Experiencia Social Temprana, Receptividad Sexual y Fertilidad en Hembras de Codorniz Japonesa

Trabajo de Grado

Pregrado en Psicología

María Paula Arteaga Avendaño

Director del Trabajo de Grado: Germán Antonio Gutiérrez Domínguez, PhD.

Universidad Nacional de Colombia

Bogotá

Diciembre de 2015

Este documento puede ser citado siempre y cuando se dé reconocimiento al autor.

Contenido
Resumen ..5
Abstract ..6
Experiencia Social Temprana, Receptividad Sexual y Fertilidad en Hembras de Codorniz7
 Experiencia Social Temprana y Adultez en Codornices ...8
 Estudio de Comportamiento Sexual en Hembras de Codorniz ...10
 Condiciones de Fotoperiodo y Regulación Hormonal ...11
 Contacto Social y Regulación Hormonal ...12
 Generalidades del Sistema Reproductor ...13
 Almacenamiento de Espuma y Fertilización de Huevos ..14
 Fertilidad, Condicionamiento y Receptividad en Hembras de Codorniz15
 Pregunta de Investigación ...16
Método ..18
Sujetos ..18
 Criterios de madurez. ...20
Coespecíficos ..21
Instrumento ..22
Diseño ..23
 Fase I o de exposición temprana ...23
 Fase II o de prueba copulatoria ...23
 Fase III o de recolección después del último día de cópula. ...23
Procedimiento ..24
 Fase I o de exposición temprana ...24
 Fase II o de prueba copulatoria ...25
 Registros Fisiológicos. ..25
 Registros Comportamentales ...26
Análisis Estadísticos ...29
 Mediciones del Desarrollo ...29
 Fertilidad ..29
 Duración y Frecuencia de Comportamientos ..29
 Análisis de Latencia de Comportamientos ...30
Discusión ... 59
Fertilidad ... 59
Comportamientos Asociados a Receptividad ... 61
 Agacharse .. 61
 Intento de Cópula ... 63
Comportamientos No Receptivos .. 64
Resultados ... 31
Fertilidad ... 31
 Fertilidad Total de Grupos (Fase II y Fase III) ... 32
 Fertilidad en Fase II .. 33
 Fertilidad en Fase III ... 33
Agacharse ... 34
Intento de Cópula .. 35
Apertura de Alas .. 37
Expansión de Plumas .. 39
 Latencia de Comportamientos de Expansión de plumas .. 41
Correlación de Comportamientos No Receptivos ... 42
Desarrollo .. 44
 Peso. ... 44
 Ovoposición ... 45
Levantarse ... 48
Huida ... 49
Picoteo ... 51
Expulsión de Espuma ... 53
Análisis del Orden de Ocurrencia de Comportamientos .. 55
Correlación de Mediciones Fisiológicas y Comportamientos 56
 Ovoposición ... 56
 Fertilidad .. 57
 Intento de cópula ... 57
 Agacharse .. 57
Análisis Correlacional .. 31
<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desarrollo y Maduración</td>
<td>66</td>
</tr>
<tr>
<td>Recomendaciones para Futuras Investigaciones</td>
<td>68</td>
</tr>
<tr>
<td>Conclusión</td>
<td>70</td>
</tr>
<tr>
<td>Referencias</td>
<td>72</td>
</tr>
<tr>
<td>Apéndices</td>
<td>76</td>
</tr>
<tr>
<td>Apéndice A</td>
<td>76</td>
</tr>
<tr>
<td>Apéndice B</td>
<td>77</td>
</tr>
<tr>
<td>Apéndice C</td>
<td>78</td>
</tr>
<tr>
<td>Apéndice D</td>
<td>79</td>
</tr>
<tr>
<td>Apéndice E</td>
<td>80</td>
</tr>
<tr>
<td>Apéndice F</td>
<td>81</td>
</tr>
<tr>
<td>Apéndice G</td>
<td>82</td>
</tr>
<tr>
<td>Apéndice H</td>
<td>83</td>
</tr>
<tr>
<td>Apéndice I</td>
<td>84</td>
</tr>
<tr>
<td>Apéndice J</td>
<td>85</td>
</tr>
</tbody>
</table>
Resumen
La receptividad de la hembra de codorniz está sujeta a la experiencia previa del animal. Dicha experiencia, en edad adulta cuando se da con machos conocidos y en contextos condicionados a la presentación de un macho, tiene relevancia en los niveles de fertilidad de la hembra. Además, se ha mostrado en investigaciones previas que la experiencia social temprana en la codorniz (al igual que en otras especies) tiene implicaciones en el comportamiento sexual en la adultez, tanto en machos como en hembras en tareas de selección de pareja. Por otro lado, estudios previos demuestran que diferentes tipos de experiencia con coespecíficos maduros del sexo opuesto (en codornices y en otras aves) están relacionados cambios en el desarrollo (e.g., maduración acelerada de estructuras reproductivas). La presente investigación tuvo como objetivo explorar si la experiencia social temprana con coespecíficos maduros del sexo opuesto tiene implicaciones en el comportamiento de receptividad sexual de la hembra de codorniz japonesa, así como efectos en su desarrollo y en los niveles de fertilidad, una vez se encuentra en edad reproductiva. De este modo, un grupo de hembras tuvo acceso visual temporal a un macho maduro desde los 25 hasta los 32 días de edad. Un grupo control no tuvo dicha experiencia. Entre los resultados, se hallaron que comportamientos asociados a receptividad (i.e., agacharse e intentos de cópulas) ocurrieron en mayor medida en el grupo de hembras que tuvo la experiencia social temprana con un macho maduro con respecto del grupo control. Asimismo, comportamientos de receptividad fueron menos frecuentes en el grupo control. Además, el porcentaje de fertilidad total fue significativamente superior en el grupo que tuvo la experiencia social temprana con machos maduros. Estos hallazgos sugieren que la experiencia social temprana con coespecíficos maduros del sexo opuesto puede tener implicaciones en el comportamiento sexual de la hembra de codorniz japonesa adulta, así como también un efecto en su fertilidad.

Palabras clave: experiencia social temprana, receptividad sexual, fertilidad, desarrollo.
Abstract
The receptivity of the female Japanese quail is related to the previous experience of the animal. This experience in the adulthood, when known males and conditioned contexts are presented, is relevant to the female’s fertility. Furthermore, previous research has shown that the early social experience in the Japanese quail (and in other species) has implications in the adult sexual behavior of males and females in mate-selection tasks. Moreover, previous studies demonstrate that different types of experience with mature conspecifics of the opposite sex (in the quail and in other birds) are related to developmental changes (e.g., accelerated maturation of reproductive structures). The present study’s main objective was to explore if the early social experience with conspecifics of the opposite sex has implications in the sexual receptivity behavior of the female Japanese quail, as well as developmental and fertility level effects when they are at the reproductive stage. Thus, one group of females had temporary visual access to a mature male from the 25th day until the 32nd day of age. A control group didn’t have such experience. Among the results, it was found that behaviors associated to receptivity (i.e., squat and copulation attempts) occurred at a greater extent in the group of females that had the early social experience with the mature male than in the control group. Besides, the total fertility percentage was significantly higher in the group that had the early social experience with the mature males. These findings suggest that early social experience with adult conspecifics of the opposite sex may have implications in the sexual behavior of the female Japanese quail, as well as an effect on its fertility.

Keywords: early social experience, sexual receptivity, fertility, development.
Experiencia Social Temprana, Receptividad Sexual y Fertilidad en Hembras de Codorniz

Las implicaciones de la experiencia social temprana en el comportamiento sexual, la madurez y la fertilidad no han sido ampliamente estudiadas. En este sentido, la presente investigación es un acercamiento al estudio experimental del efecto que tiene la exposición social (previa a la madurez) en la edad reproductiva de codorniz japonesa.

Para su abordaje, este trabajo concibe la importancia del estudio experimental del tema de la experiencia social temprana y su relación con la selección de pareja en la adultez. Seguidamente, se resaltan algunas investigaciones que han tenido en cuenta la exposición social temprana en la codorniz japonesa. Asimismo, se ahonda en la descripción fisiológica de la hembra de codorniz japonesa, su maduración y fertilidad. También se ofrece una revisión acerca de los aspectos más relevantes en torno al estudio de la receptividad sexual en hembras de codorniz japonesa.

El estudio de la experiencia social en las primeras horas de vida ha sido un tema de interés, el cual se ha enfocado en la investigación de aves precoces. Lickliter, Dyer y McBride (1993) realizaron una revisión de los fenómenos de impronta filial, no para explicar la impronta en sí, sino para ilustrar la metodología con la cual se aborda su estudio y, sobre todo, para dar cuenta de las implicaciones de la convivencia con coespecíficos que son requeridas para que se dé la impronta (e.g., adaptaciones perceptuales y sociales).

Las especies de aves precoces reciben estimulación visual, auditiva y social, especialmente de sus progenitores y hermanos; asimismo, la revisión de estudios experimentales en diferentes especies de aves indica que en condiciones sociales en las que la impronta materna normalmente ocurre, la interacción con hermanos puede interferir en el mantenimiento de un vínculo materno, sugiriendo que una interacción continua con la madre es necesaria para proteger
esa relación (Lickliter et al., 1993). Es decir, experiencias sociales tempranas (o la ausencia de ellas) con coespecíficos tienen implicaciones en el comportamiento a lo largo del desarrollo para un número de especies. Lickliter et al. (1993) concluyen indicando que la relación entre la ontogenia típica del organismo y su comportamiento no es arbitraria, lo cual es un tema que requiere de acercamientos experimentales para ser abordado.

A continuación, se brinda un ejemplo general del estudio de las preferencias sexuales en individuos en los cuales se ha tenido control de experiencias sociales tempranas y de crianza. Kruijt, ten Cate y Meeuwissen (1983) evidenciaron que el papel adoptivo del gorrión capuchino del Japón (*Lonchura striata*) durante los primeros dos meses de edad en la crianza del pinzón cebra (*Taeniopygia guttata*) tiene una influencia en las preferencias sexuales del pinzón cebra, una vez se encuentra en una edad reproductiva (i.e., número de cantos dirigidos a una hembra de su propia especie o de la especie adoptiva). Los autores encontraron que machos de pinzón cebra criados por padres de otra especie y acompañados de únicamente un hermano (de su misma especie) cantaron exclusivamente ante hembras de la especie adoptiva en edad reproductiva (i.e., ante *Lonchura striata*); sin embargo, si machos de pinzón cebra fueron criados por la especie adoptiva y además convivieron con 2-4 de sus hermanos (i.e., pinzón cebra) cantaron también ante una hembra de su misma especie (aunque en menor proporción respecto a lo que cantaron ante la hembra de la especie adoptiva). En este sentido, tanto la crianza de especies adoptivas como la convivencia temprana con hermanos fueron fundamentales para el establecimiento de preferencias en la adultez.

Experiencia Social Temprana y Adultez en Codornices

Se ha encontrado evidencia a favor de las implicaciones de la experiencia social a una edad juvenil en el desarrollo de órganos sexuales en la codorniz japonesa. Por ejemplo,
Guyomarc'h, Guyomarc'h y Richard (1984) variaron la presentación de grabaciones del canto del macho (i.e., 4 y 6 h, en diferentes momentos del día) a diferentes grupos experimentales de hembras jóvenes que previamente se encontraban en un fotoperíodo de regresión gonadal (i.e., 6L: 18O); y encontraron que las hembras que tuvieron la estimulación auditiva de noche tenían los ovarios más pesados. Los autores concluyeron que hay períodos a lo largo del día en los cuales las hembras son particularmente sensibles a la estimulación del canto del macho; y puede que dicha sensibilidad esté co-adaptada con periodos de vocalización del macho en las fases preparatorias del ciclo sexual (Guyomarc'h et al., 1984).

