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Executive summary

The mixture models are widely used in cases when there are elements that come from di-

verse populations, mixed in a superpopulation. i.e. the proportions of expresed genes, and

the weight of colombian $100 coins, year 1994. There are two main approaches for the mo-

delling of mixture models: the bayesian and the clasical method. In the bayesian approach,

the data are modelated and fitted to a given distribution, for example, the Dirichlet distri-

bution. Further, the data are clustered for the posterior analysis. The classical method is

the maximum likelihood estimation, using the Expectation-Maximization (EM) algorithm.

This last method needs, as initial data, the amount of populations and their proportions

in the superpopulation. Often, these data are very difficult to know or measure, because of

the unknown nature of the problem. For that reason, in this work we propose the use of

evolutive algorithms, such as genetic algorithms, simulated annealing and taboo search, to

estimate the parameters of the mixture models. We propose an algorithm for the comparison

of evolutive and traditional methods, and we illustrate the use of this algorithm with a real

application. We found that the evolutive algorithms are a competitive option to estimate the

parameters in mixture models in the cases when the populations in the mixture follows a

gamma distribution, the weights of the populations in the mixture are even and the sample

size is bigger than 100 items. For the mixture of normal distributions and the estimation of

the number of populations in a mixture, the traditional method is a better option than the

genetic algorithm.

Keywords: Mixture estimation, Statistics, Data analysis, Mixture data, Mixture esti-

mation, Evolutive algorithms, Genetic algorithms.

Resumen ejecutivo

Los modelos de mezclas son ampliamente usados en casos donde se tienen elementos de

poblaciones diversas, unidos en una super población. Como ejemplos de éstos se encuentran

las proporciones de genes expresados y el peso de monedas de COP$100 del año 1994. Para

su modelación se han utilizado enfoques bayesianos, donde se utiliza la modelación de los

datos y el ajuste a distribuciones, por ejemplo, la Dirichlet para la agrupación de los datos y

su posterior análisis. Otro enfoque es el clásico, el cual se basa en la estimación con máxima

verosimilitud, usando el algoritmo EM (Expectation - Maximization). Éste último necesita

como datos iniciales la cantidad de poblaciones existentes y sus proporciones, datos que en

la vida aplicada muchas veces son desconocidos. Es por esto que se proponen los algoritmos

evolutivos, como lo son los algoritmos genéticos, simulated annealing y búsqueda tabú como

métodos que pueden servir para encontrar los parámetros de estimación de los modelos de

mezclas. Para el desarrollo de este estudio se desarrolló un algoritmo para la comparación de

métodos evolutivos y tradicionales y se incluye un ejemplo de aplicación. Se encontró que los

algoritmos evolutivos son una opción competitiva para la estimación de parámetros en distri-



x

buciones de mezclas en los casos cuando las poblaciones en la mezcla siguen una distribución

gamma, los pesos en las poblaciones son balanceados y el tamaño de muestra es mayor de

100 items. Para las mezclas de distribuciones normales y la estimación del número de po-

blaciones en una mezcla, el método tradicional es una mejor opción que el algoritmo genético.

Palabras claves: Estimación de mezclas, Estad́ıstica, Análisis de datos, Datos de mez-

clas, Algoritmos evolutivos, Algoritmos genéticos.
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1. Introduction

The mixture models are statistical representations of an overall distribution with two or

more subpopulations. The main idea behind these models is to represent the heterogeneity

of the data. [22] In real world, some examples are the contribution of distinct populations

on a mixture of organisms for selection or breeding, or the weights of the COP$100 coins,

manufactured on 1994, where it is observed that some coins are heavier than others.

For the estimation of the parameters in mixture models, two approaches are widely used: the

bayesian approach and the classical approach. In the bayesian approach the data is collected,

plotted, smoothed and then, a given distribution, as the Dirichlet distribution, is fitted to

them. Further, the data are clustered and analysed. The classical approach uses maximum

likelihood as the estimator, and uses the Expectation-Maximization (EM) algorithm to find

all the unknown parameters. But, for that, a set of initial values must be given, such as the

total number of subpopulations and the proportions in the overall distribution. More details

can be found on Section 2. Those initial parameters are, often, difficult to find, because of

the nature of the problem or the lack of previous data, and sometimes it can be suggested or

recommended with the experts criteria [22], although as the method to find the estimators,

in this project, we propose the evolutive algorithms as a method to solve this problem.

Evolutive algorithms are methods of stochastic search, that can work in very complex pro-

blems without the assumptions of the traditional methods, such as the continuity and the

existence of derivatives. Some examples are Simulated Annealing, Taboo Search and Genetic

Algorithms. The first one, Simulated Annealing, works as an analogy of the change of tempe-

rature of the materials under an annealing process. Taboo Search uses a structured method

to find the maximum of a function avoiding local optima by imposing restrictions or ”taboo’

and searching on the entire parameter space. Finally, Genetic Algorithms uses biological

concepts as evolution, crossbreeding and selection to find the maximum of a function.

This study is the comparison between traditional and evolutive methods for the estimation of

the parameters in mixture models. This study uses the EM algorithm and Genetic algorithm

to illustrate the traditional and evolutive methods respectly, both explained in Chapter 2.

An algorithm is proposed, developed in R [26] and is described in Chapter 3. The simulation

study and the results are described in Chapter 4 and an application to real data is evaluated

in Chapter 5. Finally, the conclusions of this study can be found in Chapter 6.



2. Background

A mixture is defined as a collection of “data arising from two or more populations mixed

in varying proportions”[22]. Some examples of mixtures are given by Reynolds and Tem-

plin, [29], that includes estimation of the relative contributions of distinct populations in a

mixture of organisms, or the estimation of genes from source of parental populations, and

estimate contributions from the diet of wild animals, changes in gene expressions [19], ste-

llar populations [24], McCrea et al. used mixture models for analyzing the probabilities of

annual survival for wild animals [21]. Another practical example, is the data collected in the

Universidad Nacional de Colombia sede Medellin, the estimated density is showed in figure

2-1, where we can see this distribution as a multimodal one, a main concentration on the

center, but with a smaller concentration on the right tail. This, may indicate the presence of

an non-homogeneous sample, or a mixture of samples. The mixtures have important appli-

cations, e.g., in pattern recognition, image processing, speech recognition, clasification and

clustering, among others [14].

As mentioned by McLachlan and Basford, [22, ], the data of a mixture model can consist of p

atributes that are measured on each of n entities. The objetive is to perform a segmentation

of these entities into g groups, so the entities within a group are homogeneous. The data

can be represented as x1, . . . , xn where each xj is a p-dimensional vector, arising from a

superpopulation G, which is a mixture of a finite number of populations, g, denoted as

G1, . . . , Gg in some proportions π1, . . . , πg, respectively, where:

g∑
i=1

πi = 1, πi > 0, (i = 1, . . . , g)

The probability density function (p.d.f) of x in G can be represented in the finite mixture

form

f(x;φ) =

g∑
i=1

πifi(x; θ) (2-1)

where fi(x; θ) is the p.d.f. of the Gi-th population, and θ denotes the vector of unknown

parameters associated with the parametric forms adopted for the g densities. It is assumed

that the vector φ = (π, θ)′ of unknown parameters belongs to some parameter space Ω
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Figure 2-1.: Weights from year 1994 Colombian $100 coins. Source: Juan Carlos Correa

from the Department of Statistics, National University of Colombia at. Me-

delĺın

2.1. Traditional method for the estimation of the

parameters in mixture models

Some methods have been developed, to identify a mixture, including graphical, Bayesian

approach, method of moments and the classical, maximum likelihood, approach [22].

The Bayesian approach incorporates prior information about the φ vector of parameters,

taking these values from the criteria of the expert, labeling some observations as it is supposed

to belong to a starting population [6]. The evaluation takes the form:

E(θ|Xn) =
E(θ|Xn−1)f(Xn|θ)

f(Xn|Xn−1)

The computation of the posterior unlabeled observation is difficult due to the form of the

likelihood, because the number of terms grows exponentially with the sample size, n, and

generally cannot be solved using analytical methods. Because of, Crawford et al. [6] propo-

sed a modified Laplace method for the estimation of the parameters in a mixture model.

One proposed technique is to take samples of the distribution and use a kernel technique

to smooth the sample [38]. Another, as suggested by [19] is a nonparametric Bayesian ap-

proach, using a mixture of normal probabilities. In practice, the most used non-parametrical

hierarchical mixture model, is the mixture of Dirichlet processes. With this model, a random

discrete probability distribution is used as a mixing measure, and is the tool for modelling

the clustering behavior [1]. For this, a non parametrical recursive estimator of the mixing
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distribution was proposed by [25]. A problem with the Bayesian approach to estimate the

parameters is the so called label switching, that is the ”nonidentifiability of the components

under symmetric priors”. For this problem, Stephens proposed the relabelling algorithm [35].

For posteriors approximations, one technique consist in using response surface concepts,

with high level polynomials [22]. Snee shows how this model can be reduced to have a good

approximation to the results, making the entire model easier to understand and to compute.

Also, it is proposed another technique, the ratio model, that can be used when “one or more

of the components are limited to small ranges in the mixture”[34].

One of the most common approaches is the maximum likelihood estimation [22]. The li-

kelihood estimation uses the EM algorithm (E for expectation, and M for maximation) of

Dempster, Laird and Rubin [22]. To run this algorithm, it is needed some starting values

for φ, φ(0) on the equation 2-1, or to initially partition the data into the specified number of

groups g, and take φ(0), as the estimate of φ based on this partition, as it represented the

true grouping of the data [22].

To find and evaluate φ(0) and φ, research has been conducted. For instance, Agha and

Ibrahim [3] proposed an algorithm to find the Maximum Likelihood Estimation of Mixtures

of Distributions., [29] developed a conditional likelihood ratio test of mixture homogeneity.

[10] proposed a simultaneous estimation of the parameters under squared-error loss. [11]

proposed a constrained nonparametric Maximum-Likelihood Estimation.,[14] proposed using

a trimmed likelihood function to find the parameters when the mixture model has spurious

outliers. [8] proposed an estimator of the number of populations that compose a mixture.

Those methods, for their requisites, as the initial values, are very difficult to apply into

the real world. For that, in this work we suggest to use evolutive algorithms as a possible

solution to find the value of the parameters in a mixture model. Some of these algorithms

are described in the next section.

2.2. Optimization methods

When we want to optimize something, we want to make it better. This apply in every field of

nature and human knowledge. To optimize something, we can use a function that describes

the situation to optimize, and solve it using mathematical methods, or use heuristic methods.

Some heuristic methods can be applied when an optimal solution is very complex to find,

when the solution is sensible to some changes in the original data or when the function to be

optimized does not fulfill the mathematical requisites as being continuous and have a known

derivative, even when the function to be optimized is unknown [17] or when the available re-

sources, such as computational time, are not sufficient to run a complete optimization [9]. A

few examples of tools used by heuristic methods are: problem decomposing, that is dividing

the problem into smaller spaces and find an optimal solution to each space, next step is to

join the solutions together to find the general optima. Another method is using an inductive

approach, based on generalization or taking the solution from a similar problem. Some other
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method is to reduce the solution space, this can be done, for example by removing the points

that do not satisfy the problem constraints or generate random solutions and selecting the

best one [33]. The simplest heuristic algorithm, the so called Exhaustive Search: This met-

hod searches in the entire space. This guarantee to find the optimal solution, but it has the

highest cost among the optimization methods [17], another is stochastic optimization, on

which we use randomness in a constructive way. We look for an optimal x in the space S

such as f(xoptim) ≤ f(x) for all x ∈ S. [13]. Another algorithm is the Nelder-Mead Downhill

Simplex Method: This method create a simplex (the most elementary geometrical figure in

a space of N dimensions), and then move it until it surrounds the minimum, and then con-

tracting it until it is within an acceptable error. Optimization Based on Line Minimization,

an algorithm begins at some random point on the surface, chooses a direction to move, then

moves in that direction until the cost function begins to increase.

A problem with heuristic methods is that due to its simplicity, it might be stuck onto

local optima. To overcome this issue, metaheuristics have been developed. According to [33]

a metaheuristic is ”An iterative master process that guides and modifies the operations

of subordinate heuristics to produce efficiently high-quality solutions”. Some metaheuristic

methods include: Multilevel refinement, Beam search, Taboo search, Simulated annealing,

Variable neighbourhood search, Guided local search, Multistart constructive approaches, Ant

colony search, Simulated annealing and Natural optimization: These algorithms also head

downhill from a starting point. These methods generate new points in the search space by

applying operators to current points and statistically moving toward more optimal places

in the search space. Some of these include: genetic algorithm, simulated annealing, particle

swarm optimization, ant colony optimization, and evolutive algorithms [13].

2.2.1. Local Search

The local search (LS) algorithm, is a recurrent algorithm that starts with a given initial X0

and it moves to an Xt given a delta, δ criteria [13] . It is the simplest optimization method,

works as shown in figure 2-2 and it is known to have several disadvanges, such as:

Stopping when it finds a local maximum

Its results depend on the starting value X0

It does not have a stopping criteria, given by computational time. It means that the

algorithm might run forever, if it does not find a local optima.

Because of those flaws, some improvements have been suggested by [13] such as methods

that allow “jumping”when finding a local optima, and in order to search for several initials

configurations or X0
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Start

Define X=Xo  
Define delta 
Define f(X)
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Y=X+delta
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Evaluate f(X)

Is 
f(Y)>=f(X)?

Make X=YYes

Choose X as 
the optimal 

value

No

End

Local Search Algorithm

Figure 2-2.: Local Search Algorithm. Source: build by the authors
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cooling 
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the optimal 

value

End

Yes

No

Simulated Annealing Algorithm

Figure 2-3.: Simulated Annealing Algorithm. [13]

2.2.2. Simulated Annealing

This computational algorithm, first proposed by Metropolis [23] uses an analogy of the

transformation on a material configuration under a temperature change. This optimization

method avoids getting stuck on local optima by searching on the neighbors and accepting

”worse”moves, according to a given temperature and a cooling schedule, which controls the

probability of jumping to worse moves. The algorithm is shown in figure 2-3

For this basic algorithm Fouskakis and Draper [13] recommend some improvements, as to

make temperature changes according to rejections or acceptances, rising it or making the

temperature fall, respectively; to use an heuristic technique to find initial configurations, and

making several parallel runs to further improvement.
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2.2.3. Taboo Search

Taboo search is an heuristic method first proposed by Glover [15], and its goal is to scape

from local optima. This algorithm also tries to avoid getting stuck on infinite loops by im-

posing restrictions, using an iterative framework divided into three steps: Preliminar search,

intensification and diversification. In the first step, the algorithm begins in a point and

searches into its neighbours for the maximal value into the objective function. When the

algorithm can not find a neighbour with better performance, it moves to the neighbour with

the best value, aside from the point where it stands, and forbids to go back by saving the

previous move onto the taboo list. This step is done until a given number of iterations is

reached. The next step is intensification, where this algorithm looks for a better solution,

starting from the best move in the taboo list. This step is made a fixed number of iterations.

Finally, in the diversification step, the algorithm looks for the most common moves marked

as taboo on the taboo list, and looks into regions unexplored. This algorithm, as described

by [13] is shown in figure 2-4.

As noticed by [13], the taboo list size must be chosen very carefully, because if this value is

very small, the algorithm might be stuck on a loop, however if this parameter is large, the

search might have a big number of restrictions and, for that, it could not give a satisfactory

result. For that, the authors suggest using a size of 7 or
√
p, being p the length of the string

to be optimized.

2.2.4. Genetic Algorithms

Genetic algorithms (GA) are stochastic search models [40], first proposed by Holland (1975)

in [13]. These models work as an analogy to Darwinian evolution, with their structural

blocks, chromosomes, and making those evolve by selection, crossover and mutation [9].

The innovations proposed were ”using bit string representations, proportional selection and

crossover as the main operators”[32]. To implement a GA, first we must know the function

to be optimized; later, a set of n chromosomes of length p are generated at random. The next

step is to evaluate the fitness for every chromosome, and to arrange them by pairs, making

the most fitted more likely to crossover, and there is a chance to their offspring to mutate.

Later, only the most fitted between parents and their offspring are allowed to continue, and

new chromosomes are generated. This is explained in figure 2-5.

