d−1 − rdx
(q−1)pe
d ) ∈

(xqp
e

1 , . . . , xqp
e

d−1) ⊂ (xqp
e

1 , . . . , xqp
e

d−1)∗. As xqp
e

1 , . . . , xqp
e

d−1, x
pe

d is also a system of parameters, then
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by Proposition 12, cαp
e

xp
e

1 · · ·x
pe

d−1 − rdx
(q−1)pe
d ∈ (xqp

e

1 , . . . , xqp
e

d−1)∗. Then, cαp
e

xp
e

1 · · ·x
pe

d−1 ∈
(xqp

e

1 , . . . , xqp
e

d−1)∗ + (x
(q−1)pe
d ) ⊂ (xqp

e

1 , . . . , xqp
e

d−1, x
(q−1)pe
d )∗ for every e ≥ 0.

Therefore, cαp
e

xp
e

1 · · ·x
pe

d−1 ∈ ((xq1, . . . , x
q
d−1, x

q−1
d )[p

e])∗, and by multiplying by c we obtain that

c2αp
e

xp
e

1 · · ·x
pe

d−1 ∈ c((x
q
1, . . . , x

q
d−1, x

q−1
d )[p

e])∗ ⊂ (xq1, . . . , x
q
d−1, x

q−1
d )[p

e], for every e ≥ 0. Hence,

αx1 · · ·xd−1 ∈ (xq1, . . . , x
q
d−1, x

q−1
d )∗.

Arguing in the same way as about but now with the element xd−1, we get that αx1 · · ·xd−2 ∈
(xq1, . . . , x

q
d−2, x

q−1
d−1, x

q−1
d )∗. Going on in this way, finally we obtain that α ∈ (xq−11 , . . . , xq−1d )∗,

what proves the first step of the induction.

Now, assume the result holds for t, and let us see that it also holds for t + 1. Indeed, consider

α ∈ ((xq1, . . . , x
q
d)
∗ : xt+1

1 · · ·xt+1
d ), thus αxt+1

1 · · ·xt+1
d ∈ (xq1, . . . , x

q
d)
∗. Therefore, αx1 · · ·xd ∈

((xq1, . . . , x
q
d)
∗ : xt1 · · ·xtd), and hence, by the induction hypothesis, αx1 · · ·xd ∈ (xq−t1 , . . . , xq−td )∗.

This implies that α ∈ ((xq−t1 , . . . , xq−td )∗ : x1 · · ·xd) ⊂ (x
q−(t+1)
1 , . . . , x

q−(t+1)
d )∗.

Theorem 19. Let (T, η) be a reduced equidimensional complete local ring of prime characteristic

p > 0, and let x1, . . . , xd be a system of parameters of T . If J = (x1, . . . , xd), then u ∈ J∗ implies

that v = [u+ (x1, . . . , xd)] ∈ O∗Hdη(T )
, and if v = [u+ (xs1, . . . , x

s
d)] ∈ O∗Hdη(T )

, then u ∈ J∗.

Proof. Suppose that v = [u + (xs1, . . . , x
s
d)] ∈ O∗

Hdη(T )
. Then, by definition, there is λ ∈ T not

in any minimal prime, such that λθe(v) = 0 in Hd
η(T ), for e >> 0. In other words, λ[up

e

+

(xsp
e

1 , . . . , xsp
e

d )] = [0], for e >> 0. Therefore, λxt1 · · ·xtdup
e ∈ (xsp

e+t
1 , . . . , xsp

e+t
d ), for some

t ≥ 0. This implies that λup
e ∈ ((xsp

e+t
1 , . . . , xsp

e+t
d ) : xt1 · · ·xtd), and by Lemma 6, λup

e ∈
(xsp

e

1 , . . . , xsp
e

d )∗ ⊂ ((x1, . . . , xd)
[pe])∗. By multiplying by c, we obtain that cλup

e ∈ c((x1, . . . , xd)[p
e])∗ ⊂

(x1, . . . , xd)
[pe], for e >> 0, what proves that u ∈ J∗.

Reciprocally, if u ∈ J∗, then cup
e ∈ Jpe for all e ≥ 0. Thus, clearly c[up

e

+ (xp
e

1 , . . . , x
pe

d )] = 0 for

all e ≥ 0. Hence, v = [u+ (x1, . . . , xd)] ∈ O∗Hdη(T )
.

In the proof of the above theorem, the weak test element λ, actually can be taken as λ = c.

Therefore, this implies that the test element c ∈ T satisfies that c2θe(v) = 0 in Hd
η(T ), for e >> 0,

for all v ∈ O∗
Hdη(T )

, where θ : Hd
η(T ) → Hd

η(T ) is the natural Frobenius map defined in Remark 13

(4). Hence, O∗
Hdη(T )

is the largest R[θ]-submodule of Hd
η(T ), annihilated by c2. This module will be

denoted by NJ .
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13.5 Minimal Submodules Ie(V )

Definition 19. Let R = K[x1, . . . , xn] where K is a field of prime characteristic p > 0. Given an

ideal J ⊂ R, define the ideal Ie(J) as the unique smallest ideal I such that J ⊂ I [pe].

Let us see how to construct the ideal Ie(J).