Para el caso de hembras que crecieron aisladas desde los 15 días de edad, Pérez-Manrique y Gutiérrez (2006) encontraron que una vez son expuestas a machos desconocidos en su adultez no demuestran preferencias hacia alguno de ellos. Por otro lado, las hembras que convivieron con machos desde una edad temprana hasta los 120 días de edad, tienden a elegir a machos desconocidos (Pérez-Manrique & Gutiérrez, 2006). Dichos hallazgos, se relacionan con los de Bateson (1982), quien encontró que tanto machos como hembras de codorniz japonesa, en una edad adulta, permanecen más cerca de un coespecífico emparentado como primo (desconocido) que de un hermano (conocido o desconocido) y de un individuo no emparentado (desconocido); adicionalmente, Bateson encontró para el caso de machos, que estos cortejaron a las hembras de su preferencia.

Los resultados de estas investigaciones sugieren que la codorniz es capaz de lograr un balance óptimo entre la endogamia y la exogamia, probablemente teniendo en cuenta claves del aspecto de los coespecíficos (Pérez-Manrique & Gutiérrez, 2006), ya que en una edad adulta los individuos estuvieron menos tiempo cerca de hermanos (conocidos desde una edad temprana; Bateson, 1982).
Por otro lado, en codornices macho, Gallagher (1977) demostró que la preferencia sexual hacia hembras albinas en la adultez puede establecerse como el resultado de una experiencia social temprana limitada (e.g., durante 10 a 15 días desde el día de eclosión, pero antes de los 20 días de edad); además, Gallagher y Ash (1978) evaluaron la persistencia de preferencia por una hembra albina después de haber tenido experiencia con hembras normales en la etapa de madurez sexual. Los resultados (Gallagher & Ash, 1978) evidenciaron que ocurren cambios en la preferencia sexual —de hembras albinas a hembras normales— relacionados con la experiencia social más reciente; igualmente, dichos cambios estuvieron asociados proporcionalmente a la cantidad de experiencia con hembras normales.

De estos estudios, los autores concluyeron que la persistencia en la preferencia (vinculada a la experiencia social temprana) es un efecto que depende de las condiciones de la experiencia y la naturaleza del objeto de impronta; sin embargo, rescatan que el vínculo social tiene persistencia gracias a la impronta precisamente (Gallagher & Ash, 1978).

Estudio de Comportamiento Sexual en Hembras de Codorniz

En relación con el estudio de la receptividad en hembras de codorniz japonesa, Noble (1972) puso a prueba el efecto de dosis de estrógeno y estrógeno más progesterona en la receptividad de hembras que se encontraban en regresión gonadal. Noble (1972) encontró que los tratamientos hormonales se asociaron con una mayor presentación de comportamiento de agacharse y de cópulas exitosas en las hembras; a su vez, es probable que hubieran inhibido el comportamiento de huida larga, el cual es característico de hembras no receptivas.

Por otro lado, DelVille, Sulon y Balthazar (1986) diseñaron un conjunto de experimentos en los cuales demostraron que ocurren cambios en la receptividad de la hembra de codorniz japonesa a lo largo del día. Por ejemplo, los autores encontraron que al final del día el
comportamiento de huida larga disminuye; y el de agacharse disminuye en la mañana y aumenta en la tarde. Los autores argumentaron que cambios en la receptividad probablemente no se deban a la ovoposición en sí, sino que sugieren que pueden corresponder al comportamiento exhibido por el macho.

Gutiérrez y Domjan (1997) demostraron que el comportamiento de la codorniz puede ser modificado por un procedimiento de condicionamiento sexual; los autores observaron que presentaciones pareadas de un estímulo condicionado y la oportunidad de cópula aumentaron la duración del comportamiento de agacharse en las hembras.

Asimismo, para hablar del tema de receptividad debe tenerse en cuenta la descripción fisiológica de hembras de codorniz japonesa y es imperativo hablar acerca de su sistema hormonal. Se ha encontrado que los niveles de hormonas sexuales de la hembra de codorniz japonesa tienen una relación íntima con el comportamiento sexual; por ejemplo, Adkins-Regan (1975) administró propionato de testosterona (TP; andrógeno) a tres hembras de diez días de edad, y todas ellas llegaron a presentar comportamiento de agarre (el cual es característico del macho) aunque no movimientos de contacto cloacal. A continuación, se aborda el tema de la regulación hormonal respecto al fotoperiodo y la convivencia con coespecíficos.

Condiciones de Fotoperiodo y Regulación Hormonal. La literatura registra que la variación de los ciclos de luz y la duración artificial del día incide en el tiempo de maduración de la codorniz japonesa (Woodard, Abplanalp, Wilson, & Vohra, 1973). Woodard et al. (1973) variaron los fotoperiodos para diferentes grupos de animales desde su nacimiento, tanto en machos como en hembras, y observaron que a las cinco semanas de edad el grupo con un ciclo de luz de 24 h tuvo pesos de testículos y ovarios superiores (proporcionalmente a su cuerpo) respecto a otros grupos con ciclos de luz y oscuridad distintos (i.e., en orden descendiente, 16: 8, 14: 10, 12: 12, 8: 16 y 4: 20).
Por su parte, Adkins-Regan y Alder (1972) modificaron el fotoperiodo (a 8L: 16O) para 50 hembras adultas (en principio receptivas) hasta lograr un cese en la ovoposición y muda de plumaje. Una vez lograda la regresión gonadal, se encontró que todas las hembras se mostraron no receptivas; más adelante, en una segunda fase, dichas hembras fueron inyectadas con diferentes dosis de progesterona y estrógeno y se encontró que una dosis de 0.5 mg de estrógeno más 2.5 mg de progesterona cumplió con el restablecimiento del comportamiento de receptividad del 80% de los sujetos.

Contacto Social y Regulación Hormonal. En este apartado, primero se hablará del contacto social y la regulación hormonal en codornices y seguidamente se hará mención de esto mismo pero en otras especies.

Algunos estudios han abordado el tema de la convivencia parcial y el aislamiento en la codorniz japonesa. Barragán y Gutiérrez (2007) indagaron respecto a la relación de diferentes condiciones de convivencia con un macho y el efecto asociado al nivel de producción de hormonas sexuales en hembras. Los hallazgos de los autores indicaron que un contacto social parcial con un macho (i.e. durante tres horas por tres días) estuvo asociado a una mayor producción hormonal (i.e., tamaño de la apertura cloacal) que un contacto de cohabitación permanente (en un mismo fotoperiodo para la regresión gonadal) y que un contacto solo visual de cohabitación permanente sin contacto físico (en el mismo fotoperiodo); por su parte, la condición de aislamiento presentó el indicador de menor producción hormonal.

En otras especies, en aves del orden *Columbimorphae*, Matthews (1939) logró determinar que la ovulación en hembras de paloma está asociada directamente con la estimulación visual de coespecíficos del sexo opuesto, del mismo sexo o de su propio reflejo en un espejo; lo cual
sugiere que en esa especie la estimulación visual tiene más relevancia para la ovulación que otro tipo de estimulación (e.g., auditiva y táctil).

En esta misma vía, Carl J. Erickson (1970) intervino quirúrgicamente a machos de tórtola doméstica (*Streptopelia risoria*) y les aplicó un tratamiento para controlar los diferentes niveles de andrógenos (i.e., determinada dosis de propionato de testosterona [TP]) en cuatro grupos; en principio, los machos con dosis determinadas de TP restauraron comportamientos de cortejo. Posteriormente, estos machos fueron expuestos visual y auditivamente a hembras, a las cuales se les hicieron mediciones de desarrollo ovárico (i.e., peso del oviducto) y ovulación (i.e., ovoposición); los resultados demostraron que machos en tratamiento andrógeno fueron efectivos en estimular la actividad ovárica en hembras. Además, dicha actividad ovárica tuvo una relación con los comportamientos del macho frente a la hembra (Erickson, 1970). Lo cual sugiere que el comportamiento del macho puede estar implicado en el desarrollo ovárico de la hembra, para el caso de la tórtola doméstica.

Generalidades del Sistema Reproductor

Para explicar las características del sistema reproductor de la hembra de codorniz se presentan las algunas descripciones comparativas. Por ejemplo, Woodard et al., (1973) hicieron una comparación entre el tamaño del oviducto y la tasa de movimiento del óvulo por secciones en especies del orden *Galliformes*, y concluyeron que las estructuras superiores tienen un mayor porcentaje total del oviducto en codornices que en pavos y gallinas. De dicha comparación (Woodard et al., 1973), los porcentajes de tamaño que corresponden a cada componente fueron los siguientes: (a) infundibulo (o *Infundibulum* i.e., primer segmento del oviducto) del pavo=14.8 y de la codorniz=18.2; (b) *Magnum*, 42.6 y 46.9, respectivamente; (c) *Isthmus* 15.3 y 20.1, respectivamente; (d) *Uterus* 13.5 y 9.9, respectivamente; y (e) *Vagina* 13.6 y 4.9,
respectivamente. Por otro lado, el óvulo en la vagina de la codorniz puede durar entre 19 y 20 h, frente a 18-20 h en gallinas y 22-24 h en pavos (Woodard et al., 1973).

Almacenamiento de Espuma y Fertilización de Huevos. Además de la formación del huevo, el oviducto es un sitio de almacenamiento de esperma en aves y el lugar principal se localiza en la unión entre el útero y la vagina en unas glándulas llamadas túbulos de almacenamiento de esperma (o *sperm storage tubules*; SSTs) encontradas en más de 25 especies de aves (Birkhead & Møller, 1993 citado en Holm & Ridderstråle, 2002).

En este sentido, Holm y Ridderstråle (2002) estudiaron el desarrollo de los SSTs útero-vaginales durante la maduración sexual de la codorniz japonesa; para esto criaron hembras en compañía de machos desde su nacimiento e hicieron disecciones para examinarlas desde los 28 hasta los 49 días de edad. Como resultado encontraron que la diferenciación de los SSTs se da alrededor de los 28 días cuando se encontraron células ligeramente manchadas en la base de los pliegues de mucosa, el ovario tenía aproximadamente 1 cm de tamaño y algunos folículos eran visibles (sin microscopio); a los 35 días de edad los oviductos son significativamente grandes respecto a su tamaño anterior; después, se dio un periodo de crecimiento acelerado entre los 40 y 42 días; y para los 49 días, la longitud del oviducto varió poco entre los sujetos y todos a esta edad tenían folículos llenos de yema y estaban produciendo huevos (Holm & Ridderstråle, 2002). Además, los autores notaron que dos sujetos diseccionados entre los días 40 a 42 contenían espermatozoides en sus SSTs, aunque estos animales aún no habían iniciado la ovoposición.

Se ha encontrado que gallinas domésticas inmaduras (i.e., aún no desarrolladas sexualmente) no admiten ni retienen esperma a pesar de la presencia de SSTs en la unión utero-vaginal (Hemmings, Birkhead, Brillard, Froment, & Briere, 2015). Por su parte, Pescatore y Marquez (1977) encontraron que la maduración de los SSTs está regulada, al menos en pavos, por los niveles de estradiol y progesterona (los cuales tienen una relación con la maduración);
para esto, utilizaron hembras de pavo inmaduras de diferentes edades y les inyectaron intramuscularmente esteroides en el pecho, y midieron parámetros de peso corporal y del oviducto (los cuales aumentaron) y hematocritos (el cual disminuyó) en comparación con grupos control. Además, los autores examinaron la unión útero-vaginal y evidenciaron que hubo un incremento en el desarrollo de SSTs en los animales tratados con esteroides. Por esta razón, Hemmings et al. (2015) sugieren que las hormonas femeninas pueden mediar en la absorción y la aceptación de esperma en los SSTs en aves.

En cuanto al almacenamiento de espuma para el caso de las codornices japonesas, Sittmann y Abplanalp (1965) notaron que al retirar el macho después de una última cópula, pueden pasar hasta 11 días en los cuales las hembras de producen huevos fertilizados; dichos porcentajes son decrecientes (i.e., al primer día alrededor del 85% de los huevos son fertilizados, al quinto día alrededor del 70%, al octavo día alrededor del 35% y al undécimo día cerca del 0%). Los autores compararon sus resultados con los de otras especies, y mientras que la hembra de codorniz japonesa puede producir un huevo fertilizado hasta el undécimo día después de la última cópula, otras aves lo logran hasta los días 15, 27 y 55 (i.e., patos, gallinas y pavos, respectivamente). Este fenómeno se relaciona con el almacenamiento de esperma en los SSTs.