In general, the parameters for GA are: population size or n, number of iterations or gene-

rations t, crossover probability pc, mutation probability pm, and the objective and fitting

function, f(x) and g(x), respectively, Czarn et. al. [7], found that crossover and mutation

rates are statistical significant parameters, while the interaction within those two parameters

is not, and that the best values for mutation rate lies from 0.0511 and 0.2092. [13] recom-

mends the following configurations: pc > 0,3, pm < 0,1, and in some situations, they suggest

using pc = 0,6 and pm = 0,01

The domain of the most optimization problems is R, but often the GA look for the opti-
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Figure 2-4.: Taboo Search Algorithm. Source: build by the authors



10 2 Background

mization of binary integers. [30] suggests to represent the real valued solution as a binary

sequence, and then mapping that onto the real numbers again. For that, if we were looking

for a solution onto the space [−d, d], then, for −d, we can use the binary sequence of length

D, 00..,000, and 11..,111 will be d. Adding a binary 1 to a previous number, increases its

value by d
2

D−1
.

Although, it has been explained the basic GA, there are several modifications that can be

included, as those proposed by Fouskakis and Draper [13], such as altering the selection

mechanism for the most fitted chromosomes, adjusting the value from the fitting function

when the children are worst fitted than the parents, and change the crossover operations.

In order to work, GA have less requisites than other mathematical optimization methods, for

example: strict continuity, differentiability and convexity. That is the reason why, in general,

it can be said that the results obtained by GA are weaker, although very good, compared

to those obtained by mathematical methods [17]. However, when traditional (mathematical)

approaches fail, GA can perform better, this is because GA takes a fixed point on the surface

as a potential solution (chromosome), that with mating (crossover) and mutation can explore

different points on the same space, and those points being evaluated by the fitness functions

makes the fitness ratio increase for every generation, making the solution closer to the real

one [30]. But, GA iskm 1—j intensive on the use of computational time and the parameters

must be chosen carefully, to avoid getting stuck on a local optima, specially if the function

is very sinuous, when the function has a lot of local maximum, or when the function have a

big local maximum [30]

2.2.5. Applications in Statistics

Some application of Evolutive Algorithms to problems in statistics will be discused in this

section, for example, [30] makes comparison of the performance of GA in a deterministic

problem with no solution using mathematical approach, a problem of multiple regression, the

estimation of the parameters in a logistic regression and finally, they estimate the parameters

of a linear model using a robust criteria. Another approach to solve statistical problems via

genetic algorithms was proposed by [36], who uses GA for outlier detection and variable

selection in linear regression models, concluding that GA are a good approach for this type

of situations, avoiding potential difficulties of smearing and masking.

In R [26], some packages have been developed to use Genetic Algoritms, In [32] some packages

are listed in the appendix such as gafit, galts, mcga, rgenoud, genalg and DEoptim and

a new one is proposed, GA. A review of these packages can be seen in Appendix A

For the purpose of this research, simulated data will be used for the experiments, following

the steps proposed by Santner et. al (2003) [31]:

1. To identify the data to collect.

2. To design the experiment.
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Figure 2-5.: Genetic Algorithm. Source: build by the authors
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3. To execute the experiment for the final step that is to analyze the resulting data.

A comparison between the results of metaheuristic methods will be made, to evaluate their

performance against the optimal solution or some benchmark and evaluate the computational

requirements to find the solution [33]. When comparing an heuristic method to another, it

is common to evaluate fitness against time to find the best run, but, as noticed by [20],

more rigorous methods can be applied. For Genetic Algorithms, they propose comparing

the medians with non-parametric tests or use statistical inference based on ranks, because

parametric methods as ANOVA or t-student need the sample to be evaluated is a sequence

of identically distributed values, and also, the data has to be independent, a requisite that

is not fulfilled because of the evolutionary method, where a generation depends of the one

before them.



3. Algorithm

The objective of this chapter is to explain the algorithm developed for this research, to

achieve a full understanding of how the data were collected and analyzed, and why the

conclusions of this research are valid.

First at all, in this project the factors used for running the simulations are:

Distribution of the data

Number of populations in the mixture

Number of populations in the mixture known or unknown

Sample size

Separation of the distributions: We chose to test the distance between the popula-

tions to compare how can the methods detect a mixture when the distance between

the means or shape parameters in densities, for the mixture of normals and gamma,

respectively, exceed two or more standard deviations. The distance is measured bet-

ween the means, for the mixture of normal distributions, and the shape parameter in

mixtures of gamma distributions. [28]

Populations weight on the sample

Some model assumptions for the simulations in this work:

The distributions came from populations with the same variance

The EM algorithm was used to illustrate traditional methods

Genetic Algorithm was used to illustrate the evolutive algorithms

The initial values for the EM algorithm were fixed as the real value + random number

Two generic algorithms were used in this work. Both were made using R [26]. One was used

for the known number of distributions and it is described on figure 3-1 on page 15, because

we can compute the error on the estimation for every parameter, and another when the

number of populations was unknown, Figure 3-2 on page 18, because it needs a different

approach.
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3.1. Algorithm for when the number of populations is

known

The algorithm for when the number of populations is known is described in figure 3-1. The

tasks on each activity are as follows:

1. Define starting parameters: This algorithm needs some parameters to start. These

parameter are

k number of populations

π vector of the population weights for the k populations, such as
∑k

i=1 πi = 1

θi=1...kvector of the parameters for each population. For the normal distribution,

for example θi = (µi, σi)

Number of iterations. In this work it is used 1000 iteration for each simulation

because is a common number in simulations experiments

Set the seed to control the random number generation

n Sample size of the data to be evaluated

2. Create the data for the simulations: For the simulations the data were created

following the next steps:

Set population size. The number of data in the population i, ni, is created at

random, where
∑
ni = n, for every simulation. The number of data in each po-

pulation ni follows a multinomial distribution as Multinom(n, πi . . . k− 1) where

n is the size of the sample, k is the number of populations in the mixture, and π

is the vector of the weights

Generate ni random data from the population with parameters θi. These data are

the mixture of data

3. Set starting values for the traditional algorithm: The EM algorithm needs some

initial values for the πi and θi. For the simulations, the initial values are set as the

θi + random∆.

4. For the unknown number of populations Set the initial number of populations.

This task is accomplished using the Gap Analysis proposed by Tibshirani (2000) [27].

For this task the package lga [16] is used.

5. Estimate the parameters using the traditional method: This estimation is made

using the library mixtools [4] from the software R [26], to compute the Expectation

maximization method, described in Section 2.2 in page 2.2



3.1 Algorithm for when the number of populations is known 15

Start

End

1. Define starting 
parameters

2. Create the data 
for the simulation

3. Define starting 
values for the 

algorithm

4. Estimate the 
parameters using 
traditional method

Estimation 
Method?Traditional method
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Figure 3-1.: Algorithm when the number of populations is known. Source: build by the

authors
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6. Calculate the error: The estimation of the error. This algorithm use a percentage

error = |θ−θ̂|
θ
∗ 100 %

7. Define starting values: For the evolutive method, genetic algorithm, the following

parameters needs to be set:

Chromosome length. This value is set as n

Minimum and maximum values for the chromosomes: These values are set as 0

and k-1, because the populations are separated according to this value

Mutation chance. In this work a mutation chance of 0.05 is fixed, as sugested by

[13]

8. Segregate the data into k populations: The data are segregated into k populations

according to the value of the chromosome

9. Estimate the parameters for each population and optimize: The algorithm

estimates the parameters using a maximum likelihood fitting for every population.

This task is made using the library MASS. [37]. The next step is to maximize the

likelihood using genetic algorithms, this is accomplishes using the library genalg [39].

The estimators are the following for the mixture of normal populations:

µ̂ =
1

n

n∑
j=1

xj

and

σ̂2 =
1

n

n∑
j=1

(xj − µ̂)2

and for the mixture of gamma populations:

θ̂ =
1

kN

N∑
i=1

xi

and

ψ(k) =
Γ′(k)

Γ(k)

the digamma function, that needs to be solved numerically.

10. Print results: The results are shown as graphics for the estimation of every parameter.

Also, the results of every iteration is stored for posterior analysis
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The last step is to compare the results of both methods, EM and GA. To compute the

distance between the estimated and the real density, the Hellinger distance (HD) is used as

an approach to measure the distance between the true and estimated densities, the one with

the true parameters used for the simulation, f(x), and the one with the parameters given

by the EM and GA, g(x) [5]. This is shown in equation 3-1. This estimator has been used

before in mixtures of parametric families, as described by [18] and [2] and it has been shown

that this estimator is robust. To analyze the result, when the distance is zero, it means that

the estimated values are the same as the real ones, for this reason, the best method is the

one to achieve the minimum values [2].

HD =

∫ ∞
−∞

(√
f(x)−

√
g(x)

)2
dx ≈

M∑
i=1

(√
f(xi)−

√
g(xi)

)2
(3-1)

where:

X is a variable created to estimate the approximated distance expressed in Equation

3-1 in the interval X ∈ I, I = {(µ1 − 3σ1); (µk + 3σk))}, for the normal mixture, and

I = {(α1 − 3β1); (αk + 3βk))} for the gamma mixture. xi, i = 1..,500, being M = 500,

estimated in a grid of X, and the population k is the population with the mean or the

scale parameter more

f(x) is the real density, calculed with the parameters used to generate the data in the

simulation

g(x) is the estimated density, calculed with the parameters obtained with the EM or

the GA

3.2. Algorithm when the number of populations is

unknown

The algorithm when the number of population is unknown is described in Figure 3-2.

The tasks on each step are as follows, there are several changes compared to the

algorithm when the number of populations is known:

1. Define starting parameters: This algorithm needs some parameters to be set.

These parameter are

• k number of populations

• π vector of the population weights for the k populations, restraint to
∑k

i=1 πi =

1
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Figure 3-2.: Algorithm when the number of populations is unknown. Source: Build by the

authors
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• θi with i = 1, ..., k vector of parameters for each population. For the normal

distribution, for example θi = (µi, σi)

• Number of iterations. In this work are used 1000 iteration for every simulation

because is a common number in simulations experiments

• Seed to control the random number generation

• n Sample size of the data to be evaluated

2. Generate the data for the simulation For the simulations the data was ge-

nerated with the following steps:

• Generate the size of population. The number of data in each population ni
follows a multinomial distribution as Multinom(n, πi . . . k−1) where n is the

size of the sample and π is the vector of the weights

• Generate ni random data from the population with parameters θi. This data

is the mixture of data

3. Estimate the number of populations For this step, the Gap statistic proposed by

Tibshirani et. al. (2001) [27], and the library lga [16] were used for the estimation

of k. This method estimates the number of populations or clusters using an itera-

tive algorithm, that estimate the number of populations and then çomparing the

change in within the cluster dispersion with the expected one under a reference

distribution”

4. Set starting values for the traditional algorithm: The EM algorithm needs

some initial values for the number of populations k, vector of the weights πi and

vector of the parameters θi. For the simulations, the initial values are set as the

θi + random∆

5. Estimate the parameters using traditional method: This estimation is

made using the library mixtools [4], using the same estimators described in

Section 3.1

6. Calculate the adjustment: Because the real number of populations and the cal-

culated one may differ, we compare the average number of populations estimated

with the real value.

7. Define starting values: For the evolutive method, genetic algorithm, the follo-

wing parameters needs to be set:

• Chromosome length. This value is set as n

• Minimum and maximum values for the chromosomes: These values are set

as 0 and k+2, because the populations are separated according to this value,

and because the nature of the genetic algorithm, we can chose a wider range

to evaluate the population
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• Mutation chance. In this work a mutation chance of 0.05 was fixed, as sugested

by Fouskakis and Draper (1996) [13]

8. Segregate the data into k populations: The data are segregated into k po-

pulations according to the value of the chromosome.

9. Estimate the parameters for each population: The algorithm estimates the

parameters using a maximum likelihood fitting for every population, assuming

the same distribution for each population in the mixture.

10. Calculate the adjustment and evaluate the distance, and optimize: The

joint likelihood is estimated as the sum of the k′ likelihoods, and for that sum and

the vector of the parameters (π1...k′ ; θ1′k being k′ the final number of populations

according to the algorithm

11. Print results: The results are shown as graphics for the Hellinger distance among

methods [5], and the times that the algorithms underestimate and overestimate

the number of populations. Also, the results of every iteration is stored for pos-

terior analysis

This chapter has the general schema of the algorithms developed for this study. The

complete algorithms can be seen on the Appendix B. In the next chapter, the results

of the simulations and the respective analysis are shown.



4. Simulation study

To make the comparation between traditional methods and evolutive algorithms to es-

timate the parameters in mixture models, we will implement a simulation study. This

allow us to know the real parameters and find the error of the estimation. The basic

form for mixture functions follow the equation 2-1 from the page 2. As an example, we

are going to use a mixture of two normal distributions with parameters θ1 = (µ1, σ1)

and θ2 = (µ2, σ2), respectively so the equation 2-1 follows the form:

f(x;µ1, σ1, µ2, σ2, π) = π ∗ f1(x, µ1, σ1) + (1− π) ∗ f2(x, µ2, σ2)

In this case, the values to estimate are:

• µ1, σ1 Parameters of the first population

• µ2, σ2 Parameters of the second population

• π Population weights

For the case with the mixture of three gamma distribution, the equation 2-1 follows

the form:

f(x;α1, β1, α2, β2, α3, β3, π) = π1 ∗
βα1
1

Γ(α1)
xα1− 1e−β1x +

π2 ∗
βα2
2

Γ(α2)
xα2− 1e−β2x +

(1− π1 − π2) ∗
βα3
3

Γ(α3)
xα3− 1e−β3x

In this case, the values to estimate are:

• αi, βi Parameters of the population i, with, in this case, i = 1, 2, 3

• π Vector of population weights
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Factor Levels

Populations Known Unknown

Mixture of distributions Normal Gamma

k number of populations 2 3 5

πi population weights 5 10 25 50

sample size 30 50 100 200 500 1000

Table 4-1.: Proposed values for the parameters of the simulation study. Source: Build by

the authors

The initial plan to run the simulations was to test the parameters described on Ta-

ble4-1.

This algorithm took around to 80 hours to compute a single experiment, with 1000

iterations. Because of that, to compute the complete run of the simulations might took

around 17280 hours, or 720 days straight.

To adress this problem, three approaches were taken:

1. Run multiple machines. For this research project, we had six machines running

the experiment 24 hours, 7 days straight, but this could not solve the time to

finish on time. Also, we explore the possibility to buy virtual machines online,

but that was more expensive that we could afford, due to the available budget for

this thesis.

2. Run the algorithm on a server, but this did not improve significantly the compu-

tation time.

3. Change the package genalg [39] for GA [32], but this package takes three times

longer to compute the genetic algorithm.

Finally, we decided to reduce the number of iterations of each experiment to 500, and

to use a sample size of 30, 50 and 200. This modification allowed the experiment to be

run on time for this research. The final configuration is shown in Table4-2

The Tables in the following sections of this chapter show the average distance HD and their

standard deviation for every experiment.
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Factor Levels

Populations Known Unknown

Mixture of distributions Normal Gamma

k number of populations 2 3 5

πi population weights 5 10 25 50

sample size 30 50 100 200

Table 4-2.: Final values for the parameters of the simulation study. Source: The authors

4.1. Evaluation of estimation of the parameters in

mixtures, with known number of populations

The goal of this section is to evaluate the effect of the number of populations between the

estimation of the parameters of mixture models when the number of populations is known,

for evolutive algorithms and traditional methods. The columns have the following name

codes:

Separation: Is the distance between the means of the populations in the mixture, in

the mixture of normal distributions, or the α parameter in the mixture of gammas, and

it is measured in standard deviation and β parameter, respectively. All the populations

in the mixture have a standard deviation and β equal to 1.

Weight: Is the percentage weight of the first distribution, the weight of the other

distributions in the mixture were asigned in equal parts to complete the 100 % and

it can be seen in the column. For example, in a case with a mixture of three normal

populations, in Table 4-5 in page 29, the fourth column has a weight of 5, and that is

the weight shown in Figure 4-4, the next column shows 2x47.5, because of the weight

vector has the values of 5 %, 47.5 % and 47.5 %.

GA: Genetic Algorithm

EM: Expectation Maximization Algorithm

Mean: Is the average between the Hellinger distance of the iterations with the respec-

tive configuration.