We consider first the case Kp = K.

Assuming the existence of the ideal Ie( ), notice that for J,K ⊂ R ideals, Ie(J+K) = Ie(J)+Ie(K).

Therefore, it is enough to prove the existence of Ie(g) for g ∈ R, that is to say, for principal ideals.

For g ∈ R, we can write g in a unique form as

g =
∑

0≤α1,...,αn<pe

rp
e

α x
α1
1 · · ·xαnn , α = (α1, . . . , αn).

We claim that Ie(g) = 〈rα〉{α=(α1,...,αn) : 0≤α1,...,αn<pe}.

Indeed, if 〈g〉 ⊂ L[pe], suppose that L = 〈h1, . . . , hm〉, then g =
∑m
j=1 sjh

pe

j . But each sj can be

written in a unique way as

sj =
∑

0≤α1,...,αn<pe

sp
e

jαx
α1
1 · · ·xαnn ,

hence,

g =

m∑
j=1

(
∑

0≤α1,...,αn<pe

sp
e

jαx
α1
1 · · ·xαnn )hp

e

j =
∑

0≤α1,...,αn<pe

(

m∑
j=1

sjαhj)
pexα1

1 · · ·xαnn .

Therefore, rα =
∑m
j=1 sjαhj . Thus, 〈rα〉{α=(α1,...,αn) : 0≤α1,...,αn<pe} ⊂ L. This proves that Ie(g) =

〈rα〉{α=(α1,...,αn) : 0≤α1,...,αn<pe}.

For the case Kp 6= K, we take a basis B for K as a Kpe -vector space. It is not difficult to see that

any element g ∈ R can be written in a unique way as

g =
∑

0≤α1,...,αn<pe

∑
β∈B

λp
e

α,βr
pe

α,βbx
α1
1 · · ·xαnn , λα,β ∈ K, rα,β ∈ R.

It follows that Ie(g) = 〈λα,βrα,β〉.
We have just shown the existence of the ideals Ie(J), whenR is the polynomial ringR = K[x1, . . . , xn].

These ideals can be defined in more general rings (See [39]).

For instance, when R regular and free as Rp
e

-module, we have the following characterization for

the ideals Ie( ).

By a Theorem of Kunz (See [40]), for R a Noetherian ring of prime characteristic p > 0, R

regular is equivalent to R reduced and flat as Rp-module.



13. Preliminaries 84

Proposition 14. Let R be a regular ring which is free as Rp
e

-module, and let e1, . . . , en be a basis

of R over Rp
e

. Let J ⊂ R be an ideal, and suppose that J = 〈a1, . . . , ak〉. If

ai =

n∑
j=1

rp
e

i,jej

with ri,j ∈ R, for i = 1, 2, . . . , k, then Ie(J) = 〈ri,j〉i≤k, j≤n.

Proof. Denote I = 〈ri,j〉i≤k, j≤n. Clearly J = 〈a1, . . . , ak〉 ⊂ 〈rp
e

i,j〉i≤k, j≤n, thus J ⊂ I [pe].
Suppose that J ⊂ L[pe], for some ideal L ⊂ R. If L = 〈l1, . . . , ls〉, then

ai =

s∑
j=1

ti,j l
pe

j

for i = 1, 2, . . . , k. Now, consider the dual basis e∗1, . . . , e
∗
n for HomRpe (R,Rp

e

). As e∗i (ej) = δi,j ,

then e∗m(ai) = rp
e

i,m. On the other hand, e∗m(ai) =
∑s
j=1 l

pe

j e
∗
m(ti,j) ∈ L[pe]. Hence, rp

e

i,m =∑s
j=1 l

pe

j e
∗
m(ti,j). If ti,j =

∑l
k=1 b

pe

k ek then e∗m(ti,j) = bp
e

m , therefore we conclude that rp
e

i,m = bp
e

for some b ∈ L. Since R is reduced we see that ri,m ∈ L. This proves that I ⊂ L and thus

I = 〈ri,j〉i≤k, j≤n = Ie(J).

The next theorem, extends the definition of Ie( ) to completions and localizations of regular

rings R.

Theorem 20. Let R be a regular ring. Then, given J ⊂ R an ideal:

(1) If S is any multiplicative system in R, then Ie(S
−1J) = S−1Ie(J).

(2) If R is local and R̂ is its completion, then Ie(JR̂) = Ie(J)R̂.

In other words, the operation Ie( ) commutes with localization and completion.

Proof. (1): Notice that by definition J ⊂ Ie(J)[p
e], thus S−1J ⊂ S−1Ie(J)[p

e] = (S−1Ie(J))[p
e].

Therefore, Ie(S
−1J) ⊂ S−1Ie(J).