Fertilidad, Condicionamiento y Receptividad en Hembras de Codorniz

Se considera que la inseminación por sí misma no garantiza el éxito reproductivo, ya que un tercio de las inseminaciones confirmadas no fertilizan un solo huevo, los dos tercios restantes fertilizan de uno a 10 huevos, aunque solo el 3% de las inseminaciones fertilizan ocho huevos (o un *clutch*); por otro lado, se considera que comportamientos como la huida de la hembra ante la primera aproximación del macho puede estar relacionada negativamente con la fertilización (Adkins-Regan, 1995).
No obstante, también se ha encontrado que tanto las cópulas forzadas como las no forzadas tienen el mismo éxito de fertilización (Adkins-Regan, 1995). Además, Adkins-Regan (2015) reporta en una serie de experimentos que aunque ocurran inseminaciones dobles, a pesar de ganar éxito en la fertilización, tienen una capacidad limitada para lograr fertilizar un número importante de huevos; por lo tanto, múltiples cópulas son necesarias para poder lograr fertilizar todo un *clutch* de huevos.

Experimentos previos han demostrado que el éxito de fertilización tiene una fuerte correlación si la misma hembra copula de nuevo con el mismo macho; y no hay dicha correlación si la hembra copula con un macho diferente (Adkins-Regan, 1995).

Por su parte, Adkins-Regan y MacKillop (2003) realizaron un experimento para observar el efecto del condicionamiento contextual positivo y negativo en el porcentaje de huevos fertilizados; primero, hembras adultas (de 60 días de edad) que nunca habían tenido experiencia sexual tuvieron un entrenamiento de condicionamiento a dos cajas posibles (i.e., en una de las cajas tuvieron acceso visual a un macho [EC+] y en otra no [EC-]), luego, uno de los grupos tuvo una prueba copulatoria en la caja EC+ y el otro la tuvo en la caja EC-. Los resultados refirieron que un mayor número de hembras fueron inseminadas en su caja EC+ que en la caja EC-, aunque esto no fue estadísticamente diferente; adicionalmente, las inseminaciones fertilizaron un porcentaje mayor de huevos de hembras que copularon en su caja EC+ que en la caja EC-, mostrando diferencias significativas (Adkins-Regan & MacKillop, 2003).

Pregunta de Investigación

Se ha encontrado evidencia que apoya que diferentes tipos de experiencia social en una edad temprana tienen implicaciones en el comportamiento sexual en diferentes especies (Lickliter et al., 1993). Asimismo, ha habido estudios experimentales en la codorniz japonesa del efecto de

En cuanto a aspectos fisiológicos de la maduración relacionados con el contacto social, se ha encontrado que experiencias auditivas con coespecíficos maduros del sexo opuesto traen consigo cambios en el desarrollo de hembras jóvenes de codorniz (i.e., maduración acelerada de estructuras reproductivas; Guyomarc'h et al., 1984). Asimismo, en otras especies se han estudiado aspectos hormonales en hembras vinculados a la convivencia con macho; y se ha encontrado que la experiencia particularmente visual con machos tiene implicaciones en la ovulación (i.e., de palomas; Matthews, 1939) y se ha sugerido que el comportamiento exhibido por el macho puede estar implicado en el desarrollo ovárico de la hembra (i.e., tórtolas domésticas; Erickson, 1970).

En cuanto a la convivencia y la producción hormonal, Barragán y Gutiérrez (2007), indicaron que un contacto social parcial con un macho estuvo asociado a una mayor producción hormonal en hembras. Como se mencionó anteriormente, Hemmings et al. (2015) sugieren que las hormonas femeninas pueden mediar en la absorción y la aceptación de esperma en los SSTs en aves; asimismo, como se comentó en la descripción fisiológica de los SSTs de la codorniz japonesa, se ha encontrado que las hembras pueden almacenar espuma y fertilizar huevos hasta el undécimo día después de la última cópula (Sittmann y Abplanalp, 1965).

Finalmente, la receptividad de la hembra de codorniz está sujeta a la experiencia previa del animal en una edad adulta. Dicha experiencia, cuando se da con machos familiares (Adkins-Regan, 1995) y cuando se da en contextos condicionados a la presentación de un macho (Adkins-Regan & MacKillop, 2003), tiene relevancia en los niveles de fertilidad de la hembra.

De acuerdo con lo postulado, surge la pregunta acerca de si la experiencia temprana con un macho maduro puede tener efectos en el comportamiento sexual en la etapa adulta de la hembra de codorniz.
La presente investigación tuvo como objetivo explorar si la experiencia social temprana con coespecíficos maduros del sexo opuesto puede tener implicaciones en el comportamiento sexual de la hembra de codorniz japonesa, así como incidencia en su desarrollo y en los niveles de fertilidad una vez se encuentran en edad reproductiva.

Método

Esta investigación tuvo un diseño experimental. La variable independiente fue la experiencia social temprana con un coespecífico maduro del sexo opuesto. Se contó con dos grupos; experimental (GE; o de experiencia temprana con un macho maduro) y control (GC; sin experiencia temprana). Se hicieron comparaciones entre grupos y se tomaron medidas comportamentales (de receptividad) y fisiológicas relacionadas con el comportamiento sexual (de desarrollo y de fertilidad).

Sujetos

Dieciocho hembras de codorniz japonesa (*Coturnix japonica*) fueron utilizadas como sujetos experimentales, las cuales fueron criadas en el Laboratorio de Aprendizaje y Comportamiento Animal desde el momento de su concepción. Desde la eclosión los sujetos convivieron con coespecíficos de su misma edad hasta el día 21, en el cual se hizo un sexaje. Después del sexaje, los sujetos fueron alojados en un bioterio de acuerdo con su sexo, en un espacio con compartimentos contiguos entre ellos. En el bioterio de hembras todos los individuos tenían la misma edad. La distribución de los animales en el bioterio se hizo de manera uniforme con el fin de que las condiciones de luz fueran equivalentes para los grupos. El fotoperiodo fue de 16 h de luz y 8 h de oscuridad (16L:8O). Todos los animales tuvieron disponibilidad ad libitum de agua y comida. Desde el día de la eclosión hasta el día 49 fueron alimentados con concentrado de iniciación para aves Maxi-Pollitos de la empresa Contegral;
seguidamente, desde el día 50 fueron alimentados con concentrado Uno, de la misma empresa. Al inicio del experimento los sujetos tenían 25 días de edad y al finalizar tenían 76 días. A lo largo del experimento se llevó un control de salud con base en el peso y ovoposición de los animales.

Teniendo en cuenta los criterios utilizados en investigaciones anteriores respecto a receptividad (Rutkowska & Adkins-Regan, 2009) se descartó un animal de los análisis debido a que no hubo una postura de huevos regular (i.e., como es esperado para un ave de su especie, alrededor de un huevo por día) y a la hora de copular no produjo un solo huevo fertilizado. En consecuencia, este sujeto fue descartado de los análisis. Adicionalmente, dos animales fueron eliminados por completo del experimento el día 25 de edad, debido a que en el sexaje se les clasificó erróneamente como hembras. Estos animales no participaron en el experimento y fueron retirados del mismo.

A continuación, se ofrece una descripción general de la crianza de las codornices. Veinticuatro horas antes de la eclosión, los animales de codorniz japonesa ya emiten vocalizaciones, las cuales han demostrado cumplir un papel en la sincronización de la ruptura del cascarón (Vince, 1966; 1968; citados en Mills, Crawford, Domjan, & Faure, 1997). La codorniz japonesa de un día de edad puede pesar entre 6 y 7 g; necesita estar alojada a una temperatura de 35 °C durante las primeras tres semanas, ya que aún no se ha completado el desarrollo de su sistema de termorregulación; come y bebe por su cuenta (Randall & Bolla, 2008). Desde el nacimiento hasta los primeros 21 a 28 días se ha considerado como un periodo de crianza (i.e., brooding period), en el cual la supervivencia del animal está determinada por condiciones especiales que provea el cuidador; una vez la codorniz alcanza los 80 g tiene un plumaje completo (Cain & Cawley, 1914/1974). A los 21 días se puede realizar una clasificación del sexo dependiendo del plumaje, aunque esta no es del todo certera; las hembras suelen tener un pecho color claro con puntos negros, y los machos tienen un pecho y cuello con un color de tono café.
(Ernst, 1978). Sin embargo, con una técnica sofisticada de examinación cloacal se puede determinar el sexo del animal desde el primer día de edad (Homma, Siopes, Wilson, & McFarland, 1965).

En términos de aprendizaje, Mace, Kraemer y Akins (1997) evidenciaron que codornices japonesas hembras y machos de tan solo 12 días de edad pueden condicionarse a una preferencia de un lugar que les ofrece comida normal vs. un lugar que les ofrece comida contaminada, con tan solo un ensayo de entrenamiento. La preferencia por el lugar con la comida normal fue más fuerte si se realizan dos ensayos de entrenamiento, aunque también hubo duraciones considerables en los lugares con la comida contaminada; de este modo, los autores sugieren que la disposición para la asociación puede darse desde muy temprano en la codorniz y especialmente para relacionar estímulos visuales con los componentes positivos de eventos hedónicos bivalentes (Timberlake, 1994 citado en Mace et al, 1997).

Criterios de madurez. En los estudios de madurez sexual de la codorniz japonesa también se tiene en cuenta el día de ovoposición, el peso del animal y el peso del primer huevo puesto (Sezer, Berberoglu, & Ulutas, 2006). La literatura registra que a los 42 días aproximadamente (o 120 g de peso) la hembra pone su primer huevo y es hasta el día 50 en el que alcanza una madurez completa (o 140 g), y en su primer año puede poner alrededor de 250 huevos (Cain & Cawley, 1914/1974). Se ha encontrado que los niveles de nutrientes de las dietas afectan el desarrollo gonadal y, seguido a esto, el alcance de la madurez sexual en la codorniz japonesa (Akinola, Sese, & Oruwari, 2012; Odunsi, Rotimi, & Amao, 2007). Al controlar la dieta desde los 28 días de edad, el inicio de la postura de huevos se ha registrado entre los días 48 (i.e., para una dieta alta en fibra), a los 52 días (i.e., para una dieta baja en proteína cruda) y a los 57 días (i.e., con una dieta alta en grasas); en dietas con propiedades nutricionales muy bajas se encuentra que nunca puede darse la postura (Akinola et al., 2012).
Por otro lado, además del día de ovoposición, se suele tener en cuenta el peso promedio del día de la primera postura para determinar la madurez sexual cuando se controla la alimentación; 134.8 g de peso del animal (i.e., para una dieta baja en proteína cruda, con un peso promedio del primer huevo de 7.2 g), 123.4 g (i.e., para una dieta alta en fibra, con un peso promedio del primer huevo de 6.6 g) y 154.5 g (i.e., para una dieta alta en grasa, con un peso promedio del primer huevo de 8.5 g; Akinola et al., 2012).

Woodard et al. (1973) realizaron una comparación de los promedios de la cantidad de huevos producidos por hembras de gallinas, pavos y codornices a lo largo de dos años y medio; dichos autores concluyeron que las codornices envejecen más rápido que especies más grandes del orden Galliformes. Las observaciones de Woodard et al. (1973) fueron las siguientes: (a) durante el primer año de edad las gallinas pusieron un poco más de 250 huevos, las codornices pusieron un poco más de 200 y los pavos un poco más de 50 huevos; (b) más adelante, a los dos años de edad, pusieron un poco más de 150, 100 y 50, respectivamente; y (c) finalmente, a los dos años y medio, pusieron 150, un poco más de 50 y 50, respectivamente.

Coespecíficos

Se usaron 28 machos maduros en todo el experimento. En la Fase I exclusivamente para el GE, 10 machos fueron distribuidos aleatoriamente en ocho sesiones; el GC no tuvo contacto con machos maduros en esta fase.