SD: Is the standard deviation between the Hellinger distance of the simulations

For each one we had the means and the standard deviation from the 500 iterations for each

experiment.
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Densities for mixtures of 2 normal populations 

with different separations between means

Range

D
e
n
s
it
y

Separation =1 sd   

Separation =2 sd   

Separation =5 sd   

Figure 4-1.: Plot of the densities of a mixture of two normal distributions, with weight of

25 % and 75 %. Source: build by the authors

4.1.1. Mixture of two normal distributions

For the mixture of two normal distributions created in this study, an example of the densities

can be seen in Figure 4-1, where the representations of a mixture with composition 25 %

and 75 % of each population, for different separations between means.

In Tables 4-3, 4-4, and in Figure 4-2, it is shown the mean of the Hellinger distance esti-

mated for the 500 iterations of the estimation of the parameters in a mixture of two normal

populations. For this scenario, the separation between means increased the distance for the

GA, with a more noticeable effect when the weights of the populations were uneven, below

50 %, but for the EM the separation between means had the opposite effect. The sample size

had less impact on the results of the distance for the GA, because of the cases when the

sample size was 100 and 200 items, and the weight was 10 %, the distance was similar. For

the EM algorithm, as the separation increases and the weights of the populations were even,

the mean HD decreases. For that behaviour, the EM seems to be a better alternative for
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Hellinger Distance for a mixture of two populations, Part 1 of 2.

Parameters Mean SD

# Sample Size Separation Weight GA EM GA EM

1 30 1 5 95 NA 7.3719059 NA 5.0801785

2 50 1 5 95 NA 3.9671332 NA 2.6632592

3 100 1 5 95 0.7276752 1.7939734 0.7166283 1.3264134

4 200 1 5 95 0.3486274 0.794333 0.3158048 0.5639108

5 30 2 5 95 NA 6.3952341 NA 4.0574232

6 50 2 5 95 NA 3.6501297 NA 2.4086476

7 100 2 5 95 0.7223326 1.7279633 0.7971845 1.239071

8 200 2 5 95 0.6245537 0.8000868 0.320689 0.6049102

9 30 5 5 95 NA 6.9884434 NA 3.8216841

10 50 5 5 95 12.8977553 3.7425842 5.7476426 2.7131607

11 100 5 5 95 8.4840123 1.7340373 2.660486 1.562029

12 200 5 5 95 7.1815266 0.7393026 1.4068978 0.788641

13 30 1 10 90 NA 7.3162403 NA 5.0166785

14 50 1 10 90 1.5470258 3.9139956 1.5799118 2.767204

15 100 1 10 90 0.7274471 1.8512988 0.7548557 1.3020375

16 200 1 10 90 0.3555792 0.7972737 0.3609759 0.5848706

17 30 2 10 90 NA 6.6389644 NA 4.6860836

18 50 2 10 90 1.1922491 3.5581831 1.2855913 2.4344436

19 100 2 10 90 0.8183982 1.6432441 0.6932028 1.1947833

20 200 2 10 90 0.9489221 0.8090102 0.3203636 0.6187133

21 30 5 10 90 6.9927596 6.4536987 5.2863691 4.5691423

22 50 5 10 90 11.2706251 3.4488844 4.303969 3.0707152

23 100 5 10 90 12.2237259 1.5019521 1.3098497 1.5226873

24 200 5 10 90 11.1575835 0.6397216 0.8028084 0.488359

Table 4-3.: Hellinger estimated distance for a mixture of two normal populations and the

number of populations is known, part 1. continues in Table4-4 in page 26. The

NA is when the data could not be computed for the algorithm. Source: Build

by the authors

the estimation of the parameters in a mixture of two normal distributions, because it could

estimate the distance in all the cases, including the ones with small sample size and weight

of one population below 10 %. The GA only had better performance that the EM when the

weight was 50 % and the sample size was small.

4.1.2. Mixture of three normal distributions

For the mixture of three normal distributions created in this study, an example of the den-

sities can be seen in Figure 4-3, where the representations of a mixture with composition

25 %, 37.5 % and 37.5 % of each population, for different separations between means.

For the mixture of 3 normal population, with known number of populations, the mean
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Hellinger Distance for a mixture of two populations, Part 2 of 2.

Parameters Mean SD

# Sample Size Separation Weight GA EM GA EM

25 30 1 25 75 2.309 6.9230101 2.3033108 5.0169856

26 50 1 25 75 1.4628363 3.8887844 1.5848417 2.9550561

27 100 1 25 75 0.7068634 1.6552048 0.6465543 1.1961168

28 200 1 25 75 0.366506 0.8190172 0.3979012 0.6090011

29 30 2 25 75 2.408683 6.4599304 2.3535815 3.9974919

30 50 2 25 75 1.3339603 3.7103984 1.282645 2.5387932

31 100 2 25 75 0.6877073 1.6371665 0.6714559 1.1295445

32 200 2 25 75 0.8038557 0.7948953 0.4860565 0.5828737

33 30 5 25 75 8.6900822 5.5200456 5.0504729 4.303661

34 50 5 25 75 10.7969615 3.0145286 3.4208612 2.6661729

35 100 5 25 75 10.4488628 1.3342895 1.5840213 1.4277715

36 200 5 25 75 9.2736561 0.5706032 0.410276 0.3843375

37 30 1 50 50 2.4265982 6.9557724 2.6363092 4.6296586

38 50 1 50 50 1.4585161 4.0261444 1.5101946 2.8861504

39 100 1 50 50 0.7616498 1.8145096 0.7925469 1.3100404

40 200 1 50 50 0.3638134 0.8333842 0.3394218 0.6350888

41 30 2 50 50 2.567045 6.5595071 2.6265313 4.322705

42 50 2 50 50 1.3765336 3.5292087 1.4553041 2.4209196

43 100 2 50 50 0.6848512 1.6761035 0.6560538 1.1150232

44 200 2 50 50 0.3198601 0.7889517 0.3205622 0.5014049

45 30 5 50 50 2.9445942 5.1580724 2.2080052 4.0815618

46 50 5 50 50 1.6267193 3.0855921 1.4252764 2.9185279

47 100 5 50 50 0.6848512 1.6761035 0.6560538 1.1150232

48 200 5 50 50 0.3198601 0.7889517 0.3205622 0.5014049

Table 4-4.: Hellinger estimated distance for a mixture of two normal populations and the

number of populations is known, part 2. Is the continuation of the Table4-3 in

page 25.The NA is when the data could not be computed for the algorithm.

Source: Build by the authors
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When the number of populations is known

Figure 4-2.: Plot of the Hellinger distance for the mixture of 2 normal populations, in a

mixture with known number of populations. Source: build by the authors
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Densities for mixtures of 3 normal populations 

with different separations between means
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Separation =2 sd   
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Figure 4-3.: Plot of the densities of a mixture of three normal distributions, with weight of

25 %, 37.5 % and 37.5 %. Source: build by the authors
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Hellinger Distance for a mixture of three normal populations, Part 1 of 2.

Parameters Mean SD

# Sample Size Separation Weight GA EM GA EM

1 30 1 5 2x47,5 NA 19,3487 NA 13,8950

2 50 1 5 2x47,5 NA 14,5957 NA 11,0491

3 100 1 5 2x47,5 129,5250 11,8703 3,9881 10,1206

4 200 1 5 2x47,5 128,2186 9,3690 1,7679 8,0910

5 30 2 5 2x47,5 NA 16,5984 NA 12,5496

6 50 2 5 2x47,5 NA 13,8891 NA 11,1954

7 100 2 5 2x47,5 109,3405 12,4531 10,2299 11,1815

8 200 2 5 2x47,5 109,4798 11,2289 3,7445 10,2198

9 30 5 5 2x47,5 NA 12,1189 NA 11,9492

10 50 5 5 2x47,5 98,2814 11,1436 31,8425 14,1184

11 100 5 5 2x47,5 79,8094 8,1169 15,0396 13,4625

12 200 5 5 2x47,5 87,3315 6,9644 12,9044 13,0165

13 30 1 10 2x45 NA 19,3208 NA 13,7580

14 50 1 10 2x45 126,1618 15,0075 5,3199 12,3377

15 100 1 10 2x45 125,0823 12,2665 3,6767 11,0550

16 200 1 10 2x45 123,9831 10,6264 1,9318 10,3144

17 30 2 10 2x45 NA 16,8123 NA 13,0197

18 50 2 10 2x45 106,8154 13,7236 14,0258 11,0697

19 100 2 10 2x45 102,6485 12,1146 8,3005 12,0258

20 200 2 10 2x45 102,2757 11,2259 3,0680 10,4774

21 30 5 10 2x45 78,9178 11,1852 30,0732 12,6397

22 50 5 10 2x45 77,8885 10,1085 17,9741 14,4147

23 100 5 10 2x45 78,8558 7,8781 13,6218 13,6624

24 200 5 10 2x45 80,9086 6,3508 11,6091 14,4297

Table 4-5.: Hellinger estimated distance for a mixture of three normal populations and the

number of populations is known, part 1 . The second part is in Table4-6 in page

30. The NA is when the data could not be computed for the algorithm. Source:

Build by the authors

Hellinger distance computed by Evolutive algorithms, GA, and traditional methods, EM it

is shown in Tables 4-5 and 4-6 and graphic in Figure 4-4. In this case it can be observed

that the GA could not estimate the parameters in cases when the sample size was 30 and

50 items and the weight of one population was 5 % and 10 %. In this mixture, for all cases,

as the separation increases, the mean HD decreases, except for the results of the GA when

the weight is 50 % and sample sizes bigger than 50 items, because of the separation of 2

standard deviations (sd) was higher than the ones with 1 sd. Both the GA and the EM had

better results when the composition of the mixture is even, the weight was 25 %. It can be

concluded that the EM had better performance for the estimation of the parameters in a

mixture of three normal populations with the settings evaluated in this scenario, because

the means HD were smaller than the ones for the GA.
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Hellinger Distance for a mixture of three normal populations, Part 2 of 2.

Parameters Mean SD

# Sample Size Separation Weight GA EM GA EM

25 30 1 25 2x37,5 115,0274 20,0112 6,9608 16,7180

26 50 1 25 2x37,5 113,0872 14,6814 4,8875 13,0309

27 100 1 25 2x37,5 111,9442 12,1571 4,3039 13,0794

28 200 1 25 2x37,5 110,9155 9,3455 1,8807 10,6120

29 30 2 25 2x37,5 98,6599 15,4575 15,3415 13,6241

30 50 2 25 2x37,5 96,2138 13,2369 15,4938 12,9151

31 100 2 25 2x37,5 92,4742 10,3372 11,2169 10,3576

32 200 2 25 2x37,5 90,6956 8,3961 3,9839 9,9917

33 30 5 25 2x37,5 74,5942 10,3042 29,3455 13,6233

34 50 5 25 2x37,5 69,4539 7,5522 25,5945 12,0071

35 100 5 25 2x37,5 62,7011 5,6851 9,5670 12,1097

36 200 5 25 2x37,5 73,2189 3,4947 5,3343 9,9318

37 30 1 50 2x25 103,6391 21,3477 10,7505 18,8318

38 50 1 50 2x25 102,9931 16,6304 10,4410 18,4549

39 100 1 50 2x25 102,0090 11,4809 8,3348 13,7736

40 200 1 50 2x25 103,4303 10,0692 7,9564 13,0650

41 30 2 50 2x25 103,4473 16,1874 24,3480 14,3116

42 50 2 50 2x25 110,1336 12,3997 26,6109 11,7561

43 100 2 50 2x25 116,0325 8,8013 26,6599 9,2689

44 200 2 50 2x25 111,6243 6,9781 24,1235 8,1191

45 30 5 50 2x25 95,1602 10,0543 33,8949 9,5359

46 50 5 50 2x25 93,2880 7,9199 32,1312 9,2770

47 100 5 50 2x25 91,3741 5,3558 23,2679 8,4164

48 200 5 50 2x25 75,4049 4,9445 10,7698 9,2909

Table 4-6.: Hellinger estimated distance for a mixture of three normal populations and the

number of populations is known, part 2 . The first part is in Table4-5 in page

29.The NA is when the data could not be computed for the algorithm. Source:

Build by the authors
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Hellinger distance for a mixture of three normal populations

When the number of populations is known

Figure 4-4.: Plot of the mean Hellinger distance for the mixture of 3 normal populations,

in a mixture with known number of populations. Source: build by the authors
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Densities for mixtures of 5 normal populations 

with different separations between means

Range

D
e
n
s
it
y

Separation =1 sd   

Separation =2 sd   

Separation =5 sd   

Figure 4-5.: Plot of the densities of a mixture of five normal distributions, with weight of

25 %, and four with weight 18.75 %. Source: build by the authors

4.1.3. Mixture of five normal distributions

For the mixture of five normal distributions created in this study, an example of the densities

can be seen in Figure 4-5, where the representations of a mixture with composition 25 %,

and 4 populations with weight of 18.75 %, for different separations between means.

In the case of the mixture of 5 normal populations, for a known number of populations, the

results of the simulations are summarized in Tables 4-7 and 4-8, and the behavior of the

data is shown in Figure 4-6, on page 35.

The behavior of the mean Hellinger distance for the GA is influenced by separation because

it increases as the separation increases, but this increment is less noticeable when the weights

of the populations are even, arould 25 %. It is shown an increase on the mean HD when the

weight is 50 % and the sample size increases, and that behaviour is not coherent with the

ones shown in this case and the mixtures of two and three normal populations, this might

suggest instability on the packages used. For the EM, the distance decreases with increases
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Hellinger Distance for a mixture of five normal populations, Part 1 of 2.

Parameters Mean SD

# Sample Size Separation Weight GA EM GA EM

1 30 1 5 4x23,75 NA 14,8889 NA 6,2746

2 50 1 5 4x23,75 NA 7,7565 NA 3,7560

3 100 1 5 4x23,75 0,7973 3,7082 0,5804 1,7318

4 200 1 5 4x23,75 0,4127 1,6208 0,2657 0,7953

5 30 2 5 4x23,75 NA 11,2572 NA 5,5191

6 50 2 5 4x23,75 NA 5,1774 NA 2,3832

7 100 2 5 4x23,75 1,0847 2,5088 0,6323 1,1968

8 200 2 5 4x23,75 0,6228 1,2668 0,2862 0,6503

9 30 5 5 4x23,75 NA 7,2303 NA 2,6747

10 50 5 5 4x23,75 4,8132 4,4596 1,6782 1,5605

11 100 5 5 4x23,75 4,8643 2,2613 0,8004 1,0537

12 200 5 5 4x23,75 5,0323 1,5594 0,5212 0,9678

13 30 1 10 4x22,5 NA 14,9439 NA 6,7096

14 50 1 10 4x22,5 1,6824 8,3942 1,2918 4,0174

15 100 1 10 4x22,5 0,7809 3,5277 0,5484 1,5083

16 200 1 10 4x22,5 0,4305 1,5521 0,2951 0,7757

17 30 2 10 4x22,5 11,2170 10,8377 NA 4,5112

18 50 2 10 4x22,5 1,9771 5,4982 1,1243 2,5195

19 100 2 10 4x22,5 1,0637 2,5711 0,5772 1,1840

20 200 2 10 4x22,5 0,6269 1,1817 0,2969 0,5330

21 30 5 10 4x22,5 5,2709 7,0619 2,8471 2,5876

22 50 5 10 4x22,5 4,2011 4,4719 1,8182 1,6689

23 100 5 10 4x22,5 4,9406 2,5539 0,8620 1,2214

24 200 5 10 4x22,5 5,1724 1,7630 0,4937 1,1717

Table 4-7.: Hellinger estimated distance for a mixture of five normal populations and the

number of populations is known, part 1 . The second part is in Table4-8 in page

34. The NA is when the data could not be computed for the algorithm. Source:

Build by the authors

on the separation and sample size, the distances for the weights evaluated in this study are

similar. As a conclusion, GA is a better alternative when the sample size and the separation

between means are small, less than 50 items and 2 standard deviations, respectively, as long

as all the populations in the mixture have more than 10 % weight. For the other experiments,

the EM had better results.
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Hellinger Distance for a mixture of five normal populations, Part 2 of 2.