On the other hand, the ideal Ie(S
−1J) = S−1I for some I ⊂ R ideal. Now, by definition

S−1J ⊂ (S−1I)[p
e] = S−1(I [p

e]). As we saw in Remark 12, when R is a regular ring, Fe

is exact, therefore, as (I : s) = I, for every s ∈ S, then (I [p
e] : sp

e

) = I [p
e], for every

s ∈ S. Thus, (I [p
e] : s) = I [p

e], for every s ∈ S. Hence, the containment S−1J ⊂ S−1(I [p
e])

implies J ⊂ I [p
e]. As Ie(J) is the smallest ideal with this property, then Ie(J) ⊂ I. Thus,

S−1(Ie(J)) ⊂ S−1I = Ie(S
−1J).
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(2): As R is regular then R is flat as Rp
e

-module. Since R is local we have that R is free over

Rp
e

. Now, if e1, . . . , en is a basis of R over Rp
e

, notice that e1, . . . , en is also a basis of R̂ over

(R̂)p
e

. The result follows from Proposition 14.

Remark 17. Let R be a Noetherian ring of prime characteristic p > 0. Assume R is regular and

F-finite. Here F-finite means that R is finitely generated as Rp
e

-module. Given J ⊂ R, in order

to compute Ie(J), since RQ is free as Rp
e

Q -module, then using Proposition 14 we can compute the

ideal Ie(JRQ), and by the last theorem we have the ideal Ie(J).

Now, the following theorem allows to extend the notion Ie( ) to submodules of free R-modules.

For more details see [41].

Definition 20. Let R be a Noetherian ring of prime characteristic p > 0. Let M ⊂ Rn be an

R-submodule. We define M [pe] as the R-submodule generated by {xpe : x ∈M}

Notice that in the above definition the notation xp
e

makes sense, since for elements x =

(r1, . . . , rn) ∈ Rn we define xp
e

= (rp
e

1 , . . . , r
pe

n ).

The following theorem generalize the operation Ie( ) to submodules of free R-modules.

Theorem 21. Let R be a ring for which the operation Ie( ) is well defined (for example R regular

and F-finite). Let M ⊂ Rn be an R-submodule. Then, there is an R-submodule L ⊂ Rn minimal

with the property M ⊂ L[pe]. This module will be denoted by Ie(M).

Proof. Consider the projection homomorphisms πi : Rn → R, for i = 1, 2, . . . , n. For each i =

1, . . . , n define Ji = {r ∈ R : r = πi(x) for some x ∈ M}. Clearly Ji ⊂ R is an ideal and

M = J1 × · · · × Jn. If L = Ie(J1)× · · · × Ie(Jn), then L ⊂ Rn is an R-submodule and M ⊂ L[pe],

since Ji ⊂ Ie(Ji)[p
e] for i = 1, 2, . . . , n.

Notice that L = Ie(J1)× · · · × Ie(Jn) is the minimal submodule such that M ⊂ L[pe], since if M ⊂
T [pe] for some R-submodule T ⊂ Rn, then with the same notation as above, writing T = T1×· · ·×Tn
the containment M = J1×· · ·×Jn ⊂ T [pe] = T

[pe]
1 ×· · ·×T [pe]

n implies Ji ⊂ T [pe]
i for all i = 1, . . . , n.

Hence, Ie(Ji) ⊂ Ti for every i = 1, . . . , n, and therefore L = Ie(J1)× · · · × Ie(Jn) ⊂ T .

We have the analogous of Proposition 14 to submodules, we omit the proof since it follows

exactly the same lines:

Proposition 15. Let R be a regular ring which is free over Rp
e

. Suppose that e1, . . . , em is a basis

of R over Rp
e

.
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(1) For any R-submodules W1, . . . ,Wk ⊂ Rn, Ie(W1 + · · ·+Wk) = Ie(W1) + · · ·+ Ie(Wk).

(2) For v = (v1, . . . , vn) ∈ Rn, if

vi =

m∑
j=1

rp
e

i,jej

is the unique expression for vi, then

Ie(Rv) = 〈r1,j〉mj=1 × · · · × 〈rn,j〉mj=1

.

As we saw for the case of ideals, for R-submodules of Rn, the operation Ie( ) commutes with

localization and completion. We omit the proof since it follows the same lines of Theorem 20.

Theorem 22. Let R be regular and F-finite and let M ⊂ Rn be an R-submodule.

(1) Let S ⊂ R be a multiplicative system. Then Ie(S
−1(M)) = S−1(Ie(M)).

(2) If R is local and R̂ denotes its completion, then Ie(M̂) = Îe(M).

We finalize this section with a theorem that will be needed later.

Theorem 23. Let R be regular and F-finite. Let U be a n × n matrix with entries in R and let

M ⊂ Rn be an R-submodule. There is a unique R-submodule W ⊂ Rn minimal with the property

that M ⊂W and UW ⊂W [p]. The R-submodule W will be denoted by M?U .

Proof. Consider W0 = M and for i > 0, Wi = I1(UWi−1) + Wi−1. Clearly W0 = M ⊂ W1 ⊂
W2 ⊂ · · · ⊂ Wn ⊂ · · · . As R is Noetherian the last chain of submodules stabilizes at some N , i.e.,

WN = WN+j for all j ≥ 0. Denote WN by W . As WN = WN+1, then W = I1(UW ) + W . It is

clear that M ⊂W , and UW ⊂W [p] since UW ⊂ I1(UW )[p] and as W [p] = I1(UW )[p] +W [p], then

I1(UW )[p] ⊂W [p], and therefore UW ⊂W [p].