En la Fase II, tanto para el GE como para el GC, 18 machos maduros (distintos a los de la Fase I) fueron distribuidos aleatoriamente en las ocho sesiones. En todo el experimento se garantizó que no hubiese una sesión repetida de sujeto y coespecífico; es decir, todos los animales tuvieron contacto con un coespecífico distinto cada vez. Los machos de esta fase se seleccionaron por medio de una prueba en la que se evaluó que copularan por lo menos una vez (en un periodo de 5 minutos) con una hembra ajena al experimento y en una caja distinta a la del
instrumento. Además, estos machos tuvieron una sesión de habituación al instrumento en la que no hubo hembra presente y tuvieron acceso tanto a la caja lateral como a la arena experimental.

Instrumento

Se utilizaron ocho cajas de madera idénticas de 70 cm de ancho, 100 cm de largo con compartimientos en los lados más cortos, las cuales corresponden a la arena experimental. Dichas cajas contaron con una lateral de menor tamaño (i.e., 30 cm de ancho y 50 cm de largo) a un lado corto con una compuerta en su lado más largo (Figura 1).

![Figura 1. Dimensiones del instrumento de arena experimental (A) y caja lateral (B) y rejilla (C).](image)

En una primera fase, una rejilla plástica (C en Figura 1) estuvo dividiendo las compuertas de las arenas experimentales (A en Figura 1) y cajas laterales (B en Figura 1). En la segunda fase, la rejilla fue retirada para los dos grupos. El suelo de las cajas era de madera y fue limpiado al final de cada sesión. Las cámaras de registro de video estuvieron siempre dentro de las arenas experimentales, ubicadas en el lado opuesto al de las cajas laterales.
Diseño

Las hembras que cumplieron los criterios de inclusión fueron asignadas aleatoriamente a dos grupos. El GE contó con diez sujetos y el GC con siete. El experimento se dividió en tres fases (Tabla 1).

Fase I o de exposición temprana. La Fase I tuvo ocho sesiones, cada sesión tuvo una duración de 60 minutos. Esta fase inició el día 25 de edad y finalizó el día 32 de edad de los animales. En esta ocasión, cada uno de los sujetos del GE contó con la presencia de un macho maduro en la caja lateral; una rejilla plástica separó la caja lateral de la arena experimental impidiendo un acceso directo entre los animales. Dicha rejilla permitió contacto visual y auditivo, también olfativo y táctil en la medida en la cual los animales se acercaran entre sí. En cada sesión se presentó un macho distinto a cada hembra del GE. Por otro lado, aunque el procedimiento fue similar para el GC, los sujetos de este grupo no contaron con la presencia de algún macho maduro en la caja lateral. Es decir, para el GC la caja lateral estuvo vacía.

Fase II o de prueba copulatoria. Esta Fase inició el día 60 y finalizó el día 67 de edad de los animales. En esta ocasión, cada uno de los sujetos de los dos grupos contó con la presencia de un macho en la arena experimental; no hubo rejilla con el fin de lograr interacción entre los animales; por lo tanto, se permitió el contacto copulatorio. En cada sesión se presentó un macho distinto a cada hembra (tanto del GE como del GC). La Fase II tuvo ocho sesiones, cada sesión tuvo una duración de 30 minutos. Paralelamente, se hizo una recolección de huevos desde el día 61 al 68 de edad para determinar el porcentaje de huevos fertilizados durante esta Fase.

Fase III o de recolección después del último día de cópula. La Fase III fue exclusivamente de recolección de huevos. Tuvo inicio el día 69 y finalizó el día 76 de edad de los animales. Una vez finalizada la Fase II, los sujetos permanecieron en sus lugares de alojamiento.
habituales en el bioterio sin presencia del macho. Durante los ocho días subsiguientes a la Fase II se tomaron muestras de huevos fertilizados en el bioterio.

Tabla 1.

Diseño del experimento

<table>
<thead>
<tr>
<th></th>
<th>Fase I (entre los días 25–32)</th>
<th>Fase II (entre los días 60-67)</th>
<th>Fase III de Recolección (entre los días 69-76)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duración de sesión</td>
<td>60 minutos en Arena Experimental</td>
<td>30 minutos en Instrumento</td>
<td>-</td>
</tr>
<tr>
<td>GE</td>
<td>Exposición visual de un macho maduro</td>
<td>Prueba de cópula con un macho maduro y recolección de huevos fertilizados (días 61-68)</td>
<td>Recolección de huevos fertilizados</td>
</tr>
<tr>
<td>GC</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Procedimiento

Las fases I y II consistieron en el traslado de los sujetos al instrumento experimental y su permanencia allí por el tiempo de la sesión. Dichas fases tuvieron lugar en horas de la mañana. Antes de dar inicio al experimento, se hizo una asignación aleatoria inicial de arenas experimentales. A su vez, dicha asignación se mantuvo a lo largo del experimento, es decir, tanto para la Fase I como para la Fase II los sujetos estuvieron en una caja respectiva.

Fase I o de exposición temprana. Esta Fase tuvo lugar entre las 8:00 y alrededor de las 11:00. Antes del inicio de cada sesión, para el caso del GE, los coespecíficos maduros fueron puestos en la caja lateral, con la compuerta (que comunica las dos cajas) cerrada. En todas las sesiones de esta Fase la rejilla plástica estuvo separando las cajas laterales y las arenas experimentales. Para el traslado inicial de los sujetos se usaron cajas de transporte. Una vez todos los sujetos estuvieron en su lugar, se dio a inicio a la grabación y posterior apertura de la puerta que comunica la arena experimental y la caja lateral. Después de 60 minutos (i.e., duración de la sesión de Fase I) se cerraron todos los compartimentos; de esta forma, para el caso del GE se
impidió el contacto visual entre los animales. Seguidamente, se retiraron los coespecíficos de las cajas laterales impidiendo que los sujetos tuvieran contacto visual entre ellos; después se retiraron los sujetos y tanto machos como hembras fueron llevados por separado a sus bioterios respectivos.

Fase II o de prueba copulatoria. Esta Fase tuvo lugar entre las 8:00 y las 9:30 am. Antes del inicio de cada sesión, los coespecíficos fueron puestos en la caja lateral, con la compuerta (que comunica las dos cajas) cerrada. En todas las sesiones de esta Fase se retiró la rejilla plástica antes de dar inicio a la sesión para que en la sesión se permitiera el contacto entre los animales. Para el traslado inicial de los sujetos se usaron cajas de transporte. Antes de dar inicio a la sesión se insertaron los sujetos en su arena experimental correspondiente. Una vez empezó la grabación, la apertura de la compuerta indicó el inicio de la sesión. Después de los 30 minutos de la sesión, se retiró exclusivamente a los machos del instrumento. Los sujetos permanecieron en la arena experimental por 5 minutos como mínimo, después de haber sacado al macho. Después de que cada animal fue retirado del instrumento, se le llevó manualmente al bioterio respectivo.

Registros Fisiológicos. Los registros fisiológicos se hicieron respecto al desarrollo y fertilidad. Los de desarrollo se hicieron a lo largo del experimento y los de fertilidad se hicieron exclusivamente en la Fase II y Fase III.

Mediciones del Desarrollo y Recolección de Huevos. El peso de los sujetos se midió entre los días 29 y 68 de edad de los animales. Por otro lado, se tuvo en cuenta diariamente el porcentaje de ovoposición de los grupos desde el primer día de postura (41 días de edad) hasta el finalizar el experimento (76 días de edad). Desde el día 41 al 60 de edad de los animales (i.e., antes de la puesta del primer huevo en la Fase II) se hizo una recolección y registro diario del número de huevos, teniendo en cuenta cada sujeto y su grupo. Por otro lado, desde el día 61 al 76
(i.e., desde el día posterior a la Sesión 1 de la Fase II hasta el último día de la Fase III) se recolectaron huevos que, además, se examinaron para determinar si estaban fertilizados o no.

Incubación y Mediciones de Fertilidad. La recolección y almacenamiento de huevos potencialmente fertilizados (entre días 61 y 76) se hizo diariamente, y cada tres días dichos huevos fueron puestos en la incubadora por cinco días. Por ejemplo, los huevos recolectados los días 61, 62 y 63 fueron puestos en la incubadora el día 64; los correspondientes a los días 64, 65 y 66, fueron puestos el día 67; los de los días 67, 68 y 69, fueron llevado a la incubadora el día 70, y así sucesivamente.

Cada huevo se retiró definitivamente de la incubadora al quinto día de haber sido puesto en ella. En cuanto a la fertilidad, se registró como positivo cada huevo si presentaba algún grado de desarrollo embrionario. Si por el contrario, el huevo no mostró algún grado de desarrollo, se marcó como no fertilizado. Solamente dos huevos de esta muestra estuvieron rotos, se descartaron y no se tuvieron en cuenta para los análisis de fertilidad.

Registros Comportamentales. El registro observacional de los comportamientos se hizo exclusivamente para la Fase II. Dicho registro se hizo con el software Observer XT 9.0 (por Noldus Information Technology b.v., 2009). Para los análisis de los comportamientos en frecuencia, se tuvieron en cuenta el promedio de las frecuencias por grupo en cada sesión y la latencia del comportamiento. La latencia fue utilizada para obtener promedios de la ocurrencia de los comportamientos entre los grupos y a través de las sesiones. De igual modo, la latencia permitió comparar la regularidad en el orden de ocurrencia de los comportamientos. La siguiente descripción acerca de la receptividad en hembras de codorniz japonesa tuvo en cuenta los trabajos de Adkins-Regan (1995) y Noble (1972).
Agacharse. La manera de registrar este comportamiento fue teniendo en cuenta la duración del mismo. Se registró este comportamiento únicamente cuando la hembra se inclinaba hacia abajo y permanecía quieta ante el contacto del macho. Si, por ejemplo, la hembra se agachó pero no tuvo contacto con el macho este comportamiento no se registró. Para los análisis estadísticos se tuvo en cuenta la duración del comportamiento en el tiempo total de las sesiones (1,800 s) y la latencia del comportamiento. Este comportamiento se asoció a receptividad.

Intento de Cópula. Este comportamiento se registró como frecuencia. Se tuvo en cuenta como un intento de cópula cada una de las ocasiones en las cuales el macho agarraba a la hembra por las plumas del cuello, la montaba, se encorvaba (tal cual como cuando ocurre contacto cloacal) y abría sus alas. No obstante, no se verificó que efectivamente hubiera habido contacto cloacal acompañado de expulsión de esperma al interior de la hembra en cada una de las ocasiones que se presentó esta conducta. Por lo anterior, no se nombró el comportamiento como contacto cloacal, sino como intento de cópula. Este comportamiento se categorizó como receptivo.

Levantarse. Se registró como un levantamiento cada vez que la hembra se levantó exclusivamente ante el agarre por el cuello del macho. Usualmente este comportamiento es seguido de la huida de la hembra; sin embargo, en esta investigación este comportamiento se registró antes de que las hembras escaparan, ya que algunas veces no lograban desprenderse del macho. Adkins-Regan (1975) se refiere a este comportamiento como una locomoción constante durante la monta (*locomoted constantly while mounted*). En Noble (1972), este se asemeja al de short avoidance. Este comportamiento se categorizó como asociado a no receptividad.

Huida. Se registró la huida de una hembra después de haber tenido contacto con el macho y ante la persecución del macho. Es decir, cada vez que la hembra se separó del macho y huyó de él. El comportamiento correspondiente sería long avoidance en el trabajo de Noble (1972); sin
embargo, en el presente experimento el registro de este no tuvo en cuenta duración sino frecuencia y se categorizó como no receptivo.

Picoteo. Cada picoteo de parte de la hembra hacia el macho se registró en términos de frecuencia. Se consideró como picoteo la aproximación de la hembra al macho, seguida de una inclinación de su cabeza y contacto del pico de la hembra con cualquier parte del cuerpo del macho. Este comportamiento se asoció a no receptividad, debido a que la posición de la hembra frente al macho no permite un intento de cópula. Sin embargo, no hay un consenso acerca del picoteo de la hembra hacia el macho en relación con la receptividad en la literatura.