Parameters Mean SD

# Sample Size Separation Weight GA EM GA EM

25 30 1 25 4x18,75 2,3508 14,5998 1,7067 6,4729

26 50 1 25 4x18,75 1,8241 8,1305 1,3000 3,4133

27 100 1 25 4x18,75 0,8601 3,4433 0,6078 1,4601

28 200 1 25 4x18,75 0,4554 1,7428 0,3047 1,5469

29 30 2 25 4x18,75 2,9130 10,1328 2,0184 4,6959

30 50 2 25 4x18,75 2,0954 5,8157 1,1683 2,6534

31 100 2 25 4x18,75 1,1763 2,5941 0,6417 1,2049

32 200 2 25 4x18,75 0,8931 1,1623 0,3768 0,5520

33 30 5 25 4x18,75 4,6563 7,0593 2,1528 2,5735

34 50 5 25 4x18,75 4,3249 4,4513 2,1370 1,5220

35 100 5 25 4x18,75 5,4291 2,4150 1,1700 1,1534

36 200 5 25 4x18,75 5,7990 1,3780 0,8236 0,9904

37 30 1 50 4x12,5 2,6853 14,8947 1,9672 6,9400

38 50 1 50 4x12,5 1,6963 8,0887 1,2692 3,9375

39 100 1 50 4x12,5 0,9057 3,6920 0,7012 1,7673

40 200 1 50 4x12,5 0,4756 1,6134 0,3026 0,7741

41 30 2 50 4x12,5 3,5109 11,1888 3,4619 4,5879

42 50 2 50 4x12,5 3,2366 6,0556 2,9231 2,8091

43 100 2 50 4x12,5 5,1750 2,6444 2,8931 1,3471

44 200 2 50 4x12,5 10,4189 1,2792 3,4097 0,5633

45 30 5 50 4x12,5 6,9759 7,0365 2,9229 2,2482

46 50 5 50 4x12,5 8,1814 4,7289 3,1531 1,5149

47 100 5 50 4x12,5 11,0188 2,8991 2,7923 0,8014

48 200 5 50 4x12,5 14,3128 2,1362 2,2120 0,6039

Table 4-8.: Hellinger estimated distance for a mixture of five normal populations and the

number of populations is known, part 2 . The first part is in Table4-7 in page

33. The NA is when the data could not be computed for the algorithm. Source:

Build by the authors
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Mean Hellinger distance for a mixture of five normal populations

When the number of populations is known

Figure 4-6.: Plot of the mean Hellinger distance for the mixture of 5 normal populations,

in a mixture with known number of populations. Source: build by the authors
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Densities for mixtures of 2 gamma populations 

with different separations between alpha parameter

Range

D
e
n
s
it
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Separation =1 β   

Separation =2 β   

Separation =5 β   

Figure 4-7.: Plot of the densities of a mixture of two gamma distributions, with weight of

25 %, and 75 %. Source: build by the authors

4.1.4. Mixture of two gamma distributions

For the mixture of two gamma distributions created in this study, an example of the densities

can be seen in Figure 4-7, where the representations of a mixture with composition 25 %,

75 %, for different separations between means.

The results for the estimation of the parameters of the mixture of gamma distributions it

is shown in Tables 4-9, page 37 and 4-10 on page 38, and their plots in Figure 4-8. In the

Tables and the figures it can be seen that for the gamma mixture of two populations, for

the GA the separation between the α parameter increases the distance, also, the mean HD

decreases when the weights in the mixture are even, or weight is 50 %, but for the EM the

behaviour is the opposite, the separation decreases the mean HD. For the GA, the sample

size does not have an obvious impact for the cases here studied, of 30, 50, 100 and 200 items,

only the identification of all the populations in the mixture, because when the sample size

was small and the weight was smaller than 10 %, the GA could not compute the parameters.
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Hellinger Distance for a mixture of two gamma populations, Part 1 of 2.

Parameters Mean SD

# Sample Size Separation Weight GA EM GA EM

1 30 1 5 95 NA 68,5679 NA 34,8123

2 50 1 5 95 1,2692 57,4584 0,57458495 36,9736

3 100 1 5 95 0,1913 47,3056 0,1734 35,4738

4 200 1 5 95 0,0894 40,7156 0,0907 34,0546

5 30 2 5 95 NA 62,7838 NA 32,5497

6 50 2 5 95 1,7010 56,0702 0,6881 33,1209

7 100 2 5 95 0,2595 46,7824 0,2819 32,7800

8 200 2 5 95 0,1142 38,2714 0,1450 31,5179

9 30 5 5 95 NA 52,8592 NA 23,1625

10 50 5 5 95 5,9146 46,3868 1,0997 24,8910

11 100 5 5 95 0,4512 39,4411 0,4548 25,4519

12 200 5 5 95 0,2075 35,1988 0,2153 25,5347

13 30 1 10 90 3,1576 71,3746 1,8566 33,8742

14 50 1 10 90 0,4696 60,3630 0,4745 34,4689

15 100 1 10 90 0,1972 48,4631 0,2432 36,0426

16 200 1 10 90 0,0983 39,3559 0,1139 32,7873

17 30 2 10 90 4,0030 64,0057 3,3067 32,6848

18 50 2 10 90 0,6435 57,1330 0,6572 32,4226

19 100 2 10 90 0,2599 46,3885 0,2872 32,4753

20 200 2 10 90 0,1357 38,0838 0,1495 31,0215

21 30 5 10 90 NA 51,5740 NA 23,6459

22 50 5 10 90 1,0308 46,7276 1,2715 25,7810

23 100 5 10 90 0,5290 40,7789 0,5440 24,7764

24 200 5 10 90 0,3835 35,1254 0,3010 24,6896

Table 4-9.: Hellinger estimated distance for a mixture of two gamma populations and the

number of populations is known, part 1. The second part is in Table4-10 in

page 38. The NA is when the data could not be computed for the algorithm.

Source: Build by the authors

For this mixture, the GA had better results for the cases when the weight was even, and the

sample size was 200 because it could identify all the populations. Another thing important

to notice was when the simulations were running, a convergence warning was shown for the

EM algorithm very often, this could be related to the bigger distance reported in all the

cases for the EM.
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Hellinger Distance for a mixture of two gamma populations, Part 2 of 2.

Parameters Mean SD

# Sample Size Separation Weight GA EM GA EM

25 30 1 25 75 1,0517 71,6387 1,3507 34,1228

26 50 1 25 75 0,5865 62,3536 0,6761 36,3202

27 100 1 25 75 0,2909 53,3246 0,3125 35,9754

28 200 1 25 75 0,1585 39,4414 0,1707 32,5398

29 30 2 25 75 1,2838 68,7623 1,6026 29,9717

30 50 2 25 75 0,8298 61,4182 1,0021 32,8589

31 100 2 25 75 0,4983 51,7912 0,4995 33,2929

32 200 2 25 75 0,3405 41,8921 0,3063 32,1423

33 30 5 25 75 2,4328 52,0283 2,4950 24,4448

34 50 5 25 75 2,1809 49,8308 2,0270 24,3195

35 100 5 25 75 1,6818 43,9141 1,1405 24,9138

36 200 5 25 75 1,5131 38,9555 0,7746 24,8100

37 30 1 50 50 1,9559 76,6471 3,3184 32,2814

38 50 1 50 50 0,9508 68,8729 1,1200 34,4103

39 100 1 50 50 0,5059 60,0255 0,5201 36,6364

40 200 1 50 50 0,3069 47,0124 0,2804 36,0191

41 30 2 50 50 2,6116 70,5010 3,7573 30,4568

42 50 2 50 50 1,5198 67,4580 1,6601 30,6784

43 100 2 50 50 1,1224 58,8605 1,0807 33,9881

44 200 2 50 50 0,8178 45,1529 0,5651 32,5907

45 30 5 50 50 7,3237 57,0580 5,7427 21,8645

46 50 5 50 50 6,7262 56,2046 4,6662 22,0796

47 100 5 50 50 5,0898 46,2612 2,6142 25,1522

48 200 5 50 50 4,5522 39,3486 1,5601 24,9920

Table 4-10.: Hellinger estimated distance for a mixture of two gamma populations and the

number of populations is known, part 2. The first part is in Table4-9 in page

37. The NA is when the data could not be computed for the algorithm. Source:

Build by the authors
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Mean Hellinger distance for a mixture of two gamma populations

When the number of populations is known

Figure 4-8.: Plot of the mean Hellinger distance for the mixture of 2 gamma populations,

in a mixture with known number of populations. Source: build by the authors
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Densities for mixtures of 3 gamma populations 

with different separations between alpha parameter

Range

D
e
n
s
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Separation =1 β   

Separation =2 β   

Separation =5 β   

Figure 4-9.: Plot of the densities of a mixture of three gamma distributions, with weight of

25 %, and two with 38.5 %. Source: build by the authors

Mixture of three gamma distributions

For the mixture of three gamma distributions created in this study, an example of the

densities can be seen in Figure 4-9, where the representations of a mixture with composition

25 %, and two with 38.5 %, for different separations between means.

For the estimation of parameters of a mixture of three gamma distributions, the results are

shown in Tables 4-11 and 4-12, where the EM had multiple warning of convergence, more

often than when the distribution of two gamma distributions is used. This can be seen in the

Tables 4-11 and 4-12, where the SD for the EM are bigger than the ones for the GA. The

results shown in Figure 4-10 in page 43, it can be observed that the behavior is similar to

the one in the mixture of two gammas, because of the GA could not detect in the cases when

the sample size was smaller than 50 items and the weight of the at least one population was

smaller than 10 %. The distance for the GA is also affected for the separation between the

α parameters, because the mean HD increases when the separation increases, but decreases
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Hellinger Distance for a mixture of three gamma populations, Part 1 of 2.

Parameters Mean SD

# Sample Size Separation Weight GA EM GA EM

1 30 1 5 2x47,5 NA 84,1558 NA 18,9398

2 50 1 5 2x47,5 13,2750 82,3475 9,7952649 21,8266

3 100 1 5 2x47,5 0,8238 80,5042 0,8456 23,6530

4 200 1 5 2x47,5 0,4421 76,6735 0,4057 26,3589

5 30 2 5 2x47,5 NA 73,7767 NA 15,9247

6 50 2 5 2x47,5 23,3999 73,0741 NA 17,2230

7 100 2 5 2x47,5 1,9031 68,8829 1,5393 22,1102

8 200 2 5 2x47,5 1,3498 67,7641 0,8285 21,9799

9 30 5 5 2x47,5 NA 50,2050 NA 9,1568

10 50 5 5 2x47,5 NA 49,4588 NA 10,7803

11 100 5 5 2x47,5 8,3971 48,7896 3,6137 11,6383

12 200 5 5 2x47,5 5,2914 48,2923 1,5947 12,1928

13 30 1 10 2x45 NA 85,0740 NA 18,0693

14 50 1 10 2x45 2,3120 81,8196 3,6897 21,8024

15 100 1 10 2x45 0,7315 77,8697 0,8659 25,6486

16 200 1 10 2x45 0,5315 74,1404 0,4730 28,3004

17 30 2 10 2x45 NA 74,3094 NA 14,4471

18 50 2 10 2x45 3,8816 71,9952 4,1422 17,8308

19 100 2 10 2x45 1,8869 71,0125 1,5370 19,2306

20 200 2 10 2x45 1,6387 65,8931 0,9856 23,6551

21 30 5 10 2x45 NA 50,0846 NA 8,6084

22 50 5 10 2x45 10,9170 49,0181 6,7602 10,5745

23 100 5 10 2x45 7,0357 49,4859 2,7668 9,9866

24 200 5 10 2x45 6,2828 47,7187 1,8558 12,9637

Table 4-11.: Hellinger estimated distance for a mixture of three gamma populations and

the number of populations is known, part 1. The second part is in Table4-12

in page 38. The NA is when the data could not be computed for the algorithm.

Source: Build by the authors

when the composition of the mixture, the weights, are even. The sample size does not have

an evident impact in the HD. For the EM, the increase in the separation and sample size

improved the performance of the algorithm, decreasing the distance. In general, EM had

better results detecting all the populations, but GA had smaller distance when the sample

size was big and the weight of each population in the mixture was bigger than 10 %.
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Hellinger Distance for a mixture of three gamma populations, Part 2 of 2.

Parameters Mean SD

# Sample Size Separation Weight GA EM GA EM

25 30 1 25 2x37,5 1,6448 83,0304 1,9484 20,5290

26 50 1 25 2x37,5 2,1718 81,7691 5,4029 22,4656

27 100 1 25 2x37,5 1,1177 80,1751 1,2438 23,5901

28 200 1 25 2x37,5 0,7352 75,6153 0,6910 27,0298

29 30 2 25 2x37,5 2,8297 74,7833 2,4589 13,5058

30 50 2 25 2x37,5 4,3019 71,3831 5,6036 18,3040

31 100 2 25 2x37,5 2,9742 69,9791 2,1311 18,6188

32 200 2 25 2x37,5 2,6464 68,2123 1,5202 21,4852

33 30 5 25 2x37,5 5,5937 49,6378 2,9235 9,7195

34 50 5 25 2x37,5 10,4963 49,5782 4,5611 9,2634

35 100 5 25 2x37,5 10,6615 48,5288 3,4881 10,9136

36 200 5 25 2x37,5 10,2250 47,1806 2,4801 12,5170

37 30 1 50 2x25 3,7111 85,7999 5,5999 15,8461

38 50 1 50 2x25 4,0349 84,3997 5,6781 16,9584

39 100 1 50 2x25 1,9286 80,2984 2,1270 22,9093

40 200 1 50 2x25 1,4076 79,6296 1,0814 23,6994

41 30 2 50 2x25 6,5694 73,7005 6,2974 14,8599

42 50 2 50 2x25 7,3119 72,3057 6,1670 16,3956

43 100 2 50 2x25 5,8583 72,4179 4,2803 15,5594

44 200 2 50 2x25 4,8452 68,7495 2,6273 20,2917

45 30 5 50 2x25 17,2319 49,2159 6,8145 8,3722

46 50 5 50 2x25 18,5889 49,3768 6,7351 7,6509

47 100 5 50 2x25 18,3145 48,1269 5,6769 10,3046

48 200 5 50 2x25 17,9229 47,7042 3,8315 10,2017

Table 4-12.: Hellinger estimated distance for a mixture of three gamma populations and

the number of populations is known, part 2. The first part is in Table4-11 in

page 41. The NA is when the data could not be computed for the algorithm.

Source: Build by the authors
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Figure 4-10.: Plot of the mean Hellinger distance for the mixture of 3 gamma populations,

in a mixture with known number of populations. Source: build by the authors
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Densities for mixtures of 5 gamma populations 

with different separations between alpha parameter

Range

D
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n
s
it
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Separation =1 β   

Separation =2 β   

Separation =5 β   

Figure 4-11.: Plot of the densities of a mixture of five gamma distributions, with weight of

25 %, and four with 18.75 %. Source: build by the authors

Mixture of five gamma distributions

For the mixture of five gamma distributions created in this study, an example of the densities

can be seen in Figure 4-11, where the representations of a mixture with composition 25 %,

and four with 18.75 %, for different separations between means.

The results of the simulation for the estimation of parameters of a mixture of five gamma

distributions are displayed in Tables 4-13 and 4-14, and their plot in Figure 4-12 in page

47. The EM algorithm presented a lack of convergence, given by warnings with the results,

as mentioned in previous sections, but in general, the separation between the populations in

the mixture decreases the estimated distance. On the other hand, the GA method yielded

NA as a result of some of the experiments, it is because it could not detect one or more

populations, and this happened when there was a small sample size, 50 items or less, small

weight, 10 % or less and sample size, it was needed more than 100 items to successfully

estimate the parameters. When the separation is small, the difference between the GA and
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Hellinger Distance for a mixture of five gamma populations, Part 1 of 2.