Finally, let us see that W defined above is the minimal R-submodule such that M ⊂ W and

UW ⊂ W [p]. In fact, suppose that T ⊂ Rn is an R-submodule such that M ⊂ T and UT ⊂ T [p].

Notice that I1(UT ) ⊂ T , therefore we can see from the way we constructed W that Wi ⊂ T for

all i ≥ 0, since W0 = M ⊂ T , W1 = I1(UM) + M ⊂ I1(UT ) + T ⊂ T , and hence, if we suppose

that Wk ⊂ T then Wk+1 = I1(UWk) +Wk ⊂ I1(UT ) + T ⊂ T . Thus, as W = WN for some N , we

conclude that W ⊂ T .



14. COMPUTATION OF THE F -RATIONAL LOCUS

We start fixing the notation. In this chapter A will be denoted the polynomial ring K[x1, . . . , xn]

where K is a field of prime characteristic p > 0, I ⊂ A a fixed ideal, R will denote the completion

of the localization at a maximal ideal m of A, and T = R/IR.

With our notation, as R = Âm where A = K[x1, . . . , xn] is the polynomial ring, then (R,m) is

a regular local ring of dimension n, and therefore it is Gorenstein. Hence by Theorem 17,

Hd
m(R/IR) ∼= Extn−dR (R/IR,R)∨,

where d = dim(R/IR) = dim(T ).

Now, as we saw in Remark 13, the natural Frobenius map θ : A/I → A/I induces the A-linear

homomorphism θ̃ : A/I [p] → A/I given by the canonical map defined by the inclusion I [p] ⊂ I.

Let P •
B•→ A/I → 0 be any free resolution of A/I. As FA is an exact functor since A is regular,

FA(P •)
B

[p]
•→ FA(A/I) → 0 is a free resolution of FA(A/I) = A/I [p]. Thus, we have the following

commutative diagram

· · · // P 2 B2 // P 1 B1 // P 0 B0 // A/I // 0

· · · // FA(P 2)
B

[p]
2 //

θ̃2

OO

FA(P 1)
B

[p]
1 //

θ̃1

OO

FA(P 0)
B

[p]
0 //

θ̃0

OO

A/I [p] //

θ̃

OO

0

(14.1)

where the map of complexes θ̃• comes from a lifting of the map θ̃.

If P k = Abk , then FA(P k) = Abk , and the matrix D′k that represents θ̃k : Abk → Abk in the

standard basis, can be computed explicitly.

On the other hand, we can compute Extn−dA (A/I,A) using the complex P • → 0 obtained by

removing A/I from the free resolution P •
B•→ A/I → 0, applying the functor HomA( , A) and

taking the (n− d)-th homology. In the same way, we compute Extn−dA (FA(A/I),FA(A)), using the

complex FA(P •)→ 0 obtained removing FA(A/I) from the free resolution FA(P •)
B

[p]
•→ FA(A/I)→
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0, applying the functor HomA( , A) and taking the (n − d)-th homology. Therefore, from the

commutative diagram (14.1) we have the following morphism of complexes:

· · · HomA(Pn−d, A)oo

θ̃∗n−d
��

HomA(Pn−d−1, A)oo

θ̃∗n−d−1

��

· · ·oo

· · · HomA(FA(Pn−d), A)oo HomA(FA(Pn−d−1), A)oo · · ·oo

(14.2)

where θ̃∗n−d is given in the standard basis by the transpose of the matrix D′n−d, which we will

denote by Dn−d. This morphism θ̃∗n−d : HomA(Pn−d−1, A)→ HomA(FA(Pn−d), A) induces a map

between the homologies

Dn−d : Extn−dA (A/I,A)→ Extn−dA (FA(A/I),FA(A)). (14.3)

We notice that since A is regular, then Extn−dA (FA(A/I),FA(A)) can be canonically identified with

FA(Extn−dA (A/I,A)).

Now, from the free resolution P •
B•→ A/I → 0, we can compute a presentation of Extn−dA (A/I,A),

Al
Es×l // As // Extn−dA (A/I,A) // 0 . (14.4)

As FA is an exact functor, then applying this functor to the presentation (14.4) we obtain a

presentation for FA(Extn−dA (A/I,A)):

Al
E[p]s×l // As // FA(Extn−dA (A/I,A)) // 0 .

In this way, we obtain a commutative diagram

Al
Es×l //

Cl×l

��

As //

Us×s

��

Extn−dA (A/I,A) //

Dn−d

��

0

Al
E[p]s×l // As // FA(Extn−dA (A/I,A)) // 0

(14.5)

where the matrices Cl×l and Us×s comes from a lifting of the map Dn−d.

As R is a flat A-module (R = Âm) then R ⊗A Extn−dA (A/I,A) ∼= Extn−dR (R/IR,R). Also, as

FA(Extn−dA (A/I,A)) ∼= Extn−dA (A/I [p], A), then again as R is flat as A-module we have that R⊗A
Extn−dA (A/I [p], A) ∼= Extn−dR (R/I [p]R,R) ∼= FR(Extn−dR (R/IR,R)).