Expansión de Plumas. Se consideró como expansión de plumas cada vez que la hembra (sin abrir las alas) irguiera sus plumas. Se registró este comportamiento estuviese en contacto o no con el macho. Aunque este comportamiento no parece tener una evidente categorización como no receptivo en Adkins-Regan (1995), para el presente experimento se contó como si fuera tal debido a que su topología dificulta un agarre del macho.

Apertura de Alas. Este comportamiento se registró cuando la hembra extendió sus alas (sin batirlas o no) en dirección al macho. Generalmente, al realizar esta acción la hembra toma una posición erguida del cuerpo. Este comportamiento no parece tener una categorización como no receptivo anteriormente, pero para el presente experimento se contó como si fuera tal, debido a que es un comportamiento dirigido al macho y que viene acompañador de un aumento del tamaño perceptual de la hembra. Nuevamente, la topología de este comportamiento dificulta un agarre y monta del macho.

Expulsión de Espuma. Se registró este comportamiento cada vez que la hembra expulsó la espuma después de una cópula con el macho durante la sesión. Según Adkins-Regan (1995), la expulsión de espuma (hasta un minuto después de la cópula) ha sido un predictor de un menor éxito en obtener huevos fertilizados. Este comportamiento se registró independientemente del
tiempo de la cópula. Aunque aún no existe un consenso en el considerar la expulsión de espuma como no receptiva, en el presente estudio se consideró como tal.

Análisis Estadísticos

Para los análisis estadísticos fue utilizado el software IBM SPSS Statistics for Windows 20.0 (2011). A continuación, se explica en qué consistieron dichos análisis.

Mediciones del Desarrollo. Se hicieron comparaciones del peso promedio de los animales entre grupos. Por otro lado, se hicieron comparaciones diarias entre los porcentajes de hembras de cada grupo que produjeron un huevo; también se contrastaron estos promedios entre grupos a lo largo del experimento (i.e., 41-61 días de edad, durante Fase I y II). Asimismo, se estableció la tasa de ovoposición de los sujetos y se realizaron comparaciones inter e intra grupales. Para las comparaciones de pesos y día inicial de postura se hizo uso del estadístico *t*-student para muestras independientes. Por otro lado, para el porcentaje de hembras que ovoposicionaron por grupo durante los días 41-61 y las tasas de ovoposición entre grupos se utilizó el estadístico *U* de Mann Whitney. Finalmente, para las comparaciones intragrupales de las tasas de ovoposición se usó el estadístico para dos muestras relacionadas de Wilcoxon.

Fertilidad. Se establecieron los porcentajes de huevos fertilizados; es decir, los huevos fertilizados sobre el total de huevos producidos (durante las Fases II y III) por cada grupo. Se realizaron comparaciones de los porcentajes de fertilidad entre: grupos, fases para cada grupo y el total de los grupos. Para las comparaciones de los porcentajes de fertilidad entre grupos se usó el estadístico *U* de Mann Whitney y para la comparación intragrupal el estadístico para dos muestras relacionadas de Wilcoxon.

Duración y Frecuencia de Comportamientos. Únicamente el comportamiento de agacharse se obtuvo en duración. De todos los comportamientos se establecieron los promedios
de cada sesión, teniendo en cuenta las frecuencias de cada grupo. En la Tabla 2 se observa la categoría de los comportamientos.

Tabla 2
Categorías de los comportamientos registrados en la Fase II

<table>
<thead>
<tr>
<th>Comportamiento</th>
<th>Categoría del comportamiento (medida)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agacharse</td>
<td>Receptividad (duración)</td>
</tr>
<tr>
<td>Intento de Cópula</td>
<td>Receptividad (frecuencia)</td>
</tr>
<tr>
<td>Levantarse</td>
<td>No receptividad (frecuencia)</td>
</tr>
<tr>
<td>Huida</td>
<td>No receptividad (frecuencia)</td>
</tr>
<tr>
<td>Picoteo</td>
<td>No receptividad (frecuencia)</td>
</tr>
<tr>
<td>Expansión de Plumas</td>
<td>No receptividad (frecuencia)</td>
</tr>
<tr>
<td>Apertura de Alas</td>
<td>No receptividad (frecuencia)</td>
</tr>
<tr>
<td>Expulsión de Espuma</td>
<td>No receptividad (frecuencia)</td>
</tr>
</tbody>
</table>

Análisis de Latencia de Comportamientos. Se obtuvieron las latencias de todos los comportamientos. De acuerdo con estudios de receptividad (Adkins-Regan, 1995), suele tenerse en cuenta la reacción inicial de la hembra frente al macho. De este modo, en este análisis se tuvo en cuenta la presentación o no de determinados comportamientos de los sujetos, desde el inicio de las sesiones hasta el primer intento de cópula). Dichos comportamientos fueron: apertura de alas, levantarse, huir, expansión de plumas, picoteo y agacharse. De una manera similar, se registró la ocurrencia o no de los mismos comportamientos antes de agacharse. En la Tabla 3 se puede observar con mayor detalle lo anteriormente expuesto.
Tabla 3
Comportamientos y su categorización de receptividad y no receptividad frente a la ocurrencia de intento de cópula (IC)

<table>
<thead>
<tr>
<th>Orden del Comportamiento y su Categoría</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comportamiento que ocurre antes de IC</td>
</tr>
<tr>
<td>Apertura de alas</td>
</tr>
<tr>
<td>Levantarse</td>
</tr>
<tr>
<td>Huir</td>
</tr>
<tr>
<td>Expansión de plumas</td>
</tr>
<tr>
<td>Picoteo</td>
</tr>
<tr>
<td>Agacharse</td>
</tr>
</tbody>
</table>

Para las comparaciones estadísticas de los promedios de los comportamientos se utilizaron las prueba estadísticas t-student para muestras independientes y U de Mann Whitney, dependiendo de la distribución y características de los datos de cada variable.

Análisis Correlacional. Se hicieron análisis correlacionales que involucraron tanto variables fisiológicas como variables comportamentales. Debido a la distribución de los datos, para esta ocasión se utilizó la prueba de correlaciones de Rho de Spearman.

Resultados
Los resultados de esta investigación fueron tanto el producto de mediciones fisiológicas como de mediciones comportamentales. En un primer momento se hablará de los hallazgos más relevantes en términos de mediciones de fertilidad y de comportamientos de receptividad y no receptividad. Seguidamente, se presentan los demás resultados de mediciones fisiológicas del desarrollo y los análisis de frecuencias de comportamientos.

Fertilidad
Es importante resaltar que la comparación de la fertilidad total de los grupos fue estadísticamente significativa (Figura 2). Al realizar análisis por fases, se encuentra que los resultados de fertilidad de la recolección de Fase II no fueron estadísticamente significativos,
aunque los de la Fase III sí lo fueron (Figura 3). A continuación, se explica en un primer lugar la fertilidad total, luego la descripción por fases.

Fertilidad Total de Grupos (Fase II y Fase III). El promedio del porcentaje de fertilidad total del GE fue 76.9% (DE=16.5; Mdn=73.2) y del GC fue 60.4% (DE=12.7; Mdn=58.3). Los porcentajes del GC fueron un poco más dispersos que los del GE; más específicamente, la mitad de los valores se encontraron por debajo de 58.3%. El porcentaje de fertilidad de un sujeto del GE se encontró muy por debajo del promedio de su grupo (x=33.3). Las diferencias entre grupos de estos porcentajes sí arrojaron diferencias significativas (Z=-2.352; p<.05).

Por otro lado, al comparar los porcentajes de fertilidad de las Fases II y III intragrupalmente se encontraron diferencias significativas (Z=-2487; p<.05; Figura 3).

![Figura 2](image-url)
*Figura 2. Comparación de los promedios del porcentaje total de fertilidad (entre los 61-76 días).
p<.05.
Fertilidad en Fase II. En esta fase, el promedio del porcentaje de fertilidad del GE fue 81.4% ($DE=10.5; Mdn=85.7$) y del GC fue 68.6% ($DE=13.7; Mdn=71.4$). Los porcentajes del GC fueron más dispersos que los del GE. Sin embargo, los porcentajes de fertilidad de dos sujetos del grupo GE se encontraron por debajo del promedio ($x_1=66.6$ y $x_2=57.1$). Las diferencias entre grupos de estos porcentajes no arrojaron diferencias significativas ($Z=-1.892; p>.05$).

Fertilidad en Fase III. En esta fase, el promedio del porcentaje de fertilidad del GE fue 72.6% ($DE=25; Mdn=73.2$) y del GC fue 53% ($DE=15.4; Mdn=57.1$). Aunque el porcentaje de fertilidad de un sujeto del grupo GE se alejó del promedio ($x=25$), las diferencias entre grupos de estos porcentajes sí arrojan diferencias significativas ($Z=-2.257; p<.05$).

Figura 3. Comparación de los promedios del porcentaje de fertilidad entre las fases II y III. *$p<.05$; ◊ $p<.05$.

Ahora se presentan los resultados más importantes de los comportamientos de agacharse (en duración), intento de cópula (en frecuencias), apertura de alas (en frecuencias) y expansión de
plumas (en frecuencias y latencias). En un principio se describen los resultados característicos de receptividad (i.e., agacharse e intento de cópula).

Agacharse

A lo largo de la Fase II, el promedio de la duración (en segundos) del comportamiento de agacharse fue superior en caso del GE (Figura 4); aunque, exclusivamente en la sesión 5 los promedios fueron muy similares para los dos grupos.

Figura 4. Promedios de la duración por sesiones completas del comportamiento de agacharse a lo largo de la Fase II.

En general, el GE presentó una mayor duración del comportamiento de agacharse. Es decir, la duración total promedio de este comportamiento para el GE fue 6.2 s ($DE=8.17; Mdn=13.42$), mientras que fue de 3.6 s para el GC ($DE=6.11; Mdn=6.52$; Figura 5). Por otro lado, si se comparan entre grupos los promedios de la duración de agacharse se encuentran diferencias significativas ($t=2.788; p<.05$).
Figura 5. Promedio y comparación de la duración del comportamiento de agacharse en las sesiones completas de la Fase II. *p<.05

Intento de Cópula

Este comportamiento fue medido en frecuencias y a lo largo de la Fase II, los promedios por grupo de intento de cópula fueron superiores en el GE (Figura 6). Particularmente, desde la sesión 1 el promedio del GE es claramente mayor que el del GC; aunque en la sesión 2 el promedio de la GC aumenta y el del GE disminuye.
Figura 6. Promedios por sesiones completas del comportamiento de intento de cópula a lo largo de la Fase II.

El promedio total de este comportamiento para el GE fue 4.2 ($DE=0.74; Mdn=4.3$), y de 2.8 para el GC ($DE=0.5; Mdn=2.9$; Figura 7). Además, si se comparan los promedios totales de las frecuencias del intento de cópula entre grupos se encuentran diferencias significativas ($t=4.432; p<.01$). En general, el promedio de frecuencia de intento de cópula del GE fue significativamente mayor que el del GC.
Figura 7. Promedio y comparación del comportamiento de intento de cópula en las sesiones completas de la Fase II. **$p<.01$**

A partir de ahora, se describen los resultados más relevantes de comportamientos característicos como no receptivos; se incluye un análisis correlacional entre los comportamientos.

Apertura de Alas

En cinco de las ocho sesiones de la Fase II el promedio de las frecuencias del comportamiento de apertura de alas fue superior para el GC (Figura 8). Sin embargo, se puede notar que en la primera sesión los promedios fueron semejantes para el GE ($M=0.5; DE=0.7$) y para el GC ($M=0.7; DE=0.4$). En esa primera sesión los promedios fueron los más altos en relación con ese comportamiento. Por otro lado, en las sesiones 6, 7 y 8 el GC mantuvo un
mismo promedio (de 0.3); el cual fue superior al del GE, ya que en las sesiones 7 y 8 el GE tuvo un promedio de 0.2.

Figura 8. Promedios por sesiones completas del comportamiento de apertura de alas a lo largo de la Fase II.

El promedio total de este comportamiento para el GE fue 0.17 \((DE=0.16; Mdn=0.15) \), y de 0.23 para el GC \((DE=0.24; Mdn=0.28) \); Figura 9). Asimismo, si se comparan los promedios totales de las frecuencias del apertura de alas entre grupos se encuentran diferencias significativas \((Z=-0.323; p<.05) \).
Figura 9. Promedio y comparación del comportamiento de expansión de plumas en las sesiones completas de la Fase II.