Parameters Mean SD

# Sample Size Separation Weight GA EM GA EM

1 30 1 5 4x23,75 NA 77,8143 NA 8,1779

2 50 1 5 4x23,75 NA 77,0358 NA 10,9278

3 100 1 5 4x23,75 4,9134 78,9741 4,3588 6,6175

4 200 1 5 4x23,75 2,6192 79,3615 2,0957 6,6740

5 30 2 5 4x23,75 NA 59,5560 NA 8,4743

6 50 2 5 4x23,75 NA 60,9448 NA 4,4329

7 100 2 5 4x23,75 12,7936 61,4185 6,1951 3,1243

8 200 2 5 4x23,75 7,2520 61,1797 2,8717 4,8548

9 30 5 5 4x23,75 NA 34,3061 NA 1,8943

10 50 5 5 4x23,75 NA 34,1856 NA 2,6224

11 100 5 5 4x23,75 21,2955 34,2539 1,0479 2,7060

12 200 5 5 4x23,75 13,4434 34,5939 2,5884 1,4037

13 30 1 10 4x22,5 80,0212 79,5075 NA 3,0217

14 50 1 10 4x22,5 1,8289 79,0298 1,4048 5,6764

15 100 1 10 4x22,5 3,6608 78,8449 3,5228 6,8807

16 200 1 10 4x22,5 3,0102 79,5152 2,1022 4,0307

17 30 2 10 4x22,5 NA 59,7416 NA 8,0443

18 50 2 10 4x22,5 3,5338 60,0580 2,1517 6,0446

19 100 2 10 4x22,5 8,9449 60,9756 5,0401 4,1156

20 200 2 10 4x22,5 8,6232 60,7908 3,4083 5,2973

21 30 5 10 4x22,5 NA 34,0302 NA 3,1266

22 50 5 10 4x22,5 NA 33,7865 NA 3,6960

23 100 5 10 4x22,5 12,8008 34,1561 2,9656 2,7073

24 200 5 10 4x22,5 14,9101 34,4405 2,3107 1,7520

Table 4-13.: Hellinger estimated distance for a mixture of five gamma populations and the

number of populations is known, part 1. The second part is in Table4-14 in

page 46.The NA is when the data could not be computed for the algorithm.

Source: Build by the authors

the EM is more noticeable, but in all cases the GA had better results than the EM. For this

reason, the main conclusion is that the GA is a better option than the EM to estimate the

parameters in these mixtures of gamma populations, when the sample size is 100 items or

bigger.



46 4 Simulation study

Hellinger Distance for a mixture of five gamma populations, Part 2 of 2.

Parameters Mean SD

# Sample Size Separation Weight GA EM GA EM

25 30 1 25 4x18,75 4,4590 76,7364 4,8283 8,7132

26 50 1 25 4x18,75 4,1631 77,3495 4,2504 9,2041

27 100 1 25 4x18,75 5,7485 78,1895 5,2837 6,6486

28 200 1 25 4x18,75 4,4806 78,6670 2,9821 4,9395

29 30 2 25 4x18,75 6,3456 57,4868 4,3838 10,8427

30 50 2 25 4x18,75 8,4485 59,8398 4,8973 4,7367

31 100 2 25 4x18,75 12,3370 60,0828 5,6930 4,2870

32 200 2 25 4x18,75 11,7142 60,0021 4,1816 5,0271

33 30 5 25 4x18,75 10,6893 33,7938 1,9663 0,7638

34 50 5 25 4x18,75 11,6609 33,4628 2,3120 2,7914

35 100 5 25 4x18,75 17,1391 33,4802 2,8017 2,7948

36 200 5 25 4x18,75 17,6964 33,8689 2,1216 0,9734

37 30 1 50 4x12,5 5,2594 77,9754 7,4966 6,8389

38 50 1 50 4x12,5 3,9818 77,0486 3,7523 9,9709

39 100 1 50 4x12,5 5,3634 77,7322 5,3193 8,5890

40 200 1 50 4x12,5 4,0107 78,5684 2,8076 4,8992

41 30 2 50 4x12,5 NA 53,8749 NA 11,0343

42 50 2 50 4x12,5 15,7958 57,9101 7,8302 7,6553

43 100 2 50 4x12,5 17,9096 58,0411 6,9288 7,2743

44 200 2 50 4x12,5 18,5490 58,6724 6,1486 5,6559

45 30 5 50 4x12,5 NA 33,0168 NA 0,0181

46 50 5 50 4x12,5 20,4938 32,9384 3,4448 0,5390

47 100 5 50 4x12,5 24,0177 32,7804 2,9680 1,6480

48 200 5 50 4x12,5 23,8127 32,8311 2,2869 1,3841

Table 4-14.: Hellinger estimated distance for a mixture of five gamma populations and the

number of populations is known, part 2. The first part is in Table4-13 in page

45. The NA is when the data could not be computed for the algorithm. Source:

Build by the authors
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Figure 4-12.: Plot of the mean Hellinger distance for the mixture of 5 gamma populations,

in a mixture with known number of populations. Source: build by the authors
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4.2. Number of populations unknown

4.2.1. Mixture of two normal populations

For this scenario the data were simulated as a mixture of normal populations with the

parameters shown in Tables 4-15 and 4-16. The mean number of populations estimated for

the GA and the EM algorithm and their standard deviation is shown in the same tables,

and the behavior of the estimation in the Figure 4-13 in page 51. The initial number of

populations was set at 5 for both methods. In the Tables and the Figures it can be observed

that both methods diverge in their behavior, because the GA overestimates and the EM

underestimates the number of populations. For the GA the closest experiments were the ones

with small sample data, this could be for the same reason when the number of populations

was known, when they could not estimate all the data and yielded NaN, as it is shown in

Section 4.1.1 in page 24.When the sample size was big enough, 100 or 200 the method in

all the cases estimated 5 populations, because the standard deviation was 0. For the EM

algorithm, all the results were close, but the best results were obtained when the identification

was easy, as exposed in the previous analysis, when the sample size, separation and weight was

large. In the other cases, the method could not detect all the populations, also, this method

had a smaller variation compared with the GA. Because of that reason, the conclusion is that

the GA is worse than the EM in the estimation of the number of populations in a mixture

of normal distributions.
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Two known populations - Part 1/2 Number of populations for Normal Distribution

Parameters Mean SD

# Sample Size separation weight GA EM GA EM

1 30 1 5 3,594 1,004 0,691 0,063

2 50 1 5 4,404 1,000 0,605 0,000

3 100 1 5 4,980 1,000 0,140 0,000

4 200 1 5 5,000 1,000 0,000 0,000

5 30 2 5 3,476 1,004 0,726 0,063

6 50 2 5 4,252 1,000 0,633 0,000

7 100 2 5 4,982 1,000 0,133 0,000

8 200 2 5 5,000 1,000 0,000 0,000

9 30 5 5 3,142 1,054 0,671 0,289

10 50 5 5 3,832 1,020 0,690 0,178

11 100 5 5 4,956 1,004 0,205 0,063

12 200 5 5 5,000 1,000 0,000 0,000

13 30 1 10 3,630 1,006 0,697 0,077

14 50 1 10 4,340 1,002 0,617 0,045

15 100 1 10 4,990 1,000 0,100 0,000

16 200 1 10 5,000 1,000 0,000 0,000

17 30 2 10 3,460 1,008 0,736 0,089

18 50 2 10 4,198 1,000 0,654 0,000

19 100 2 10 4,992 1,000 0,089 0,000

20 200 2 10 5,000 1,000 0,000 0,000

21 30 5 10 2,872 1,230 0,719 0,534

22 50 5 10 3,982 1,180 0,750 0,460

23 100 5 10 4,968 1,084 0,176 0,305

24 200 5 10 5,000 1,048 0,000 0,232

Table 4-15.: Total populations calculated for a mixture of two normal distributions, part

1. The second part is in Table4-16 in page 50. Source: Build by the authors
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Two known populations - Part 2/2 Number of populations for Normal Distribution

Parameters Mean SD

# Sample Size separation weight GA EM GA EM

25 30 1 25 3,574 1,006 0,719 0,077

26 50 1 25 4,312 1,000 0,660 0,000

27 100 1 25 4,982 1,000 0,133 0,000

28 200 1 25 5,000 1,000 0,000 0,000

29 30 2 25 3,346 1,010 0,769 0,100

30 50 2 25 4,240 1,002 0,647 0,045

31 100 2 25 4,980 1,000 0,140 0,000

32 200 2 25 5,000 1,000 0,000 0,000

33 30 5 25 2,970 1,756 0,725 0,495

34 50 5 25 4,088 1,896 0,643 0,462

35 100 5 25 4,966 1,942 0,181 0,258

36 200 5 25 5,000 2,002 0,000 0,118

37 30 1 50 3,526 1,008 0,726 0,089

38 50 1 50 4,312 1,002 0,632 0,045

39 100 1 50 4,990 1,000 0,100 0,000

40 200 1 50 5,000 1,000 0,000 0,000

41 30 2 50 3,402 1,014 0,717 0,118

42 50 2 50 4,238 1,004 0,631 0,063

43 100 2 50 4,986 1,000 0,118 0,000

44 200 2 50 5,000 1,000 0,000 0,000

45 30 5 50 2,946 1,972 0,740 0,227

46 50 5 50 4,028 2,000 0,669 0,090

47 100 5 50 4,944 2,000 0,230 0,000

48 200 5 50 5,000 2,000 0,000 0,000

Table 4-16.: Total populations calculated for a mixture of two normal distributions, part

2. The first part is in Table4-15 in page 49. Source: Build by the authors
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Mean number of populations for a mixture of two normal populations

When the number of populations is unknown

Figure 4-13.: Mean estimated number of populations for the mixture of two normal distri-

butions. Source: Build by the authors
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4.2.2. Mixture of three normal distributions

The results of the simulations for the estimation of the parameters of mixtures of three

normal distributions can be observed in Tables 4-17 and 4-18, and the Figure 4-14 in page

55. The starting value for the number of populations was 6 for both methods. As shown in

the Tables and Figures, this case has the same behavior that the case with 2 populations. The

GA overestimates and the EM underestimate the number of populations. The experiments

with the closer result for the GA are those where there is small sample size, because it is

unable to detect the populations with few data, but when there is plenty of data, such as

200, the algorithm always estimate the mixture with the initial parameter as the number

of populations. The situation is different for the EM algorithm; because it underestimate

the number of populations, the scenarios were it had the best performance were the ones

with big sample and separation. It can be noticed that the EM algorithm had the smallest

variation in all the scenarios, making it the most precise method among the studied ones,

but it is not exact. Neither of methods in neither scenario had an exact performance, and

this can be checked by looking carefuly the images.
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Three known populations - Part 1/2 Number of populations for Normal Distribution

Parameters Mean SD

n separacion weight GA EM GA EM

1 30 1 5 3,812 1,004 0,809 0,063

2 50 1 5 4,768 1,004 0,729 0,063

3 100 1 5 5,904 1,000 0,295 0,000

4 200 1 5 6,000 1,000 0,000 0,000

5 30 2 5 3,398 1,008 0,825 0,109

6 50 2 5 4,502 1,004 0,680 0,063

7 100 2 5 5,888 1,002 0,322 0,045

8 200 2 5 6,000 1,000 0,000 0,000

9 30 5 5 2,670 1,442 0,683 0,554

10 50 5 5 3,976 1,546 0,738 0,580

11 100 5 5 5,800 1,660 0,410 0,570

12 200 5 5 6,000 1,836 0,000 0,585

13 30 1 10 3,662 1,010 0,762 0,100

14 50 1 10 4,656 1,000 0,683 0,000

15 100 1 10 5,932 1,000 0,252 0,000

16 200 1 10 6,000 1,000 0,000 0,000

17 30 2 10 3,242 1,012 0,765 0,109

18 50 2 10 4,426 1,004 0,705 0,063

19 100 2 10 5,922 1,000 0,268 0,000

20 200 2 10 6,000 1,000 0,000 0,000

21 30 5 10 2,552 1,254 0,672 0,523

22 50 5 10 3,898 1,226 0,730 0,517

23 100 5 10 5,800 1,234 0,415 0,562

24 200 5 10 5,998 1,298 0,045 0,686

Table 4-17.: Total populations calculated for a mixture of three normal distributions, part

1. The second part is in Table4-18 in page 54. Source: Build by the authors
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Three known populations - Part 2/2 Number of populations for Normal Distribution

Parameters Mean SD

n separacion weight GA EM GA EM

25 30 1 25 3,670 1,016 0,794 0,126

26 50 1 25 4,702 1,002 0,706 0,045

27 100 1 25 5,910 1,000 0,286 0,000

28 200 1 25 6,000 1,000 0,000 0,000

29 30 2 25 3,150 1,018 0,837 0,133

30 50 2 25 4,430 1,014 0,703 0,118

31 100 2 25 5,866 1,004 0,341 0,063

32 200 2 25 6,000 1,000 0,000 0,000

33 30 5 25 2,596 1,172 0,665 0,539

34 50 5 25 4,084 1,122 0,706 0,477

35 100 5 25 5,728 1,076 0,463 0,383

36 200 5 25 6,000 1,012 0,000 0,155

37 30 1 50 3,602 1,010 0,815 0,100

38 50 1 50 4,712 1,002 0,714 0,045

39 100 1 50 5,910 1,000 0,286 0,000

40 200 1 50 6,000 1,000 0,000 0,000

41 30 2 50 3,120 1,096 0,774 0,302

42 50 2 50 4,454 1,068 0,682 0,252

43 100 2 50 5,882 1,042 0,335 0,201

44 200 2 50 6,000 1,010 0,000 0,100

45 30 5 50 2,508 1,812 0,683 0,956

46 50 5 50 4,040 2,062 0,712 0,992

47 100 5 50 5,812 2,462 0,401 0,907

48 200 5 50 5,998 2,720 0,045 0,695

Table 4-18.: Total populations calculated for a mixture of three normal distributions, part

2. The first part is in Table4-17 in page 53. Source: Build by the authors
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Figure 4-14.: Mean estimated number of populations for the mixture of three normal dis-

tributions. Source: Build by the authors
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Five known populations - Part 1/2 Number of populations for Normal Distribution

Parameters Mean SD

# n separacion weight GA EM GA EM

1 30 1 5 2,984 1,010 0,909 0,100

2 50 1 5 5,072 1,002 0,830 0,045

3 100 1 5 7,212 1,000 0,660 0,000

4 200 1 5 7,998 1,000 0,045 0,000

5 30 2 5 2,072 1,062 0,767 0,250

6 50 2 5 4,376 1,032 0,802 0,176

7 100 2 5 6,800 1,024 0,667 0,153

8 200 2 5 7,988 1,002 0,109 0,045

9 30 5 5 1,554 1,184 0,616 0,432

10 50 5 5 3,740 1,150 0,763 0,374

11 100 5 5 6,448 1,160 0,587 0,367

12 200 5 5 7,994 1,174 0,077 0,379

13 30 1 10 2,924 1,024 0,867 0,153

14 50 1 10 5,040 1,002 0,865 0,045

15 100 1 10 7,196 1,000 0,680 0,000

16 200 1 10 7,996 1,000 0,063 0,000

17 30 2 10 1,986 1,040 0,729 0,196

18 50 2 10 4,250 1,030 0,765 0,171

19 100 2 10 6,774 1,010 0,660 0,100

20 200 2 10 7,990 1,004 0,100 0,063

21 30 5 10 1,548 1,120 0,604 0,325

22 50 5 10 3,630 1,120 0,674 0,337

23 100 5 10 6,400 1,074 0,556 0,262

24 200 5 10 7,982 1,058 0,133 0,234

Table 4-19.: Total populations calculated for a mixture of five normal distributions, part 1.

The second part is in Table4-20 in page 57. Source: Build by the authors

4.2.3. Mixture of five normal distributions

The result for the mean populations found for the mixture of 5 distributions can be found

on Tables 4-19 and 4-20 and in Figure 4-15, page 58. For this exercise the initial value

for the number of populations was set to 8. It is shown in the figures that the number

of populations was not close for neither of the methods.The GA tends to overestimate the

number of populations when the size of the sample data allows it, but this time this algorithm

underestimated the result more often when the sample size was small. Also, in general, the

standard deviation was bigger than the one with 2 and 3 populations, respectively. For the

EM algorithm in all the cases the results underestimate the real value, the only one close

occurs when a population had the 50 % of the data and separation of 5 standard deviation, for

the rest, it could not even detect that there was a mixture. As a conclusion, then neither of the

methods could correctly estimate the number when there was a big amount of populations.
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Five known populations - Part 2/2 Number of populations for Normal Distribution

Parameters Mean SD

# n separacion weight GA EM GA EM

25 30 1 25 2,822 1,018 0,892 0,133

26 50 1 25 4,964 1,006 0,886 0,077

27 100 1 25 7,136 1,002 0,671 0,045

28 200 1 25 7,996 1,000 0,063 0,000

29 30 2 25 1,918 1,182 0,749 0,391

30 50 2 25 4,196 1,134 0,822 0,353

31 100 2 25 6,850 1,122 0,702 0,334

32 200 2 25 7,988 1,120 0,109 0,325

33 30 5 25 1,488 1,308 0,592 0,535

34 50 5 25 3,692 1,340 0,776 0,604

35 100 5 25 6,450 1,428 0,613 0,688

36 200 5 25 7,978 1,508 0,147 0,787

37 30 1 50 2,780 1,032 0,886 0,176

38 50 1 50 4,884 1,008 0,863 0,089

39 100 1 50 7,170 1,002 0,668 0,045

40 200 1 50 7,996 1,000 0,063 0,000

41 30 2 50 1,978 1,390 0,761 0,512

42 50 2 50 4,336 1,438 0,815 0,528

43 100 2 50 7,038 1,518 0,711 0,508

44 200 2 50 7,990 1,650 0,100 0,486

45 30 5 50 1,482 1,942 0,592 0,790

46 50 5 50 3,680 2,134 0,742 0,713

47 100 5 50 6,896 2,510 0,747 0,874

48 200 5 50 7,964 2,630 0,186 0,866

Table 4-20.: Total populations calculated for a mixture of five normal distributions, part 2.