Hence, applying the functor R⊗A to (14.5) we obtain the following commutative diagram:

Rl
Es×l //

Cl×l

��

Rs //

Us×s

��

Extn−dR (R/I,R) //

Dn−d

��

0

Rl
E[p]s×l // Rs // FR(Extn−dR (R/I,R)) // 0

(14.6)
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Note that if we have an A-linear map Al
Es×l→ As given by the matrix Es×l in the standard bases of

Al and As, then when we apply R⊗A we get an R-homomorphism R⊗AAl
Id⊗Es×l→ R⊗AAs, but

identifying R⊗A Ak with Rk, the last R-homomorphism corresponds to Rl
Es×l→ Rs.

Now, applying the Matlis dual ( )∨ = HomR( , ER), where ER denotes the injective hull of the

residue field R/mR, to the diagram (14.6) we obtain the following commutative diagram:

ElR EsR
Ets×loo Extn−dR (R/IR,R)∨oo 0oo

ElR

Ctl×l

OO

EsR
(E[p]s×l)

t

oo

Uts×s

OO

FR(Extn−dR (R/I,R))∨oo

Dtn−d

OO

0,oo

(14.7)

Notice that if the R-linear map Rl
Es×l→ Rs is given by the matrix Es×l in the standard bases of Rl

and Rs, then after applying ( )∨ = HomR( , ER) we obtain the R-linear map HomR(Rs, ER)
λ→

HomR(Rl, ER), where λ(ϕ) = ϕ ◦ Es×l. Now, HomR(Rk, ER) ∼= EkR, where the isomorphism

is given by ϕ 7→ (ϕ(e1), . . . , ϕ(ek)), and with this last identification, the R-homomorphism λ :

HomR(Rs, ER)→ HomR(Rl, ER) correspond to the R-homomorphism EsR
λ̃→ ElR, where λ̃ is given

by the matrix Ets×l, and Ets×l denotes the transpose of the matrix Es×l. This is not difficult to see,

since λ̃(ϕ(e1), . . . , ϕ(es)) = (ϕ(Es×l · e1), . . . , ϕ(Es×l · el)), and if Es×l = [ai,j ]i=1,...,s, j=1,...,l, then

Es×l·ek = (a1,k, . . . , as,k). Thus, (ϕ(Es×l·e1), . . . , ϕ(Es×l·el)) = (a1,1ϕ(e1)+· · ·+as,1ϕ(es), . . . , a1,lϕ(e1)+

· · ·+ as,lϕ(es)). Therefore, λ̃(ϕ(e1), . . . , ϕ(es)) = Ets×l · (ϕ(e1), . . . , ϕ(es)).

On the other hand, by Proposition 10, FR(Extn−dE (R/IR,R))∨ can be canonically identified with

FR(Extn−dE (R/IR,R)∨). Hence, by Proposition 9, Dt
n−d, the transpose of Dn−d, defines a Frobe-

nius map on Extn−dR (R/IR,R)∨.

Since local duality is an isomorphism of functors, i.e., the two functors Hd
m( ) and Extn−dR ( , R)∨

are isomorphic, then the following diagram commutes:

Hd
m(R/IR)

∼ // Extn−dR (R/IR,R)∨

FR(Hd
m(R/IR))

θ̃

OO

∼ // FR(Extn−dR (R/IR,R)∨)

Dtn−d

OO

where the arrow on the left is the natural Frobenius map on Hd
m(R/IR), as defined in Remark

13 (4). Now, as R is a regular local ring, then FR(Hd
m(R/IR)) = S ⊗R Hd

m(R/IR) ∼= Hd
m(S ⊗R

R/IR) ∼= Hd
m(R/I [p]R). In the same way, FR(Extn−dR (R/IR,R)∨) = S ⊗R Extn−dR (R/IR,R)∨ ∼=
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Extn−dR (S ⊗R R/IR,R)∨ ∼= Extn−dR (R/I [p]R,R)∨. Therefore,

Hd
m(R/IR)

∼ // Extn−dR (R/IR,R)∨

Hd
m(R/I [p]R)

θ̃

OO

∼ // Extn−dR (R/I [p]R,R)∨

Dtn−d

OO
(14.8)

is commutative. We have proved the following theorem:

Theorem 24. (With notation as above) The natural Frobenius map on Hd
m(R/IR) is isomorphic

to the Frobenius map induced by Dt
n−d on Extn−dR (R/IR,R)∨.

Consider NJ = 0∗
Hdm(R/IR)

. Recall that when R/IR is reduced and equidimensional, NJ is the

smallest R[θ]-submodule of Hd
m(R/IR) that is annihilated by c2. Applying ( )∨ to the inclusion

NJ ↪→ Hd
m(R/IR) we obtain a surjection

Hd
m(R/IR)∨ → N∨J → 0.

As Hd
m(R/IR) ∼= Extn−dR (R/IR,R)∨, then by the Matlis duality (Theorem 16), Hd

m(R/IR)∨ ∼=
Extn−dR (R/IR,R). Therefore we have a surjection

Extn−dR (R/IR,R)→ N∨J → 0,

where NJ denotes the image of NJ in Extn−dR (R/IR,R)∨. Clearly, since c2NJ = 0 then c2N∨J = 0,

and from (14.8), we see that N∨J is the largest R[Dt
n−d]-submodule of Extn−dR (R/IR,R)∨ that is

annihilated by c2.