Vale la pena rescatar que los promedios de este comportamiento se distribuyeron entre los valores 0 y 1.2; lo cual indica que este comportamiento fue muy poco frecuente en las sesiones.

Expansión de Plumas

De este comportamiento, primero se presentan los resultados de los promedios de las frecuencias y después los promedios de las latencias.

En todas las sesiones el promedio de las frecuencias del comportamiento de expansión de plumas fue superior para el GC (Figura 10). Sin embargo, se puede notar que en la primera sesión los promedios fueron semejantes para el GE ($M=1.1; DE=1.6$) y para el GC ($M=2; DE=2.6$). Pero a medida que aumentaron las sesiones, el GC tendió a incrementar las frecuencias de este comportamiento...
comportamiento y en la última sesión los promedios fueron de 7 y 2.1, para el GC y GE, respectivamente.

Figura 10. Promedios por sesiones completas del comportamiento de expansión de plumas a lo largo de la Fase II.

En general, el promedio del GC fue superior al del GE durante toda la Fase II. El promedio total de este comportamiento para el GC fue 4.6 ($DE=2.0; \textbf{Mdn}=4.5$), mientras que fue de 0.7 para el GE ($DE=0.62; \textbf{Mdn}=0.65$; Figura 11). Además, si se comparan los promedios totales de las sesiones entre grupos se encuentran diferencias significativas ($t=-5.119; p<.01$). Aunque para el caso del GE la sesión 8 se alejó 2.1 desviaciones estándar por encima de lo normal ($x=2.1; M=0.76; DE=0.62$; Figura 11).
Figura 11. Promedio y comparación del comportamiento de expansión de plumas en las sesiones completas de la Fase II. **p < .01**

Latencia de Comportamientos de Expansión de plumas. En general, el promedio de latencia del GC fue menor al del GE. La comparación entre grupos del promedio de la latencia (en segundos) de los comportamientos de cada sesión mostró diferencias estadísticamente significativas ($t=3.435$; $p<.05$). El promedio del GE fue 1,463 s ($DE=229$; $Mdn=1,553$) y el del GC fue 1,137 ($DE=139$; $Mdn=1,122$; Figura 12).
Figura 12. Comparación del promedio de las latencias del comportamiento de expansión de plumas durante las sesiones de la Fase II. *p<.05

El total del tiempo de las sesiones fue de 1,800 s (o 30 min), lo cual muestra que la latencia del GC tiene valores que indican que se presentó el comportamiento en promedio cuando transcurrió el 63% de la sesión. Mientras que el GE tuvo valores que indican que el comportamiento se presentó en promedio cuando transcurrió el 81% de la sesión.

Por otro lado, las latencias promedio de otros comportamientos se encuentran en la sección de Apéndices.

Correlación de Comportamientos No Receptivos
Se realizó un análisis correlacional solo de comportamientos (Tabla 4). Este análisis se hizo teniendo en cuenta los promedios totales de cada uno de los sujetos; es decir, no se tuvieron
en cuenta los promedios totales por sesión. La selección se hizo con base en lo encontrado en un análisis previo, en el cual se hallaron más correlaciones significativas entre ellos.

Tabla 4

<table>
<thead>
<tr>
<th></th>
<th>(M) de Latencia de Levantarse</th>
<th>(M) de Latencia de Picoteo</th>
<th>(M) de Latencia de Expansión de Plumas</th>
<th>(M) de Latencia de Expulsión de Espuma</th>
<th>(M) de Picoteos</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M) de Latencia de Huida</td>
<td>(\rho) = .67 *</td>
<td>-.293</td>
<td>-.041</td>
<td>-.056</td>
<td>.160</td>
</tr>
<tr>
<td>Sig.</td>
<td>-.003</td>
<td>.253</td>
<td>.877</td>
<td>.830</td>
<td>.539</td>
</tr>
<tr>
<td>(M) de Latencia de Levantarse</td>
<td>(\rho) = -</td>
<td>.174</td>
<td>.095</td>
<td>-.194</td>
<td>-.271</td>
</tr>
<tr>
<td>Sig.</td>
<td>-.505</td>
<td>.717</td>
<td>.465</td>
<td>.293</td>
<td></td>
</tr>
<tr>
<td>(M) de Latencia de Picoteo</td>
<td>(\rho) = -</td>
<td>.548</td>
<td>-.021</td>
<td>-.948</td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td>-.023</td>
<td>.936</td>
<td>.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M) de Latencia de Expansión de Plumas</td>
<td>(\rho) = -</td>
<td>-</td>
<td>-.061</td>
<td>-.528</td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>.816</td>
<td>.029</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M) de Latencia de Expulsión de Espuma</td>
<td>(\rho) = -</td>
<td>-</td>
<td>-.064</td>
<td>.807</td>
<td></td>
</tr>
</tbody>
</table>

. La correlación es significativa al nivel 0,01 (bilateral).

. La correlación es significativa al nivel 0,05 (bilateral).

Las latencias promedio de huida y de levantarse correlacionaron positivamente \((r=.67; p<.01)\); lo cual sugiere que tanto sujetos que presentaron una demora en la huida también la presentaron en el levantarse. Las latencias promedio de picoteo y expansión de plumas correlacionaron positivamente \((r=.54; p<.05)\); lo cual indica que sujetos que se demoraron en exhibir picoteos también lo hicieron en exhibir expansión de plumas.

Además, la latencia promedio de picoteo correlacionó negativamente con la frecuencia promedio de picoteos \((r=-.94; p<.01)\); lo cual demuestra que a medida que los sujetos se demoraron en exhibir picoteos, dichos picoteos se presentaron en menor cantidad.

Finalmente, la latencia promedio de expansión de plumas correlacionó negativamente con la frecuencia promedio de picoteos \((r=-.52; p<.05)\); es decir que a medida que la expansión de plumas se demoró en presentarse, los picoteos fueron menos frecuentes.
A continuación, se presentan los resultados de mediciones de desarrollo y otros comportamientos no receptivos. Al final, se presenta un análisis del orden de ocurrencia de algunos comportamientos antes del intento de cópula y un análisis correlacional entre mediciones fisiológicas y comportamentales.

Desarrollo

En el caso de las medidas de desarrollo, se tuvieron en cuenta el peso en gramos y la ovoposición. Se hicieron comparaciones entre grupos a lo largo del experimento.

Peso. El peso promedio de los sujetos no fue significativamente diferente entre grupos a lo largo de los días 29 y 68 de edad \((t=0.894; p>.05)\); el peso promedio de los sujetos del GE fue 143.7 g \((DE=7.6)\) y del GC fue 140.2 g \((DE=8)\). Sin embargo, en la Figura 13 se puede observar que el 50% de los promedios de peso de los sujetos del GE estuvo por encima de 143.4 g y el 50% de los promedios del peso del GC estuvo por debajo de 144.2 g.

De otro modo, en el Apéndice A se puede observar que el peso promedio del día inicial de postura de cada sujeto para el GE fue de 147.9 g \((DE=10.3; Mdn=144.7)\) y para el GC fue de 147.5 g \((DE=10.7; Mdn=149.4)\). Las comparaciones entre el promedio de peso del día inicial de postura entre grupos no difiere significativamente \((t=0.079; p>.05)\). También se hicieron comparaciones de los promedios de peso de los primeros huevos puestos (GE \([X=7.9 \text{ g}; DE=0.84; Mdn=7.7]\) y GC \([X=7.9 \text{ g}; DE=0.70; Mdn=7.7]\)); las cuales no fueron estadísticamente diferentes \((t=0.091; p>0.5\); Apéndice B).
Figura 13. Promedio de peso en gramos de los sujetos entre los días 29 y 68 de edad.

Ovoposición. El día 41 fue en el que se presentó una primera postura de huevos. Este día únicamente el 40% del GE inició la postura. Por otro lado, a partir del día 42 el 20% del GC inició la postura de huevos (Figura 14).

De otro modo, en el Apéndice C se puede observar que el día inicial de postura promedio del GE fue 43.3 ($DE=2.1; Mdn=44$) y para el GC fue de 45.3 ($DE=2.6; Mdn=45$). Las comparaciones entre el promedio de día inicial de postura entre grupos no difieren significativamente ($t=-1.708; p>.05$).
Figura 14. Porcentaje de hembras que ovoposicionaron por grupo entre los días 41 y 61.

Del día 41 al 48 un mayor porcentaje de hembras del GE que tuvieron postura de huevos; sin embargo, en el día 49 hubo un porcentaje mayor del GC (i.e., primer día en el cual el 100% de las hembras de un grupo ovoposiciona); la segunda ocasión para ese mismo grupo fue el día 53, y la primera ocasión en la que el 100% de los sujetos del GE realiza postura de huevos fue el día 55. Entre los días 41 y 61 los promedios, desviaciones estándar y medianas del porcentaje de hembras que realizan postura diariamente fueron los siguientes (Tabla 5):

<table>
<thead>
<tr>
<th>Grupo</th>
<th>X</th>
<th>DE</th>
<th>Mdn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>75.7</td>
<td>22.7</td>
<td>80</td>
</tr>
<tr>
<td>Control</td>
<td>63.2</td>
<td>30.8</td>
<td>71.4</td>
</tr>
</tbody>
</table>

Nota: No hubo diferencias entre medias de dos grupos independientes ($Z=-1.151; p>.05$).

Aunque los promedios del porcentaje de hembras que ovoposicionaron por grupo difieren entre grupos, estas diferencias no son estadísticamente significativas (Tabla 5). Por otro lado, los porcentajes se incrementan a lo largo del tiempo para los dos grupos.
Teniendo en cuenta el número de huevos puestos por hembra y el número de días a lo largo del experimento se obtuvo una tasa de postura. Al compararse dicha tasa entre grupos, no se observan diferencias significativas (Figura 15). El promedio de la tasa de postura de huevos desde el día 41 al 60 para el GE fue 74.5% (DE=14; Mdn=77.5), mientras que para el GC fue 61.4% (DE=17.2; Mdn=70). El promedio de la tasa de postura durante la Fase II (entre los días 61 y 68) para el GE fue 90% (DE=7.9; Mdn=87.5) y para el GC fue 85.7% (DE=13.3; Mdn=87.5). Finalmente la tasa promedio de postura durante la Fase III (entre los días 69 y 76) para el GE fue 93.3% (DE=5.7; Mdn=88.8) y para el GC fue 95.2% (DE=5.9; Mdn=100).

Figura 15. Tasa de ovoposición de sujetos comparado entre grupos, en diferentes momentos (inicio de ovoposición, Fase II y Fase III de recolección).

A pesar de que los promedios de las tasas de ovoposición son distintos para cada grupo en los tres momentos, estas diferencias no son significativas (del día 41 al 60 \(Z=-1.530; \ p>.05\), Fase II \(Z=-.590; \ p>=.05\) y Fase III \(Z=-.676; \ p>.05\)).

Por otro lado, las comparaciones intragrupales de las tasas de ovoposición sí son diferentes para el GE \(Z=-2.705; \ p<.05\) y para el GC \(Z=-2.371; \ p<.05\) entre los días 41-60 y la
Fase II; de igual modo, son diferentes significativamente las comparaciones intragrupales entre la ovoposición de los días 41-60 y la Fase III (GE [Z=-2.502; \(p<.05 \)] y GC [Z=-2.371; \(p<.05 \)]). Sin embargo, la comparación intragrupal de las tasas entre las Fases II y III no es significativamente diferente para los dos grupos (GE [Z=-.707; \(p>.05 \)] y GC [Z=-1.406; \(p>.05 \)]).

A partir de ahora, se presentan los resultados de frecuencias de los comportamientos de levantarse, huida, picoteo y expulsión de espuma.

Levantarse

A lo largo de las sesiones de prueba de cópula, en seis de las ocho sesiones la frecuencia promedio del comportamiento de levantarse fue superior en el GE (Figura 16). Solamente en las dos primeras sesiones el promedio de levantarse fue superior en el GC.