The first part is in Table4-19 in page 56. Source: Build by the authors
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Figure 4-15.: Mean estimated number of populations for the mixture of five normal distri-

butions. Source: Build by the authors
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Two known populations - Part 1/2 Number of populations for Gamma Distribution

Parameters Mean Standard Deviation

# Sample Size separation weight GA EM GA EM

1 30 1 5 2,480 1,009 0,615 0,097

2 50 1 5 3,276 1,004 0,514 0,063

3 100 1 5 4,936 1,000 0,245 0,000

4 200 1 5 5,000 1,000 0,000 0,000

5 30 2 5 2,392 1,004 0,592 0,063

6 50 2 5 3,238 1,002 0,479 0,045

7 100 2 5 4,932 1,000 0,253 0,000

8 200 2 5 5,000 1,000 0,000 0,000

9 30 5 5 2,304 1,010 0,580 0,100

10 50 5 5 3,214 1,004 0,465 0,063

11 100 5 5 4,938 1,000 0,241 0,000

12 200 5 5 5,000 1,000 0,000 0,000

13 30 1 10 2,478 1,027 0,643 0,263

14 50 1 10 3,292 1,006 0,521 0,077

15 100 1 10 4,958 1,000 0,201 0,000

16 200 1 10 5,000 1,000 0,000 0,000

17 30 2 10 2,396 1,016 0,600 0,126

18 50 2 10 3,298 1,004 0,488 0,063

19 100 2 10 4,930 1,000 0,255 0,000

20 200 2 10 5,000 1,000 0,000 0,000

21 30 5 10 2,340 1,018 0,581 0,133

22 50 5 10 3,270 1,010 0,508 0,100

23 100 5 10 4,950 1,000 0,218 0,000

24 200 5 10 5,000 1,000 0,000 0,000

Table 4-21.: Total populations calculated for a mixture of two gamma distributions, part

1. The second part is in Table4-22 in page 60. Source: Build by the authors

4.2.4. Mixture of two gamma distributions

The results of the simulations of the experiments for the estimation of populations of the

mixture of two normal gamma distributions can be observed in Tables 4-21 and 4-22 and

their graphic in Figure 4-16, in page 61. As an initial value, a start value of 5 populations

was set. Similar to the results from the mixture of normal distributions, the GA tend to

overestimate the number of populations, when the sample size was large enough to compute

all the populations, but this was done with a lot of dispersion, as it can be seen in the Tables.

For the EM algorithm it can be seen that in almost all the cases it underestimated the number

of populations, even with big separation, sample size and weight, but the dispersion in almost

all cases was 3 times smaller that the one achieved with GA. The conclusion is that neither

of the methods had the accuracy needed to estimate correctly the number of populations for

a mixture of two gamma distributions.
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Two known populations - Part 2/2 Number of populations for Gamma Distribution

Parameters Mean SD

# Sample Size separation weight GA EM GA EM

25 30 1 25 2,571 1,065 0,649 0,306

26 50 1 25 3,340 1,014 0,549 0,118

27 100 1 25 4,945 1,000 0,229 0,000

28 200 1 25 5,000 1,000 0,000 0,000

29 30 2 25 2,514 1,028 0,659 0,165

30 50 2 25 3,399 1,013 0,563 0,112

31 100 2 25 4,940 1,002 0,238 0,045

32 200 2 25 5,000 1,000 0,000 0,000

33 30 5 25 2,440 1,026 0,609 0,171

34 50 5 25 3,230 1,012 0,464 0,111

35 100 5 25 4,944 1,002 0,239 0,045

36 200 5 25 5,000 1,000 0,000 0,000

37 30 1 50 2,737 1,100 0,653 0,447

38 50 1 50 3,514 1,054 0,675 0,280

39 100 1 50 4,938 1,002 0,241 0,045

40 200 1 50 5,000 1,000 0,000 0,000

41 30 2 50 2,827 1,096 0,794 0,296

42 50 2 50 3,593 1,037 0,651 0,201

43 100 2 50 4,963 1,000 0,190 0,000

44 200 2 50 5,000 1,000 0,000 0,000

45 30 5 50 2,556 1,056 0,691 0,231

46 50 5 50 3,480 1,066 0,644 0,249

47 100 5 50 4,944 1,000 0,230 0,000

48 200 5 50 5,000 1,000 0,000 0,000

Table 4-22.: Total populations calculated for a mixture of two gamma distributions, part

2. The first part is in Table4-21 in page 59. Source: Build by the authors



4.2 Number of populations unknown 61

1 2 3 4 5

0
2

4
6

n=30

separacion

m
e
a
n
 #

 o
f 
p
o
p
u
la

ti
o
n
s

weight=5
weight=10
weight=25
weight=50

GA
EM
Real

1 2 3 4 5
0

2
4

6

n=50

separacion

m
e
a
n
 #

 o
f 
p
o
p
u
la

ti
o
n
s

weight=5
weight=10
weight=25
weight=50

GA
EM
Real

1 2 3 4 5

0
2

4
6

n=100

separacion

m
e
a
n
 #

 o
f 
p
o
p
u
la

ti
o
n
s

weight=5
weight=10
weight=25
weight=50

GA
EM
Real

1 2 3 4 5

0
2

4
6

n=200

separacion

m
e
a
n
 #

 o
f 
p
o
p
u
la

ti
o
n
s

weight=5
weight=10
weight=25
weight=50

GA
EM
Real

Mean number of populations for a mixture of two gamma populations
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Figure 4-16.: Mean estimated number of populations for the mixture of two gamma distri-

butions. Source: Build by the authors
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4.2.5. Mixture of three gamma distributions

The mean number of populations estimated using GA and EM algorithm for a mixture

of three gamma distribution for the 48 scenarios used in this research can be found on

Tables 4-23 and 4-23 and their graphic in Figure 4-17, in page 65. The starting values

for the estimation was 6 populations for both methods. The estimation of the number of

populations in this case was very difficult because of the numerical stability due to the

calculus of the maximum likelihood for different sets of gamma distributions, and this was

more noticeable with largue set of data and largue separation, for both methods. For the

values that could be computed, the EM algorithm was more precise, having lower standard

deviation, but in all cases the detection of more of one distribution was small, because of the

mean number of population, that is in all cases, very close to one. For the GA the results

were different, because of the initial value, when the sample size allows for, the estimation

was the same as the 6 populations, for the other cases when there was not enough data, the

number of populations was close. As a conclusion, in this scenario, neither of the methods

had satisfactory performance, because none of them could calculate the real number of

populations.
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Three known populations - Part 1/2 Number of populations for Gamma Distribution

Parameters Mean SD

n separacion weight GA EM GA EM

1 30 1 5 2,524 1,095 0,773 0,370

2 50 1 5 4,054 1,080 0,680 0,273

3 100 1 5 5,640 1,010 0,540 0,100

4 200 1 5 6,000 1,000 0,000 0,000

5 30 2 5 2,444 1,150 0,616 0,366

6 50 2 5 4,079 1,025 0,587 0,158

7 100 2 5 5,660 1,010 0,525 0,100

8 200 2 5 6,000 1,000 0,000 0,000

9 30 5 5 2,276 1,034 0,790 0,183

10 50 5 5 3,850 1,028 0,748 0,205

11 100 5 5 5,535 1,000 0,592 0,000

12 200 5 5 6,000 1,000 0,000 0,000

13 30 1 10 2,550 1,146 0,783 0,422

14 50 1 10 4,021 1,072 0,649 0,260

15 100 1 10 5,670 1,005 0,492 0,071

16 200 1 10 6,000 1,000 0,000 0,000

17 30 2 10 2,433 1,097 0,626 0,396

18 50 2 10 4,042 1,040 0,624 0,200

19 100 2 10 5,630 1,005 0,504 0,071

20 200 2 10 6,000 1,000 0,000 0,000

21 30 5 10 2,600 1,270 0,736 0,693

22 50 5 10 3,938 1,015 0,664 0,124

23 100 5 10 5,555 1,005 0,573 0,071

24 200 5 10 6,000 1,000 0,000 0,000

Table 4-23.: Total populations calculated for a mixture of three gamma distributions, part

1. The second part is in Table4-24 in page 64. Source: Build by the authors
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Three known populations - Part 2/2 Number of populations for Gamma Distribution

Parameters Mean SD

n separacion weight GA EM GA EM

25 30 1 25 2,000 1,222 0,756 0,441

26 50 1 25 4,200 1,182 0,696 0,664

27 100 1 25 5,747 1,000 0,437 0,000

28 200 1 25 6,000 1,000 0,000 0,000

29 30 2 25 2,625 1,222 0,518 0,441

30 50 2 25 3,889 1,000 0,928 0,000

31 100 2 25 5,698 1,011 0,487 0,107

32 200 2 25 6,000 1,000 0,000 0,000

33 30 5 25 2,818 1,545 0,874 0,688

34 50 5 25 4,500 1,000 0,707 0,000

35 100 5 25 5,621 1,034 0,511 0,237

36 200 5 25 6,000 1,000 0,000 0,000

37 30 1 50 2,000 1,250 0,816 0,463

38 50 1 50 NA 1,000 NA NA

39 100 1 50 NA NA NA NA

40 200 1 50 NA NA NA NA

41 30 2 50 2,500 1,000 0,577 0,000

42 50 2 50 4,000 1,000 0,000 0,000

43 100 2 50 NA NA NA NA

44 200 2 50 NA NA NA NA

45 30 5 50 NA NA NA NA

46 50 5 50 NA NA NA NA

47 100 5 50 NA NA NA NA

48 200 5 50 NA NA NA NA

Table 4-24.: Total populations calculated for a mixture of three gamma distributions, part

2. The first part is in Table4-23 in page 63. Source: Build by the authors
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Figure 4-17.: Mean estimated number of populations for the mixture of three gamma dis-

tributions. Source: Build by the authors
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4.2.6. Mixture of five gamma distributions

The results of the estimation of the number of populations for a mixture of 5 gamma po-

pulations can be seen in Tables 4-25 and 4-26 and their graphic in Figure 4-18, in page

69, respectively. The number of initial populations was set to 8, and this carried a huge

numerical instability, for this reason the GA could not work, generating errors from the first

simulation.The EM algorithm could detect the number of populations in all cases, because

it did not yielded NA as a result, but, as the case with 3 unknown populations in section

4.2.5, in almost all cases it could not detect more than one population, because of the proxi-

mity of the mean number of population to one. As a remark, all the scenarios had a bigger

standard deviation than their analogous from 2 and 3 populations. This indicates that the

algorithm was less precise. As a conclusion, the GA should not be used to detect the number

of populations, and even more if there are a lot of populations, or if there are clues that

these populations follows a gamma distribution. The EM algorithm was not precise to find

the number of populations.

In this chapter, we described the results of the simulation, and a summary of the conclusions

can be seen on chapter 6. In the next chapter there is an illustrative example of the use of

this algorithm.
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Five known populations - Part 1/2 Number of populations for Gamma Distribution

Parameters Mean SD

# n separacion weight GA EM GA EM

1 30 1 5 NA 1,315 NA 0,627

2 50 1 5 NA 1,253 NA 0,646

3 100 1 5 NA 1,126 NA 0,471

4 200 1 5 NA 1,025 NA 0,157

5 30 2 5 NA 1,392 NA 0,690

6 50 2 5 NA 1,365 NA 0,785

7 100 2 5 NA 1,085 NA 0,330

8 200 2 5 NA 1,005 NA 0,071

9 30 5 5 NA 1,409 NA 0,753

10 50 5 5 NA 1,286 NA 0,595

11 100 5 5 NA 1,080 NA 0,353

12 200 5 5 NA 1,005 NA 0,071

13 30 1 10 NA 1,467 NA 0,940

14 50 1 10 NA 1,289 NA 0,632

15 100 1 10 NA 1,165 NA 0,499

16 200 1 10 NA 1,000 NA 0,000

17 30 2 10 NA 1,403 NA 0,709

18 50 2 10 NA 1,346 NA 0,705

19 100 2 10 NA 1,145 NA 0,430

20 200 2 10 NA 1,020 NA 0,140

21 30 5 10 NA 1,317 NA 0,688

22 50 5 10 NA 1,300 NA 0,712

23 100 5 10 NA 1,150 NA 0,468

24 200 5 10 NA 1,035 NA 0,184

Table 4-25.: Total populations calculated for a mixture of five gamma distributions, part

1. The second part is in Table4-26 in page 68. Source: Build by the authors
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Five known populations - Part 2/2 Number of populations for Gamma Distribution

Parameters Mean SD

# n separacion weight GA EM GA EM

25 30 1 25 NA 1,314 NA 0,550

26 50 1 25 NA 1,371 NA 0,711

27 100 1 25 NA 1,171 NA 0,578

28 200 1 25 NA 1,040 NA 0,196

29 30 2 25 NA 1,366 NA 0,671

30 50 2 25 NA 1,465 NA 0,847

31 100 2 25 NA 1,133 NA 0,396

32 200 2 25 NA 1,035 NA 0,253

33 30 5 25 NA 1,373 NA 0,701

34 50 5 25 NA 1,391 NA 0,845

35 100 5 25 NA 1,181 NA 0,490

36 200 5 25 NA 1,030 NA 0,171

37 30 1 50 NA 1,373 NA 0,662

38 50 1 50 NA 1,243 NA 0,469

39 100 1 50 NA 1,106 NA 0,355

40 200 1 50 NA 1,050 NA 0,279

41 30 2 50 NA 1,167 NA 0,519

42 50 2 50 NA 1,237 NA 0,485

43 100 2 50 NA 1,383 NA 0,880

44 200 2 50 NA 1,180 NA 0,608

45 30 5 50 NA 1,309 NA 0,663

46 50 5 50 NA 1,440 NA 0,686

47 100 5 50 NA 1,257 NA 0,612

48 200 5 50 NA 1,162 NA 0,600

Table 4-26.: Total populations calculated for a mixture of five gamma distributions, part

2. The first part is in Table4-25 in page 67. Source: Build by the authors
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Figure 4-18.: Mean estimated number of populations for the mixture of five gamma distri-

butions. Source: Build by the authors
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The data for this illustration were taken from a study conducted by Estrada, et. al., 1988

[12], the permission to use de data set was given of the Seguro Social. This study had as

an objective to measure 69 anthropometric parameters from a workforce in Colombia. The

data were taken from males and females from 20 to 60 years old, and the aim was to get a

characterization of the population, and with the information taken from this database, to

get design spaces and equipment for the use of the Colombian workers, because historically

these have been designed using international standards or heuristically. From this study, the

data on BMI (Body Mass Index) have been selected as the variable to analyze, because of the

importance to describe the body and therefore the designs to do for the colombian workers,

also is a variable that is important to show the risk of mortality by circulatory diseases or

cancer [12]. The histogram and the density can be seen in Figure 5-1 where it shows a form

of a bell, but with a heavy tail on the right, and a little hump around a BMI of 30. Looking

very carefully, it can be seen another humps on 24 and 28. For this reason this might not

follow a normal distribution, but this is checked with graphical and numerical analysis. The

QQ plot is shown in Figure 5-2. In the QQ plot it is shown that the distribution has heavy

tails, this weakens the assuption of having only one normal distribution. The numerical

test is made using the Kolmogorov–Smirnov test, for a two sided hypotesis. We observed a

p − value < 2,20x ∗ 10−16, and this analysis confirms that the distribution is not a normal

one. For this reason, an analysis using a mixture of distributions could be appropriate.