Looking at the diagram (14.6), we observe that Extn−dR (R/IR,R) ∼= Rs/im(Es×l), and

FR(Extn−dR (R/IR,R)) ∼= Rs/im(E [p]s×l). Thus, Rs/im(Es×l)
ψ→ N∨J → 0, and therefore we have the

following presentation for N∨J :

Rw
Q //

����

Rs
ψ◦π // N∨J // 0

ker (ψ ◦ π)
, �

::

for some s× w matrix Q. Hence, N∨J ∼= Rs/im(Q). Therefore, we have the following commutative

diagram:

Rl
Es×l //

Cl×l

��

Rs
π //

Us×s

��

Rs/im(Es×l)
ψ //

Dn−d
��

N∨J //

d

��

0

Rl
E[p]s×l // Rs

π // Rs/im(E [p]s×l)
ψ̃ // FR(N∨J ) // 0

(14.9)
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where d = (Dt
n−d|NJ )∨, and N∨J ∼= Rs/im(Q), FR(N∨J ) ∼= Rs/im(Q[p]).

Clearly, im(Q) ⊂ im(Es×l), and as c2N∨J = 0 then c2Rs ⊂ im(Q). Hence, c2Rs + im(Es×l) ⊂ Q.

Now, since d is induced by Us×s on the cokernels, we see that U im(Q) ⊂ im(Q[p]). Summarizing,

if Ω = im(Q), then

c2Rs + im(Es×l) ⊂ Ω, UΩ ⊂ Ω[p], and N∨J ∼= Rs/Ω. (14.10)

We want to find the way to compute the module Ω, what allows us to compute Rs/Ω which is

precisely (O∗Hm(R/IR))
∨.

Denote M = c2Rs+im(Es×l). Since R is a regular local ring, then R is free as Rp−module, and by

Theorem 23, there is a unique R-submodule M?U minimal with the property that M ⊂ M?U

and UM?U ⊂ (M?U )[p]. Note that c2Rs/M?U = 0 since c2Rs ⊂ M?U , which implies that

c2(Rs/M?U )∨ = 0. On the other hand, since im(Es×l) ⊂ M?U , then we have a surjection

Rs/im(Es×l) → Rs/M?U → 0. Notice that the condition UM?U ⊂ (M?U )[p], makes it possible

to define a map λ : Rs/M?U → Rs/(M?U )[p] such that the diagram

Rl
Es×l //

Cl×l

��

Rs
π //

Us×s

��

Rs/im(Es×l)
ψ //

Dn−d
��

Rs/M?U //

λ

��

0

Rl
E[p]s×l // Rs

π // Rs/im(E [p]s×l)
ψ̃ // Rs/(M?U )[p] // 0

commutes, in other words, Dn−d induces the map λ. Therefore, applying the Matils dual ( )∨ we

obtain the following commutative diagram

0 // (Rs/M?U )∨ // (Rs/im(Es×l))∨

0 // (Rs/(M?U )[p])∨

λ∨

OO

// (Rs/im(E [p]s×l))∨

Dtn−d

OO

where λ∨ = Dt
n−d|(Rs/(M?U )[p])∨ . Hence, (Rs/M?U )∨ is a R[Dt

n−d]-submodule of (Rs/im(Es×l))∨

that is annihilated by c2.

Now, by the minimality of M?U , M?U ⊂ Ω. Thus we have a surjective map Rs/M?U → Rs/Ω→ 0,

and therefore an injection 0→ (Rs/Ω)∨ → (Rs/M?U )∨. But (Rs/Ω)∨ = NJ is the largest R[Dt
n−d]-

submodule annihilated by c2, which implies that (Rs/Ω)∨ ∼= (Rs/M?U )∨. We have just proved that

computing the R-submodule M?U , we are also computing N∨J ∼= (O∗
Hdm(R/IR)

)∨.

Finally, by the persistence of tight closure under localization and completion (See [33], pages 41,48),
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in order to compute the test element c ∈ R/IR, it is enough to compute a test element c ∈ A/I.

Therefore, we can assume that c ∈ A/I.

Now, consider the A-submodule W = c2As + im(Es×l) ⊂ As (recall that the matrix Es×l has co-

efficients in A). In order to compute the R-module M?U , we need first to compute the R-module

I1(M), where remind that M = c2Rs + im(Es×l) ⊂ Rs. By Theorem 22, since M = WR, we have

that I1(M) = I1(W )R. Therefore, it is enough to compute I1(W ), where W = c2As+im(Es×l). As

we saw in the proof of Theorem 23, we constructed the A-submodule W ?U , definining the submod-

ules Wi = I1(UWi−1)+Wi−1 and taking W ?U = WN , where N is an integer such that WN+i = WN

for all i ≥ 0. Hence, it follows that M?U = W ?UR.

Now we state our main theorem.