![Promedios de "Levantarse" en las Sesiones Completas](image)

Figura 16. Promedios por sesiones completas del comportamiento de levantarse a lo largo de la Fase II.

El promedio total de levantarse para el GE fue 39.1 (\(DE=23.9; \ Mdn= 33.3 \)), y de 27.3 para el GC (\(DE=12.4; \ Mdn= 25.6 \); Figura 17). Por otro lado, si se comparan los promedios totales de
las frecuencias de levantarse entre grupos no se encuentran diferencias significativas ($t=1.230; p>.05$).

Figura 17. Promedio y comparación del comportamiento de levantarse en las sesiones completas de la Fase II.

Huida

A lo largo de la Fase II, en la primera y segunda sesión las frecuencias promedio de huida fue superior para el GC (Figura 18). En las sesiones 3 y 4, el promedio de huida fue superior en el GE. Al finalizar, en la sesión 8, la frecuencia promedio de los dos grupos fue menor a 1.4.
Figura 18. Promedios por sesiones completas del comportamiento de huida a lo largo de la Fase II.

El promedio total de huida para el GE fue 4.4 ($DE=2.91; Mdn=3.7$), y de 4.6 para el GC ($DE=2.5; Mdn=4.5$; Figura 19). Al comparar los promedios totales de las frecuencias entre grupos no se encuentran diferencias significativas ($t=-0.141; p>.05$).
Figura 19. Promedio y comparación del comportamiento de huida en las sesiones completas de la Fase II.

Picoteo

En cinco de las ocho sesiones de la Fase II (i.e., 1, 3, 4, 5 y 6) el promedio de las frecuencias del comportamiento de picoteo fue superior en el GE (Figura 20). En las sesiones restantes (i.e., 2, 7 y 8) el promedio de picoteo fue superior en el GC.
El promedio de este comportamiento para el GE fue 9.3 ($DE=3.8; \text{Mdn}=8.3$), y de 6.9 para el GC ($DE=2.6; \text{Mdn}=8.1$; Figura 21). Si se comparan los promedios totales de las frecuencias de picoteo entre grupos no se encuentran diferencias significativas ($t=1.434; p>.05$).
Figura 21. Promedio y comparación del comportamiento de picoteo en las sesiones completas de la Fase II.

Expulsión de Espuma

En la mitad de las sesiones de la Fase II la frecuencia promedio del comportamiento de expulsión de espuma del macho fue superior en el GC (Figura 22). La sesión 1 el promedio del GC fue 0.85 ($DE=0.89; Mdn=1$) y de 0.6 para el GE ($DE=0.69; Mdn=0.5$); y en la sesión 8 el promedio del GC fue 0.85 ($DE=0.69; Mdn=1$) y de 0.4 en el GE ($DE=0.69; Mdn=0$).
Figura 22. Promedios por sesiones completas del comportamiento de expulsión de espuma a lo largo de la Fase II

El promedio total de expulsión de espuma para el GC fue 0.66 ($DE=0.170; Mdn=0.57$), y de 0.59 en el GE ($DE=0.230; Mdn=0.60$; Figura 23). Al comparar dichos promedios, entre grupos no se encuentran diferencias significativas ($Z=-.426; p>.05$).
Figura 23. Promedio y comparación del comportamiento de expulsión de espuma durante las sesiones completas de la Fase II.

Análisis del Orden de Ocurrencia de Comportamientos

En principio, se observó la ocurrencia de los comportamientos nombrados en la Tabla 3, antes de la latencia del intento de cópula de cada una de las sesiones. Después, se obtuvo un porcentaje de las sesiones que cumplieron con este criterio (Figura 24). El porcentaje de sesiones en las cuales los comportamientos categorizados como no receptivos (apertura de alas, levantarse, huida, expansión de plumas y picoteo) ocurrieron primero fue superior en el caso del GC. Sin embargo, el comportamiento categorizado como receptivo (i.e., agacharse) también ocurrió en más ocasiones antes que el intento de cópula en el GC.
Figura 24. Porcentaje de sesiones en el que los comportamientos de no receptividad y el de receptividad ocurrieron antes de la latencia de intento de cópula, en las sesiones de la Fase II.

Correlación de Mediciones Fisiológicas y Comportamientos

Se realizó un análisis correlacional tanto de mediciones fisiológicas como de comportamientos (Tabla 6). Este análisis se hizo teniendo en cuenta los promedios totales de cada uno de los sujetos, no los promedios obtenidos de las sesiones. La selección de estas variables se hizo con base en un análisis previo. En general, se observaron algunas correlaciones significativas entre mediciones fisiológicas y comportamientos. Estas correlaciones se explican más detalladamente a continuación.

Ovoposición. Las tasas de ovoposición I y II correlacionaron positivamente \((r=.48; p<.05) \). La tasa de ovoposición II correlacionó positivamente con el porcentaje de fertilidad de la Fase II \((r=.51; p<.05) \). Por otro lado, la tasa de ovoposición III correlacionó negativamente con el porcentaje de fertilidad de la Fase III \((r=-.535; p<.05) \) y el de fertilidad total \((r=-.544; p<.05) \).
Fertilidad. El porcentaje de fertilidad durante la Fase II correlacionó positivamente con el porcentaje de fertilidad durante la Fase III ($r=.66; p<.05$), con el porcentaje de fertilidad total ($r=.77; p<.01$), con el promedio de intento de cópula ($r=.61; p<.01$) y con el promedio de latencia de levantarse ($r=.64; p<.01$). Por el contrario, el porcentaje de fertilidad de Fase II correlacionó negativamente con los promedios de latencia de agacharse ($r=-.57; p<.05$) y de intento de cópula ($r=-.50; p<.05$).

Intento de cópula. El promedio de intento de cópula correlacionó negativamente con los promedios de las latencias de agacharse ($r=-.73; p<.01$) y de intento de cópula ($r=-.87; p<.01$). Por el contrario, el promedio de intento de cópula correlacionó positivamente con los promedios de las latencias de los comportamientos de levantarse ($r=.63; p<.01$) y de huida ($r=.76; p<.01$). El promedio de la latencia de intento de cópula correlacionó negativamente con los promedios de las latencias de los comportamientos de levantarse ($r=-.66; p<.01$) y de huida ($r=-.73; p<.01$).

Agacharse. El promedio de la latencia del comportamiento de agacharse correlacionó positivamente con el promedio de la latencia de intento de cópula ($r=.78; p<.01$). Por el contrario, el promedio de la latencia de agacharse correlacionó negativamente con los promedios de las latencias de los comportamientos de levantarse ($r=-.82; p<.01$) y de huida ($r=-.67; p<.01$).

Finalmente, el promedio de la latencia de levantarse correlacionó positivamente el de la latencia de huida ($r=.67; p<.01$).
Tabla 6
Correlaciones de mediciones fisiológicas y de comportamientos seleccionadas

<table>
<thead>
<tr>
<th></th>
<th>Tasa de ovoposición I</th>
<th>Tasa de ovoposición II</th>
<th>% de fertilidad fase I</th>
<th>% de fertilidad fase II</th>
<th>% de fertilidad total</th>
<th>M de intento de cópula</th>
<th>M de Latencia de agacharse</th>
<th>M de Latencia de intento de cópula</th>
<th>M de Latencia de levantarse</th>
<th>M de Latencia de huida</th>
</tr>
</thead>
<tbody>
<tr>
<td>tasa de ovoposición I</td>
<td>(\rho) .488</td>
<td>.243</td>
<td>.336</td>
<td>.001</td>
<td>.065</td>
<td>.369</td>
<td>-.252</td>
<td>-.233</td>
<td>.038</td>
<td>.195</td>
</tr>
<tr>
<td>Sig.</td>
<td>(\sigma) .047</td>
<td>.347</td>
<td>.188</td>
<td>.998</td>
<td>.803</td>
<td>.145</td>
<td>.330</td>
<td>.368</td>
<td>.884</td>
<td>.454</td>
</tr>
<tr>
<td>tasa de ovoposición II</td>
<td>(\rho) -</td>
<td>-.357</td>
<td>.518</td>
<td>.158</td>
<td>.268</td>
<td>.205</td>
<td>-.075</td>
<td>-.139</td>
<td>.290</td>
<td>.260</td>
</tr>
<tr>
<td>Sig.</td>
<td>(\sigma) .159</td>
<td>.033</td>
<td>.545</td>
<td>.298</td>
<td>.430</td>
<td>.773</td>
<td>.595</td>
<td>.259</td>
<td>.313</td>
<td></td>
</tr>
<tr>
<td>tasa de ovoposición III</td>
<td>(\rho) -</td>
<td>-.319</td>
<td>-.535</td>
<td>-.544</td>
<td>.132</td>
<td>-.024</td>
<td>-.144</td>
<td>-.313</td>
<td>.217</td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td>(\sigma) .212</td>
<td>.027</td>
<td>.024</td>
<td>.612</td>
<td>.927</td>
<td>.580</td>
<td>.222</td>
<td>.404</td>
<td></td>
<td></td>
</tr>
<tr>
<td>porcentaje de fertilidad fase I</td>
<td>(\rho) -</td>
<td>(.666) **</td>
<td>.773</td>
<td>.611 **</td>
<td>.570</td>
<td>-.504</td>
<td>.643</td>
<td>.394</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td>(\sigma) .004</td>
<td>.009</td>
<td>.009</td>
<td>.017</td>
<td>.039</td>
<td>.005</td>
<td>.118</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>porcentaje de fertilidad fase II</td>
<td>(\rho) -</td>
<td>-.978</td>
<td>.310</td>
<td>-.236</td>
<td>-.157</td>
<td>.405</td>
<td>-.032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td>(\sigma) .000</td>
<td>.226</td>
<td>.541</td>
<td>.107</td>
<td>.902</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>porcentaje de fertilidad total</td>
<td>(\rho) -</td>
<td>-.387</td>
<td>-.319</td>
<td>-.249</td>
<td>.479</td>
<td>.044</td>
<td>.866</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td>(\sigma) .125</td>
<td>.212</td>
<td>.336</td>
<td>.052</td>
<td>.902</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M de intento de cópula</td>
<td>(\rho) -</td>
<td>-.732 **</td>
<td>-.872 **</td>
<td>.633 **</td>
<td>.761 **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td>(\sigma) .001</td>
<td>.000</td>
<td>.006</td>
<td>.000</td>
<td>.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M de Latencia de agacharse</td>
<td>(\rho) -</td>
<td>-.787 **</td>
<td>-.828 **</td>
<td>-.672 **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td>(\sigma) .000</td>
<td>.000</td>
<td>.003</td>
<td>.003</td>
<td>.006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M de Latencia de intento de cópula</td>
<td>(\rho) -</td>
<td>-.667 **</td>
<td>-.733 **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td>(\sigma) .003</td>
<td>.001</td>
<td>.001</td>
<td>.003</td>
<td>.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M de Latencia de levantarse</td>
<td>(\rho) -</td>
<td>-.676 **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td>(\sigma) .003</td>
<td>.003</td>
<td></td>
<td></td>
<td>.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* La correlación es significativa al nivel .05 (bilateral).

** La correlación es significativa al nivel .01 (bilateral).
Discusión

Esta investigación permitió evidenciar que la experiencia social temprana con coespecíficos maduros del sexo opuesto puede tener implicaciones en el comportamiento sexual de la hembra de codorniz japonesa adulta, así como también una incidencia en su fertilidad. En un primer lugar, la discusión se trata de hallazgos de fertilidad, de comportamientos receptivos y de comportamientos no receptivos. Después, se discuten los resultados de las mediciones de desarrollo y se presentan unas recomendaciones para futuras investigaciones. Al final, se ofrece una conclusión.

Fertilidad

La comparación de los porcentajes de fertilidad total entre grupos arrojó diferencias significativas (Figura 2); el GE tuvo un promedio mayor que el del GC. Vale la pena aclarar que la fertilidad total incluye la recolección de huevos durante 16 días; los primeros ocho días corresponden a la recolección durante las sesiones de exposición copulatoria, y los siguientes ocho corresponden a una muestra de huevos puestos cuando las hembras no tuvieron contacto con machos. A continuación se ofrece una descripción acerca de la fertilidad en la Fase II y más adelante se profundiza en la fertilidad en Fase III.