The first step to analyze the data is to find the number of populations. This was achieved

using the algorithms evaluated in this research. Because of the results of the simulations

in Chapter 4 shows that the EM and GA could not estimate the number of populations

correctly, the proposed strategy to follow is to set different scenarios and compare the results

of EM and GA with the estimated for the data using the kernel density estimates, the initial

parameter for the number of populations was set at 4, the GA was set for a population size

of 500 and 500 iterations, the EM algorithm was set of 500 iterations, and the amount of

data to analyze was 2100, looking for a better convergence, due to the results explained in

the previous chapter.

The analysis was later conducted using the same algorithms for the simulations, and the

parameters estimated are shown in table 5-1. The parameters of every populations were

different from the calculations of both methods, and as a way to assess the adjustment to

the data, the graph 5-3 was created. In this graphic, the best method for this data set is the

EM algorithm with 3 populations, because it is the one that looks closer to the estimated
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Histogram and density for BMI of Colombian workers
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Figure 5-1.: Histogram and estimated density for data about the BMI of colombian workers
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Figure 5-2.: QQ plot the BMI of colombian workers
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Number of populations Pop number
GA EM

π µ σ π µ σ

2
1 0.4567 26.3176 3.6591 0.7938 23.7285 2.7923

2 0.5433 23.0441 2.3605 0.2062 27.6599 3.8662

3

1 0.2657 23.0418 2.3409 0.2381 21.1638 1.6954

2 0.4681 25.9696 3.9413 0.1191 28.7908 3.9641

3 0.2662 23.5178 2.1600 0.6429 25.0014 2.5691

4

1 0.1590 23.2227 2.6489 0.2934 21.3270 1.7535

2 0.3252 26.9433 3.7198 0.0065 24.0586 0.0294

3 0.3662 23.1989 2.4640 0.5700 25.2685 2.4292

4 0.1495 23.9916 2.7161 0.1302 28.6128 3.9589

Table 5-1.: Parameters estimated from the mixture of BMI of colombian workers

density .This method gives the information to conclude that there might be three groups of

Colombian workers, one with a the 24 % of the people, with a healthy BMI, with mean 21,

the majority 64 % with overweight with a BMI of 25, and with a standard deviation of 2,6,

and the last one with a 12 % of people, with a BMI of 28, close to the obesity.

As a conclusion, the methods can be used for real case studies with results that can describe

the data. As a recommendation, we endorse further studies of the number of populations,

because it is a critical input and the methods here exposed are not very accurate for the

estimation of the number of populations in the mixture. We recommend to follow the EM

algorithm for the estimation of the number of populations, and next using an evolutive

algorithm if the distribution is not a mixture of normal populations, also, to implement a

test to define the family of distributions in the mixture, to use the Hellinger Distance to

compare the results with the Kernel Density.
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Histogram and density for BMI of Colombian workers
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Figure 5-3.: Comparison of method to estimate the mixture of BMI of colombian workers



6. Conclusions

A comparison between evolutive algorithms and traditional methods for the estimation of

the parameters of mixture models was conducted in this study. The evolutive algorithm was

represented by the Genetic Algorithm (GA) and the traditional method by the Expectation

– Maximization Algorithm (EM); the parameters evaluated were:whether the number of

populations is known or unknown, type distribution, number and weight of populations,

sample size and separation between means of the populations in the mixture, for the case of

the normal mixture, or the α parameter in a gamma mixture. This study was made using

simulations on R [26] with a code proposed for this research, and then the Hellinger distance

was calculated to make the comparison. When the simulations were running, the first thing

to notice is that the EM simulation’s running time was significantly higher than the GA

simulation’s running time; the Hellinger distance is smaller when the sample increases, and

the composition of the mixture is even.

For a mixture of normal distributions when the number of populations is known, the results

obtained using the EM were better than the ones achieved with GA, because in general

it had smaller distance and standard deviation. For the GA, this method needs sample

sizes of at least 50 items or the population to have a weight of at least 10 % to have the

sensibility to detect all the populations; when the amount of populations increase, so does

the number of data needed to estimate the parameters. The separation between means have

an opposite effect in the distance, the EM has lower distance as the distance increases. For

the reasons exposed, the EM is better at the estimation of the parameters in a mixture of

normal distributions than the GA.

For a mixture of gamma distributions, the methods have lower distance when there are large

samples, and the weights in the mixture are even.In this case, the GA could not detect all

the populations when at least one of the populations had weight equal or less than 10 % and

the sample size was small, less than 100 units. For the mixture of gamma distributions, the

GA had better results when the separation was small, 1 or two β. One problem with both

methods was numerical instability that was more noticeable as the number of populations

increased, and there was a lack of convergence in the results of the EM algorithm. For that

reason, the GA is a better option to estimate the parameters in this mixture.

In the cases when the number of populations is unknown for a mixture of normal distributions

neither of the methods, GA nor GAP analysis are exact, but the EM algorithm is is closer

to the real value of two populations, the algorithm can compute all the populations, as seen

in the results of the estimation of the parameters with the number of populations known.



76 6 Conclusions

For three populations, as the number of population increases, the performance of the GA

for the estimation of the number of populations in a mixture decreases, the GAP analysis

had the smallest variation in all the scenarios, but it is not exact.. In the case when there

are five populations, for the GAP analysis, in all the cases the results were the number of

populations was underestimated, the only close was when a population had the 50 % of the

data and segregation of 5 standard deviation, for the rest, it could not even notice that there

was a mixture. In conclusion, neither of the methods could correctly estimate the number

when there was a big amount of populations.

For the number of populations unknown in a mixture of gamma distributions, neither of the

methods could estimate correctly the number of populations. As the number of population

increases, the GA starts to present numerical instability, being unable to estimate the para-

meters. As a conclusion, the GA should not be used to detect the number of populations,

and even more if there are a lot of populations, or if there are clues that these populations

follows a gamma distribution.

The methods were used in a real problem, to estimate the number of populations of Colom-

bian workers based on their Body Mass Index. As a conclusion, the methods can be used in

real applications with results that can describe the data. The recommendation is to study

the number of populations, because it is a critical input and the methods here exposed are

not very accurate.

The biggest problem found in this study, was the time to process the GA simulations, one

recommendation is to improve its performance. Another recommendation to future studies

is to explore the behavior of the estimation of the number of populations with larger sample

size, more iterations, evaluating the effect of heterogeneous variance in the mixture and using

other distributions.
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A.1. Packages for Genetic Algorithms

A.1.1. gafit

This package was developed in 2002 and uses the genetic algorithm for minimizing the value

of a given function. This package is very simple, as it has only one function, with minimum

input parameters: function to minimize, the start values for the chromosomes and number

of iterations. This function also includes a thermal and step between samples, and use this

term are not common on the Genetic Algorithm literature, and given that this package was

developed 13 years ago, and it has some documented bugs, the decision was not to use it on

this investigation.

A.1.2. galts

This package is the Genetic algorithms and C-steps based LTS (Least Trimmed Squares) es-

timation. This package is useful to estimate a function without being affected in the presence

of outliers. With galts it is possible to detect regression outliers. The estimation function,

using genetic algorithms adjusted a set of data to a formula, and gives as a result the coeffi-

cients, LTS criterion and the method used for the optimization. For this nature, this package

is not useful for this research.

A.1.3. mcga

The mcga package was developed in march, 2014 and reviewed in february, 2015. It is a

very complete set for using genetic algorithms as a method to solve a problem. It is used to

solve real valued optimization problems. It requieres as inputs the population size, number of

parameters to estimate, genetic algorithm parameters as crossover and mutation probability,

elitism, the search space, and maximum iterations. Gives as a result the population and the

value for every chromosome. This package also allows optimizing a multi objective function.

A.1.4. rgenoud

This package has more than 5 versions so far. For the optimization problem this package

uses a combination of evolutive and Newton methods. This can be used when the function to
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optimize does not have a derivative. This method can use several processes at a time. This

package only has one function, genound, for the GENetic Optimization Using Derivatives.

This function has a wide pool of parameters to control the optimization, including some set

for the performance of the computation, for example, it can control the RAM used. The

reason to not use this package for this research was the combination with Newton methods,

as we wanted to evaluate the performance of the pure evolutive algorithm.

A.1.5. genalg

This package has been released on march 16, 2015 and it has the possibility to optimize a set

of real valued and binary data, along with the graphics of the evolution of the populations

and a complete summary of the parameters found and the performance of the algorithm.

The functions of this package use as input the function to evaluate. This function can only

receive the chromosome as an input. Other parameters are the elitism, mutation chance,

population size and the search space.

A.1.6. GA

This package has a wide pool of functions to optimize a problem using genetic algorithms.

This package also has the advantage of running in parallel on two or more processors. The

command ga allows to optimize an objective function, giving the advantage of allowing that

function to receive the chromosome and other parameters for the optimization. This makes

the package more flexible than the others evaluated in this investigation. The package can

be used with real valued, binary and permutation. Compared with other packages, this one

possesses a wider pool of parameters for the improve of the estimation, such as seed, running

in parallel, keep the best chromosome, a specific function to compute the crossing over and

selection. The return of the optimization is an object with all the data obtained in the

optimization. This is a very complete package of genetic algorithms for the improvement

of functions, but the main issue is the performance, because it was three times longer to

optimize than genalg.

A.2. Packages for mixture models

A.2.1. mclust

This package uses the EM algorithm for model based clustering, classification and density

estimation. This package offers a lot of different functions to fit the data, compute the cdf,

errors, scatter plot, density estimations for each point, the number of clusters, information

criterion, and some datasets from some cases of studies, such as thyroid function and the
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acidity of lakes in North America. This package is used in this study to assess the number

of populations using EM algorithms because of the usability.

A.2.2. BayesMix

This package uses a Bayesian framework for fitting mixture models of univariate Gaussian

distributions. This is a new package, being released on July 2015 and allows to represent the

data using plots of the data and their posteriori density, using JAGS (Just Another Gibbs

Sampler) for analysis of Bayesian hierarchical models. This package was not used because in

this study, we focus on the EM algorithm as the illustration of traditional methods for the

estimation of mixture models.

A.2.3. Rmixmod

This package, which was released on march, 2014, is developed for the Supervised and unsu-

pervised classification with mixture modeling. This package is very complete for a mixture

of Gaussian or multinomial mixture models, giving tools to plot, define parameters, find and

analyze clusters, and some data to run the models. This one was not used in this study

because they do not support the mixture of other distributions, such as gamma mixture.

A.2.4. mixtools

This package was released in 2015, It contains a wide collection of functions to analyze finite

mixture models. This package allows to compute CDF, densities, bootstraps for the calcula-

tion of the likelihood, plot the mixture and allows to perform simulations of mixtures. This

package supports a mixture of multiple normal distributions, logistic regressions, multino-

mials, gamma distributions using the EM algorithm. The pool of mixtures of distributions

that this package allows to work with is the reason to choose this package over others, also,

It was tested and it is stable and has a good performance.

A.2.5. Flexmix

This package, uses a general framework for finite mixtures of regression models. They use the

EM algorithm to do so. This package allows to compute information criteria, it has examples

of applications, making it easier to understand allows to cluster Gaussian distributions this

can use the maximum likelihood of a wide family of distributions as Gaussian, binomial,

Poisson and Gamma.
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B.1. Algorithm for number of populations known

EM. r e s u l t s= function ( datos1 , k , i t e r , expnumber ){ tryCatch (

normalmixEM ( datos1 , lambda = NULL, mu = NULL, sigma = NULL, k = k ,

sd . c ons t r = NULL,

e p s i l o n = 1e−08, maxit = 500 , maxrestarts =20,

verb = FALSE, f a s t=FALSE, ECM = FALSE,

arbmean = TRUE, arbvar = TRUE) ,

warning = function (w) {
l i s t ( lambda=rep (NA, k ) ,mu=rep (NA, k ) , sigma=rep (NA, k ) )

} ,

e r r o r = function ( e ) { l i s t ( lambda=rep (NA, k ) ,mu=rep (NA, k ) , sigma=rep (NA, k ) )}
)

}

GAestimationk<−function ( cromosoma ){

cromosoma=t (round( cromosoma , d i g i t s =0))

datosGA = datos

datosGak = matrix (nrow=nrow( datos ) , ncol=(ncol ( datos )+1))

for ( i in 1 : 3 ) {datosGak [ , i ]= datos [ , i ]}

datosGak [ , 4 ]= t ( cromosoma )

colnames ( datosGak)=c ( ” Observation ” , ”Value” , ” RealPopulat ion ” , ”Chromosome” )

ParameterValue=DataSett ings [ , , expnumber ]

tablacromosoma=table ( cromosoma )
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Resu l t s=matrix (NA,nrow=max( cromosoma ) , ncol=6)

cuenta cromosoma=rep (NA,max( cromosoma ) )

for (h in 1 :max( cromosoma ) ) { cuenta cromosoma [ h]=sum( cromosoma==h)}

for ( j in 1 :max( cromosoma )){

i f ( cuenta cromosoma [ j ]>3){

Populat ion=datosGak [ cromosoma==j , 3 ]

Param=f i t d i s t r ( Population , densfun=”normal” )

Resu l t s [ j ,1 ]= ParameterValue [ j , 1 ]

Resu l t s [ j ,2 ]= coef (Param ) [ 1 ] #parameter 1 (mu or a lpha )

Resu l t s [ j ,3 ]= coef (Param ) [ 2 ] # parameter 2 ( sigma or be ta )

Resu l t s [ j ,4 ]= abs ( ParameterValue [ j ,2 ]−( cuenta cromosoma [ j ] /

sum( cuenta cromosoma ) ) ) /ParameterValue [ j , 2 ]

Resu l t s [ j ,5 ]= abs ( ParameterValue [ j ,3]− coef (Param ) [ 1 ] ) /

ParameterValue [ j , 3 ]

Resu l t s [ j ,6 ]= abs ( ParameterValue [ j ,4]− coef (Param ) [ 2 ] ) /

ParameterValue [ j , 4 ]

}

}

meanerror=mean( Resu l t s [ cuenta cromosoma>3,c ( 4 , 5 , 6 ) ] )

return ( meanerror )

}

GAestimationk f u l l<−function ( cromosoma ){

cromosoma=t (round( cromosoma , d i g i t s =0))

datosGA = datos

datosGak = matrix (nrow=nrow( datos ) , ncol=(ncol ( datos )+1))
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for ( i in 1 : 3 ) {datosGak [ , i ]= datos [ , i ]}

datosGak [ , 4 ]= t ( cromosoma )

colnames ( datosGak)=c ( ” Observation ” , ”Value” , ” RealPopulat ion ” , ”Chromosome” )

tablacromosoma=as . numeric ( table ( cromosoma ) )

Resu l t s=matrix (NA,nrow=max( cromosoma ) , ncol=7)

cuenta cromosoma=rep (NA,max( cromosoma ) )

for (h in 1 :max( cromosoma ) ) { cuenta cromosoma [ h]=sum( cromosoma==h)}

for ( j in 1 :max( cromosoma )){

i f ( cuenta cromosoma [ j ]>3){

Populat ion=datosGak [ cromosoma==j , 3 ]

Param=f i t d i s t r ( Population , densfun=”normal” )

Resu l t s [ j , 1 ]=( cuenta cromosoma [ j ] ) /sum( cuenta cromosoma )

Resu l t s [ j ,2 ]= coef (Param ) [ 1 ] #parameter 1 (mu or a lpha )

Resu l t s [ j ,3 ]= coef (Param ) [ 2 ] # parameter 2 ( sigma or be ta )

Resu l t s [ j ,4 ]= abs ( ParameterValue [ j ,2 ]−( cuenta cromosoma [ j ] /

sum( cuenta cromosoma ) ) ) /ParameterValue [ j , 2 ]

Resu l t s [ j ,5 ]= abs ( ParameterValue [ j ,3]− coef (Param ) [ 1 ] ) /ParameterValue [ j , 3 ]

Resu l t s [ j ,6 ]= abs ( ParameterValue [ j ,4]− coef (Param ) [ 2 ] ) /ParameterValue [ j , 4 ]

}

}

meanerror=mean( Resu l t s [ cuenta cromosoma>3,c ( 4 , 5 , 6 ) ] )