Theorem 25. Let A = K[x1, . . . , xn] be the polynomial ring in n-variables over a field K of prime

characteristic p > 0, and let I ⊂ A be an ideal such that A/I is reduced and equidimensional. Let

θ : A/I → A/I be the natural Frobenius map on A/I, and let θ̃ : A/I [p] → A/I be the corresponding

A-linear map induced by θ, defined by the inclusion of ideals I [p] ⊂ I. Let Dn−d : Extn−dA (A/I,A)→
Extn−dA (A/I [p], A) be the map constructed in (14.3), and let Us×s, Cl×l and Es×l be matrices as in

(14.5). Then, for any maximal ideal m ⊂ A, if R denotes the completion R = Âm, the Matlis

dual over R of the tight closure of zero O∗
Hdm(R/IR)

in Hd
m(R/IR) can be computed globally as the

cokernel W ?U , i.e., (O∗
Hdm(R/IR)

)∨ ∼= Rs/W ?UR, where W = c2As + im(Es×l).

Proof. The result follows immediately from the discussion above.

Definition 21. A Noetherian ring R of prime characteristic p > 0 is said to be F-rational if the

ideals generated by parameters are tightly closed. By parameters in R we mean a sequence of

elements x1, . . . , xk in R such that for each prime ideal P ⊂ R containing them, their images in RP

form part of a system of parameters.

Now, in the following theorem we present two important properties of F-rational rings. (See

[28], Theorem 4.2, and [29])

Theorem 26. (1) A local ring which is a homomorphic image of a C-M ring is F-rational iff it

is equidimensional and the ideal generated by one system of parameters is tightly closed.

(2) If R is an excellent local ring (for example R a local complete ring) and J is an ideal generated

by parameters of R then J∗S−1R = (JS−1R)∗ for any multiplicative system S of R.

As a consequence of Theorem 25, and Theorem 26, we have the following Corollary:
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Corollary 4. Let A = K[x1, . . . , xn] be the polynomial ring in n-variables over a field K of prime

characteristic p > 0, and let I ⊂ A be an ideal such that A/I is reduced and equidimensional. Then

the F-rational locus of A/I is open. Moreover, this locus can be defined as the complement of the

support of As/W ?U in the Zariski Topology, where W = c2As + im(Es×l).

Proof. Denote N = As/W ?U and J = AnnA(N). The support of N is determined by V (J) = {J ⊂
P : P ⊂ A prime ideal}. Let P be a prime ideal of A that does not contain J , i.e., P ∈ V (J)c, and

let us show that (A/I)P is an F-rational ring. Since A/I is a finitely generated algebra over a field,

P is the intersection of the maximal ideals that contains it. Thus we may choose a maximal ideal

m in A that contains P and such that J is not contained in m. Therefore, (As/W ?U )m = 0 which

implies that Rs/W ?UR = 0, where R is the completion of Am with respect to the maximal ideal m,

and by Theorem 25, 0∗
Hdm(R/IR)

= 0. Hence, R/IR is F-rational, and this implies that Am/IAm is

F-rational (See [33], page 48), thus (A/I)m is F-rational, and therefore (A/I)P is F-rational, since

being F-rational descends to localization (See [33], page 41). Reciprocally, assume that (A/I)P ∼=
AP /IAP is F-rational. If R denotes the completion of AP with respect to the maximal ideal PAP ,

then R/IR is also F-rational (See [33], page 48). Therefore, 0∗
HdPR(R/IR)

= 0, where d = dim(R/IR).

Hence, by Theorem 25, Rs/W ?URs = 0. Notice that Rs/W ?URs ∼= (As/W ?U )P ⊗A ÂP and ÂP is

faithfully flat as A-module, then (As/W ?U )P = 0. Thus, P /∈ V (J).

This proves that the F-rational locus of A/I is V (J)c, which is open in the Zariski topology.

14.1 An algorithm for the computation of the F -rational locus

Let A = Zp[x1, . . . , xn] be the polynomial ring over the field Zp, and let Q ⊂ A be a prime ideal.

Suppose that A/Q has dimension d.

In this section, we show how to compute algorithmically the F-rational locus of A/Q.

We divide the procedure in several steps:

(1) We compute a free resolution of A-modules for A/Q:

· · · // Pk
Br // Pk−1

Bk−1 // · · · // P1
B1 // P0

B0 // A/Q // 0

where Pi = Abi .

(2) Since A is a regular ring, then FA( ) is an exact functor, and therefore by applying the

functor FA( ) to the last resolution, we obtain a free resolution of A-modules for A/Q[p]:

· · · // Pk
B[p]
r // Pk−1

B
[p]
k−1 // · · · // P1

B
[p]
1 // P0

B
[p]
0 // A/Q[p] // 0
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(3) Remember that the Frobenius map θ̃ : A/Q[p] → A/Q is the A-linear map induced by the

inclusion of ideals Q[p] ⊂ Q. In this step we construct a lifting of the map θ̃:

· · · // P 2 B2 // P 1 B1 // P 0 B0 // A/Q // 0

· · · // P 2
B

[p]
2 //

θ̃2

OO

P 1
B

[p]
1 //

θ̃1

OO

P 0
B

[p]
0 //

θ̃0

OO

A/Q[p] //

θ̃

OO

0

(14.11)

Notice that we can compute the matrices that represent the morphisms θ̃i in the canonical

bases of Pi = Abi . To be more precise, the morphism θ̃0 = id, and hence, the first square on

the right of (14.11) looks like:

A
π // A/Q // 0

A

id

OO

π // A/Q[p] //

θ̃

OO

0

If Q = (f1, . . . , fb), then the second morphism θ̃1 is given in the canonical basis of Ab by the

b× b matrix

V1 =


fp−11 0 0 · · · 0

0 fp−12 0 · · · 0
...

...
... · · ·

...

0 0 0 · · · fp−1b


In other words, the square

Ab
B1 // A

Ab

V1

OO

B
[p]
1 // A

id

OO

commutes, where B1 = [f1, . . . , fb], and B
[p]
1 = [fp1 , . . . , f

p
b ].

Going on in this way, we compute the matrix Vi that represent the morphism θ̃i. Hence, we

obtain a commutative diagram

· · · // Ab2
B2 // Ab1

B1 // A
π // A/Q // 0

· · · // Ab2
B

[p]
2 //

V2

OO

Ab1
B

[p]
1 //

V1

OO

A
π //

id

OO

A/Q[p] //

θ̃

OO

0

(14.12)
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(4) By removing A/Q and A/Q[p], and applying the functor HomA( , A) in the above diagram,

we obtain the following commutative diagram:

· · · HomA(Abn−d , A)oo

V tn−d
��

HomA(Abn−d−1 , A)
Btn−doo

V tn−d−1

��

· · ·oo

· · · HomA(Abn−d , A)oo HomA(Abn−d−1 , A)
(Btn−d)

[p]

oo · · ·oo

where V tn−d is the transpose of the matrix Vn−d computed in (3), and Btn−d is the transpose

of the matrix Bn−d.

The matrix V tn−d induces a map in the homologies

Dn−d : Extn−dA (A/Q,A)→ Extn−dA (A/Q[p], A).

(5) From the free resolution P •
B•→ A/Q → 0, using Groebner bases (see [3], page 366), we can

compute a presentation of Extn−dA (A/Q,A),

Al
Es×l // As // Extn−dA (A/Q,A) // 0 . (14.13)

As FA( ) is an exact functor, then applying this functor to the presentation (14.13) we obtain

a presentation for Extn−dA (A/Q[p], A):

Al
E[p]s×l // As // Extn−dA (A/Q[p], A) // 0 .

In this way, we obtain a commutative diagram

Al
Es×l //

Cl×l

��

As //

Us×s

��

Extn−dA (A/Q,A) //

Dn−d

��

0

Al
E[p]s×l // As // Extn−dA (A/Q[p], A) // 0

(14.14)

where the matrices Cl×l and Us×s comes from a lifting of the map Dn−d.

(6) In this step we compute the test element c. Since A/Q is a domain that is finitely generated

as a Zp-algebra, and Zp is a perfect field (Zpp = Zp), then if Q = (f1, . . . , fb), any nonzero

element of the ideal J (A/Q) generated by the (n − d) × (n − d) minors of the Jacobian

matrix [∂fi/∂xj ] is a test element of A/Q. Furthermore, this remains after localization and

completion (See [31], page 195).

Therefore, we can take c as any nonzero element of the ideal J (A/Q) defined above, and this
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element is a test element of A/Q. If m ⊂ A is any maximal ideal, and if we denote R the

completion at m of Am, then c is also a test element of R/QR.

(7) Consider W = c2As + im(Es×l) ⊂ As. Let us see how to compute the module W ?Us×s . Using

Groebner bases we find generators g1, . . . , gk for W . Since I1(W ) = I1(g1) + · · · + I1(gk), it

is enough to compute I1(h) for any h ∈ As. Suppose that h = (h1, . . . , hs) where hi ∈ A, for

i = 1, . . . , s.

Suppose that

hi =
∑

α=(α1,...,αn)

(aα,i)x
α1
1 · · ·xαnn ,

using the division algorithm, any monomial of hi can be written as (aα,i)x
β1p
1 · · ·xβnpn xγ11 · · ·xγnn =

(aα,ix
β1

1 · · ·xβnn )pxγ11 · · ·xγnn , where γj < p for j = 1, 2, . . . , n, since Zpp = Zp. Therefore,

hi =
∑

γ=(γ1,...,γn)
γi<p

rpγ,ix
γ1
1 · · ·xγnn ,

where rγ,i ∈ A.

As we discuss in section 13.5, this writing is unique, and I1(h) = 〈rγ,1〉γ × · · · × 〈rγ,s〉γ .

This shows how to compute the module I1(W ) ⊂ As. Finally, in Theorem 23, we saw that

the module W ?Us×s can be constructed taking W0 = W , W1 = I1(W ) + W , . . . , Wi =

I1(Wi−1)+Wi, and we have just seen that the ideals I1(Wi) can be computed algorithmically.

Therefore, we can compute the modules W0 ⊂W1 ⊂ · · · ⊂Wk ⊂ · · · . Since As is Noetherian,

there is N > 0 such that WN = WN+j for all j ≥ 0. Also notice that if Wi = Wi+1 for

some i, then Wi = Wi+j for all j ≥ 0. Hence, we can check algorithmically if W0 = W1 or

W1 = W2 or ....WN = WN+1. In this way we can find N > 0 such that WN = WN+1, and

WN = W ?Us×s .

(8) By Corollary 4, W ?Us×s defines the F-rational locus of A/Q.
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