Resu l t s [ , 7 ]= as . numeric ( table ( t ( cromosoma)==datos [ , 2 ] ) ) [ 2 ] /

sum( cuenta cromosoma )
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return ( Resu l t s )

}

GenerateData<−function ( n1 , DataSett ings ){

CalculatedWeights=rmultinom (1 ,

s i z e=n1 , prob=DataSett ings [ , 2 ] )

GeneratedData=c (rnorm( CalculatedWeights [ 1 , 1 ] ,

mean=DataSett ings [ 1 , 3 ] , sd=DataSett ings [ 1 , 4 ] ) )

PopID=c ( rep (1 , CalculatedWeights [ 1 , 1 ] ) )

for ( i in 2 : k ) {
GeneratedData=c ( GeneratedData ,rnorm( CalculatedWeights [ i , 1 ] ,

mean=DataSett ings [ i , 3 ] , sd=DataSett ings [ i , 4 ] ) )

PopID=c (PopID , rep ( i , CalculatedWeights [ i , 1 ] ) )

}

Seq=seq (1 , n1 )

Datos=cbind ( Seq , PopID , GeneratedData )

rand<−sample (nrow( Datos ) )

Desordenados=Datos [ rand , ]

return ( Desordenados )

}

l ibrary (MASS) #For computing the l i k e l i h o o d and f i t t i n g the d i s t r i b u t i o n

l ibrary ( gena lg ) #for the e va l ua t i on us ing GA

l ibrary ( mixtoo l s ) #For the e va l ua t i on us ing EM

l ibrary ( mclust ) #For the c l u s t e r i n g o f the data

l ibrary ( l ga ) #For computing the b i c

monitor <− function ( obj ) {
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minEval = min( obj$ e v a l u a t i o n s ) ;

plot ( obj , type=” h i s t ” ) ;

}

k=2

max expnumber=4

Parameters=matrix ( ncol=2,nrow=max expnumber ) #n & i t e r

Parameters [ , 1 ]= c (30 , 50 , 100 , 200)

Parameters [ , 2 ]= c ( rep (1000 ,max expnumber ) )

DataSett ings= array (dim=c (k , 4 ,max expnumber ) )

#popu la t i on number

DataSett ings [ , 1 , ]= c (1 , 2 , 1 , 2 , 1 , 2 , 1 ,2)

#popu la t i on weigh t

DataSett ings [ , 2 , ]= c ( 0 . 0 5 , 0 . 95 , 0 . 05 , 0 . 95 ,

0 . 05 , 0 . 95 , 0 . 05 , 0 . 9 5 )

#parameter 1

DataSett ings [ , 3 , ]= c (12 , 13 , 12 , 13 , 12 , 13 , 12 , 13)

#Parameter 2

DataSett ings [ , 4 , ]= c (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1)

ResultsCaso1=array (NA,dim=c (k , 1 6 ,

max( Parameters [ , 2 ] ) ,max expnumber ) )

for ( expnumber in 1 :max expnumber ){

n1=Parameters [ expnumber , 1 ]

i t e r=Parameters [ expnumber , 2 ]

for (m in 1 : i t e r ){ ##poner i t e r

set . seed=1+m
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datos<<−GenerateData ( n1 , DataSett ings [ , , expnumber ] )

GAlresu l t s = rbga ( str ingMin=c ( rep (1 , n1 ) ) , stringMax=c ( rep (k , n1 ) ) ,

s u g g e s t i o n s=NULL,

popSize =200 , i t e r s =100 ,

mutationChance =0.05 ,

e l i t i s m=NA,

evalFunc=GAestimationk ,

showSett ings=FALSE, verbose=FALSE)

GAl . r e s u l t s<−summary( GAlresults , echo=TRUE)

separar<−s tr sp l i t (GAl . r e s u l t s , ” Best So lu t i on : ” )

separar2<−unlist ( s tr sp l i t ( s eparar [ [ 1 ] ] [ 2 ] , ” ” ) )

mejor . cromosoma<−round( as . numeric ( separar2 [− length ( separar2 ) ] ) )

Resu l t s .GA=GAestimationk f u l l ( mejor . cromosoma )

EM. r e s u l t= EM. r e s u l t s ( datos [ , 3 ] , k , i t e r , expnumber )

#Generate the r e s u l t s

for ( i in 1 : k ) {
ResultsCaso1 [ i , 1 ,m, expnumber]= DataSett ings [ i , 2 , expnumber ]

ResultsCaso1 [ i , 2 ,m, expnumber]= DataSett ings [ i , 3 , expnumber ]

ResultsCaso1 [ i , 3 ,m, expnumber]= DataSett ings [ i , 4 , expnumber ]

ResultsCaso1 [ i , 4 ,m, expnumber]= Resu l t s .GA[ i , 1 ]

ResultsCaso1 [ i , 5 ,m, expnumber]= Resu l t s .GA[ i , 2 ]

ResultsCaso1 [ i , 6 ,m, expnumber]= Resu l t s .GA[ i , 3 ]

ResultsCaso1 [ i , 7 ,m, expnumber]= Resu l t s .GA[ i , 4 ]

ResultsCaso1 [ i , 8 ,m, expnumber]= Resu l t s .GA[ i , 5 ]

ResultsCaso1 [ i , 9 ,m, expnumber]= Resu l t s .GA[ i , 6 ]

ResultsCaso1 [ i , 1 0 ,m, expnumber]= Resu l t s .GA[ i , 7 ]

#Parameters us ing EM algor i thm

ResultsCaso1 [ i , 1 1 ,m, expnumber]=EM. r e s u l t $lambda [ i ]
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ResultsCaso1 [ i , 1 2 ,m, expnumber]=EM. r e s u l t $mu[ i ]

ResultsCaso1 [ i , 1 3 ,m, expnumber]=EM. r e s u l t $sigma [ i ]

ResultsCaso1 [ i , 1 4 ,m, expnumber]=abs (EM. r e s u l t $lambda [ i ]−
DataSett ings [ i , 2 , expnumber ] ) /DataSett ings [ i , 2 , expnumber ]

ResultsCaso1 [ i , 1 5 ,m, expnumber]=abs (EM. r e s u l t $mu[ i ]−
DataSett ings [ i , 3 , expnumber ] ) /DataSett ings [ i , 3 , expnumber ]

ResultsCaso1 [ i , 1 6 ,m, expnumber]=abs (EM. r e s u l t $sigma [ i ]−
DataSett ings [ i , 4 , expnumber ] ) /DataSett ings [ i , 4 , expnumber ]

}
print ( paste ( ” i t e r a c i o n ” ,m, ” de l experimento ” , expnumber ) )

}

}

B.2. Algorithm for number of populations unknown

EM. r e s u l t s= function ( datos1 , k , i t e r , expnumber ){ tryCatch (

normalmixEM ( datos1 , lambda = NULL, mu = NULL, sigma = NULL, k = k ,

sd . c ons t r = NULL,

e p s i l o n = 1e−08, maxit = 100 , maxrestarts =20,

verb = FALSE, f a s t=FALSE, ECM = FALSE,

arbmean = TRUE, arbvar = TRUE) ,

warning = function (w) {
l i s t ( lambda=rep (NA, k ) ,mu=rep (NA, k ) , sigma=rep (NA, k ) )

} ,

e r r o r = function ( e ) { l i s t ( lambda=rep (NA, k ) ,mu=rep (NA, k ) , sigma=rep (NA, k ) )}
)

}

GAestimationk<−function ( cromosoma ){

cromosoma=t (round( cromosoma , d i g i t s =0))

datosGA = datos

datosGak = matrix (nrow=nrow( datos ) , ncol=(ncol ( datos )+1))

for ( i in 1 : 3 ) {datosGak [ , i ]= datos [ , i ]}
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datosGak [ , 4 ]= t ( cromosoma )

colnames ( datosGak)=c ( ” Observation ” , ”Value” , ” RealPopulat ion ” , ”Chromosome” )

ParameterValue=DataSett ings [ , , expnumber ]

tablacromosoma=table ( cromosoma )

Resu l t s=matrix (NA,nrow=max( cromosoma ) , ncol=6)

cuenta cromosoma=rep (NA,max( cromosoma ) )

for (h in 1 :max( cromosoma ) ) { cuenta cromosoma [ h]=sum( cromosoma==h)}

for ( j in 1 :max( cromosoma )){

i f ( cuenta cromosoma [ j ]>3){

Populat ion=datosGak [ cromosoma==j , 3 ]

Param=f i t d i s t r ( Population , densfun=”normal” )

Resu l t s [ j ,1 ]= cuenta cromosoma [ j ] /sum( cuenta cromosoma )

Resu l t s [ j ,2 ]= coef (Param ) [ 1 ] #parameter 1 (mu or a lpha )

Resu l t s [ j ,3 ]= coef (Param ) [ 2 ] # parameter 2 ( sigma or be ta )

Resu l t s [ j ,4 ]= abs ( ParameterValue [ j ,2]−
( cuenta cromosoma [ j ] /sum( cuenta cromosoma ) ) ) /ParameterValue [ j , 2 ]

Resu l t s [ j ,5 ]= abs ( ParameterValue [ j ,3]−
coef (Param ) [ 1 ] ) /ParameterValue [ j , 3 ]

Resu l t s [ j ,6 ]= abs ( ParameterValue [ j ,4]−
coef (Param ) [ 2 ] ) /ParameterValue [ j , 4 ]

}

}

meanerror=mean( Resu l t s [ cuenta cromosoma>3,c ( 4 , 5 , 6 ) ] )
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return ( meanerror )

}

GAestimationk unknown<−function ( cromosoma ){

cromosoma=t (round( cromosoma , d i g i t s =0))

datosGA = datos

datosGak = matrix (nrow=nrow( datos ) , ncol=(ncol ( datos )+1))

for ( i in 1 : 3 ) {datosGak [ , i ]= datos [ , i ]}

datosGak [ , 4 ]= t ( cromosoma )

tablacromosoma=as . numeric ( table ( cromosoma ) )

Resu l t s=matrix (NA,nrow=max( cromosoma ) , ncol=1)

cuenta cromosoma=rep (NA,max( cromosoma ) )

for (h in 1 :max( cromosoma ) ) { cuenta cromosoma [ h]=sum( cromosoma==h)}

for ( i in 1 :max( cromosoma )){

i f ( cuenta cromosoma [ i ]>3){

Populat ion=datosGak [ cromosoma==i , 3 ]

Param=f i t d i s t r ( Population , densfun=”normal” )

Resu l t s [ i ,1 ]=Param$ l o g l i k

}

}

Resultado=−1∗sum( Resu l t s [ cuenta cromosoma >3 ,1 ])
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return ( Resultado )

}

Nclust= function ( datos1 , k ){ tryCatch (

gap ( datos1 , K=k , B=100) ,

warning = function (w) {
l i s t ( n c l u s t=NA)

} ,

e r r o r = function ( e ) { l i s t ( n c l u s t=NA)}
)

}

GenerateData<−function ( n1 , DataSett ings ){

GeneratedData=c (rnorm( CalculatedWeights [ 1 , 1 ] ,

mean=DataSett ings [ 1 , 3 ] , sd=DataSett ings [ 1 , 4 ] ) )

PopID=c ( rep (1 , CalculatedWeights [ 1 , 1 ] ) )

for ( i in 2 : k ) {
GeneratedData=c ( GeneratedData ,rnorm( CalculatedWeights [ i , 1 ] ,

mean=DataSett ings [ i , 3 ] , sd=DataSett ings [ i , 4 ] ) )

PopID=c (PopID , rep ( i , CalculatedWeights [ i , 1 ] ) )

}

Seq=seq (1 , n1 )

Datos=cbind ( Seq , PopID , GeneratedData )

rand<−sample (nrow( Datos ) )

Desordenados=Datos [ rand , ]

return ( Desordenados )

}

l ibrary (MASS) #For computing the l i k e l i h o o d and f i t t i n g the d i s t r i b u t i o n

l ibrary ( gena lg ) #for the e va l ua t i on us ing GA

l ibrary ( mixtoo l s ) #For the e va l ua t i on us ing EM
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l ibrary ( mclust ) #For the c l u s t e r i n g o f the data

l ibrary ( l ga ) #For computing the b i c

setwd ( ”E: /Tes i s/Normal N unknown” )

source ( ’E : /Tes i s/Normal N unknown/GAestimationk unknown .R ’ )

source ( ’E : /Tes i s/Normal N unknown/Nclust .R ’ )

source ( ’E : /Tes i s/Normal N unknown/GenerarDatos .R ’ )

k=5

max expnumber=8

Parameters=matrix ( ncol=2,nrow=max expnumber ) #n & i t e r

Parameters [ , 1 ]= c (30 ,50 ,100 ,200 ,30 ,50 ,100 ,200)

Parameters [ , 2 ]= c ( rep (500 ,max expnumber ) )

DataSett ings= array (dim=c (k , 4 ,max expnumber ) )

#popu la t i on number

DataSett ings [ , 1 , ]= c (1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 ,

1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 ,

1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5)

#popu la t i on weigh t

DataSett ings [ , 2 , ]= c ( 0 . 0 5 , 0 . 24 , 0 . 24 , 0 . 24 , 0 . 23 , 0 . 05 ,

0 . 24 , 0 . 24 , 0 . 24 , 0 . 23 , 0 . 05 , 0 . 24 , 0 . 24 , 0 . 24 ,

0 . 23 , 0 . 05 , 0 . 24 , 0 . 24 , 0 . 24 , 0 . 23 , 0 . 05 , 0 . 24 ,

0 . 24 , 0 . 24 , 0 . 23 , 0 . 05 , 0 . 24 , 0 . 24 , 0 . 24 , 0 . 23 ,

0 . 05 , 0 . 24 , 0 . 24 , 0 . 24 , 0 . 23 , 0 . 05 , 0 . 24 , 0 . 24 ,

0 . 24 , 0 . 2 3 )

#parameter 1

DataSett ings [ , 3 , ]= c (12 , 13 , 14 , 15 , 16 , 12 , 13 , 14 , 15 , 16 ,

12 , 13 , 14 , 15 , 16 , 12 , 13 , 14 , 15 , 16 , 12 , 14 , 16 , 18 ,

20 , 12 , 14 , 16 , 18 , 20 , 12 , 14 , 16 , 18 , 20 , 12 , 14 ,

16 , 18 , 20)

#Parameter 2

DataSett ings [ , 4 , ]= c (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,

1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,

1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1)
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ResultsCaso1=array (NA,dim=c (max( Parameters [ , 2 ] ) , 3 , max expnumber ) )

a=Sys . time ( )

for ( expnumber in 1 :max expnumber ){

n1=Parameters [ expnumber , 1 ]

i t e r=Parameters [ expnumber , 2 ]

for (m in 1 : i t e r ){ ##poner i t e r

set . seed=1+m

datos<<−GenerateData ( n1 , DataSett ings [ , , expnumber ] )

ResultsCaso1 [m, 1 , expnumber]=k

k em c a l c u l a t e d=Nclust ( datos [ , 3 ] , k+3)

ResultsCaso1 [m, 2 , expnumber]=k em c a l c u l a t e d $ n c l u s t

GAlresu l t s = rbga ( str ingMin=c ( rep (1 , n1 ) ) , stringMax=c ( rep ( k+3,n1 ) ) ,

s u g g e s t i o n s=NULL,

popSize =200 , i t e r s =100 ,

mutationChance =0.05 ,

e l i t i s m=NA,

evalFunc=GAestimationk unknown ,

showSett ings=FALSE, verbose=FALSE)

GAl . r e s u l t s<−summary( GAlresults , echo=TRUE)

separar<−s tr sp l i t (GAl . r e s u l t s , ” Best So lu t i on : ” )

separar2<−unlist ( s tr sp l i t ( s eparar [ [ 1 ] ] [ 2 ] , ” ” ) )

mejor . cromosoma<−round( as . numeric ( separar2 [− length ( separar2 ) ] ) )

cuenta cromosoma=rep (NA,max( mejor . cromosoma ) )
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for (h in 1 :max( mejor . cromosoma ) ) { cuenta cromosoma [ h]=

sum( mejor . cromosoma==h)}

ResultsCaso1 [m, 3 , expnumber]= length ( cuenta cromosoma [ cuenta cromosoma>3])

print ( paste ( ” i t e r a c i o n ” ,m, ” de l experimento ” , expnumber ) )

}

}

b=Sys . time ( )

print (b−a )
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