La comparación de la recolección de huevos durante los primeros ocho días exclusivamente no presentó diferencias estadísticamente significativas en el porcentaje de fertilidad, aunque el GE tuvo reiteradamente un porcentaje promedio superior al del GC (Figura 3). Por otro lado, como se pudo observar en la Figura 6, los promedios de intentos de cópula en todas las sesiones fueron superiores para el GE; no obstante, el GC también presentó múltiples intentos de cópulas por sesión.

En este caso, probablemente, como se ya que se ha encontrado en la literatura, tanto las cópulas forzadas como no forzadas tuvieron el mismo éxito de fertilización (Adkins-Regan,
1995). Aunque para poder corroborar que efectivamente las cópulas forzadas y no forzadas en este experimento fueron igualmente exitosas tendría que categorizarse el comportamiento de intento de cópula como forzado y no forzado, y tener condiciones de control específicas para tener certeza del porcentaje de fertilización de cada cópula.

Adicionalmente, Adkins-Regan (2015) reportó en una serie de experimentos que múltiples cópulas se relacionan con un mayor éxito en la fertilización y son necesarias para poder lograr fertilizar todo un clutch de huevos. Lo cual también podría estar relacionado en el presente experimento con la ausencia de diferencias significativas entre los porcentajes de fertilidad de la muestra de huevos durante las sesiones; esto es, debido a que los dos grupos tuvieron múltiples cópulas en las sesiones.

En cuanto a correlaciones, el porcentaje de fertilidad durante la Fase II correlacionó positiva y significativamente con la frecuencia promedio de intento de cópula y la latencia promedio de levantarse; a su vez, dicho porcentaje de fertilidad correlacionó negativamente y significativamente con las latencias promedio de agacharse y de intento de cópula (Tabla 6). Esto indica que los sujetos con mayores porcentajes de fertilidad (en Fase II), tuvieron más intentos de cópulas en promedio y tardaron más en presentar el comportamiento de levantarse. Además de exhibir altos porcentajes de fertilidad en Fase II, dichos sujetos se agacharon y tuvieron intentos de cópula más temprano en las sesiones. Tal como se observó en el presente experimento, el hecho de presentar latencias cortas para los comportamientos de agacharse y de intento de cópula, así como las frecuencias de cópula, pueden considerarse como un indicador de receptividad (Adkins-Regan, 1995; Noble, 1972) lo cual puede relacionarse con la fertilidad durante las sesiones de exposición copulatoria.

Es importante resaltar que la comparación de los porcentajes de fertilidad de la muestra de huevos de los ocho días posteriores a la exposición copulatoria sí mostró diferencias
significativas; de nuevo el GE tuvo un porcentaje de fertilidad superior al del GC. En relación con esto, vale la pena recordar que Sittmann y Abplanalp (1965) determinaron que al retirar un macho —después de la última cópula— pueden pasar hasta 11 días en los cuales las hembras de codorniz japonesa producen huevos fertilizados; dichos porcentajes de fertilidad decrécen con el paso de los días. El hecho de que en el presente experimento los porcentajes de fertilidad posteriores a la última cópula sean significativamente diferentes entre grupos sugiere que el GE logró fertilizar más huevos que el GC, a pesar del decremento esperado debido al paso del tiempo.

Como se comentó anteriormente, la manera en la cual las aves logran fertilizar huevos después de varios días sin la presencia de un macho consiste en que el esperma del macho es almacenado en los SSTs, los cuales tiene un desarrollo que es evidente desde los 28 días de edad y que es más acelerado entre los 40 y 42 días de edad en la codorniz japonesa (Holm & Ridderstråle, 2002); además, el desarrollo de estas estructuras en el oviducto está sujeto, en parte, a los niveles de esteroides relacionados con la maduración de las hembras (i.e., es el caso de pavos; Pescatore & Marquez, 1977). Con los resultados del presente experimento acerca de los porcentajes diferenciales de fertilidad después de varios días de haber copulado con un macho, queda abierta la posibilidad de indagar acerca del papel de la experiencia social temprana con coespecíficos adultos del sexo opuesto en la maduración de los SSTs, en almacenamiento de esperma y en la fertilización de huevos en la hembra de codorniz japonesa.

Comportamientos Asociados a Receptividad

Agacharse. El GE tuvo un promedio total estadísticamente superior de agacharse que el GC (Figura 5). Lo cual podría indicar que una experiencia social temprana con un macho maduro haya influido en la duración de este comportamiento en una fase de prueba copulatoria en la
adultez. Vale anotar que el comportamiento de agacharse facilita el contacto cloacal (Noble, 1972).

A su vez, la latencia promedio de agacharse del GE fue menor que la del GC (Apéndice D). Aunque esta comparación de latencias no arroja diferencias significativas, cabe recordar que el promedio de la latencia de agacharse de los sujetos sí correlacionó negativamente y significativamente con el promedio de frecuencias de intento de cópula (Tabla 6). Es decir, el comportamiento de agacharse más pronto en las sesiones es característico del GE; sumado a ello, una latencia corta de dicho comportamiento se relaciona con un mayor número de cópulas. Esto último va encaminado a relacionar los comportamientos de agacharse e intento de cópula como características de receptividad (Noble, 1972) y en este estudio asociados al GE.

Además, la latencia promedio del comportamiento de agacharse correlacionó positivamente y significativamente con la latencia promedio de intento de cópula; y esa misma latencia promedio de agacharse correlacionó negativamente y significativamente con las latencias promedio de levantarse y de huida (Tabla 6). Es decir, los sujetos que tendieron a agacharse más temprano también presentaron cópulas temprano, y estos mismos sujetos exhibieron comportamientos de levantarse y de huida más tarde. A su vez, el GE tuvo una latencia promedio menor de agacharse que el GC (Apéndice D).

Con respecto de los datos previamente expuestos, resulta paradójico que el GC haya tenido un porcentaje mayor de sesiones en las cuales el orden de los comportamientos indicó receptividad (i.e., primero agacharse y luego presentar un intento de cópula; Figura 24). Sin embargo, vale la pena resaltar que los porcentajes de las sesiones no fueron muy diferentes entre sí. Un aspecto que podría explicar esta observación probablemente se relacione con los promedios y las desviaciones estándar de las latencias de los comportamientos. Las desviaciones estándar son muy grandes para los dos grupos, y puede que eso esté relacionado con más sesiones
en las cuales el comportamiento de agacharse se haya presentado antes que el intento de cópula para el GC (a pesar de las latencias superiores).

Intento de Cópula. El GE tuvo un promedio significativamente mayor de frecuencias de intento de cópula que el GC (Figura 7). En esta misma vía, el promedio de la latencia de intento de cópula correlacionó negativamente con los de las latencias de los comportamientos de levantarse y de huida, lo cual indica que los sujetos que presentaron intento de cópula más temprano en las sesiones demoraron más en presentar los comportamientos de levantarse y de huida. Esto puede relacionarse con lo explicado previamente por Adkins-Regan (1995) respecto a que comportamientos como la huida de la hembra ante la primera aproximación del macho pueden estar relacionados con la fertilización; y en el caso del presente experimento la latencia de cópula se correlacionó negativamente y significativamente con el porcentaje de fertilización de la Fase II. Es decir, los sujetos que presentaron una menor latencia de cópula huyeron más tarde y también exhibieron tardíamente el comportamiento de levantarse, y presentaron a su vez mayores niveles de fertilidad durante la fase de prueba copulatoria. En relación con esto, cabe anotar que el GE tuvo una latencia promedio de intento de cópula menor que la del GC (Apéndice E).

Teniendo en cuenta las categorías usadas por Noble (1972), el agacharse y la ocurrencia de contactos cloacaales son comportamientos característicos de hembras receptivas, y la ocurrencia de dichos comportamientos puede ser tratada hormonalmente. Como se pudo observar en el presente experimento, los comportamientos de agacharse y de intentos de cópula estuvieron asociados a la receptividad, específicamente en el GE.

Por su parte, Adkins-Regan y MacKillop (2003) concluyeron que un mayor número de inseminaciones en hembras ocurrieron en cajas previamente condicionadas a la presentación de un macho que en hembras que no fueron condicionadas a la presentación de un macho en dicho contexto; además, dichas inseminaciones fertilizaron un porcentaje mayor de huevos.
Si bien en la presente investigación no se hizo un entrenamiento de condicionamiento contextual positivo y negativo a la caja experimental explícito, similar al de Adkins-Regan y MacKillop (2003), las hembras del GE en una edad temprana sí tuvieron la experiencia asociada a la presencia de un macho sexualmente maduro en la misma caja. No obstante, para poder comprobar que efectivamente ocurrió un condicionamiento contextual relacionado con el comportamiento de la hembra, deben incluirse condiciones en el diseño experimental que permitan explicar el papel del aprendizaje del contexto en una experiencia temprana y sus implicaciones en el comportamiento sexual en la adultez.

Comportamientos No Receptivos
A lo largo de las ocho sesiones de exposición copulatoria, el GC presentó promedios mayores que el GE de las frecuencias de huida, expansión de plumas, expulsión de espuma y apertura de alas; las comparaciones de estos dos últimos comportamientos fueron significativas. Por otro lado, las hembras del GE presentaron promedios de frecuencias superiores al GC en los comportamientos de levantarse y picoteo, aunque estas diferencias no fueron estadísticamente significativas. Cabe anotar que, aunque la frecuencia promedio de picoteo fue mayor en el GE (Figura 21), la latencia promedio de picoteo fue menor en el GC (Apéndice H).

Si se tienen en cuenta las categorías usadas por Adkins-Regan (1995) y Noble (1972), la huida de la hembra frente al macho es un comportamiento característico de no receptividad. Por ejemplo, una vez las hembras se encuentran en fotoperiodos que propician la regresión gonadal tienden a huir más del macho que hembras en tratamiento hormonal (Noble, 1972). Resulta paradójico que en el presente experimento, la latencia promedio de huida haya sido menor en el GE que en el GC (aunque sin diferencias significativas; Apéndice G). Sin embargo, el tipo de registro observacional de este experimento no se basó en la distancia entre los animales, a la cual permanecen desde el inicio y a lo largo del experimento. Es decir, pudo haber ocurrido que las
hembras que huyeron más pronto se encontraban más cerca del macho que las hembras que no estuvieron cerca al macho desde temprano.

En este sentido, cabe recordar que el porcentaje de sesiones en el cual ocurrieron comportamientos no receptivos (i.e., apertura de alas, levantarse, huida, expansión de plumas y picoteo; Figura 24) antes del intento de cópula fue mayor en el GC que en el GE.

Las latencias promedio de levantarse y de huida correlacionaron positiva y significativamente (Tabla 4), lo cual indica que los sujetos que presentaron temprano el comportamiento de huida también exhibieron el comportamiento de levantarse temprano en las sesiones. Y como se ha comentado, una huida temprana se asocia con no receptividad (Adkins-Regan, 1995). Esto indica que el comportamiento de levantarse pudo también estar asociado a ausencia de receptividad, así como el de huida (Noble, 1972).

Seguido a esto, las latencias promedio de picoteo y de expansión de plumas correlacionaron positiva y significativamente. Es probable que los sujetos que exhibieron una menor latencia en el picoteo tuvieran, a su vez, una menor latencia de expansión de plumas. Por otro lado, cabe la pena recordar que el GC tuvo una latencia promedio significativamente menor que la del GE (Figura 12).

En este estudio, no hubo diferencias significativas entre grupos a lo largo de las sesiones para los promedios de frecuencia (Figura 23) y latencia (Apéndice I) del comportamiento de expulsión de espuma. Sin embargo, la latencia promedio del GC fue menor que el del GE; por otro lado, la frecuencia promedio de expulsión de espuma GC fue superior que en el GE. Adkins-Regan (1995) determinó que la expulsión de espuma puede no llegar a disminuir el éxito en la fertilización; sin embargo, si la expulsión de espuma ocurre un minuto (o menos) después de haber sido inseminada sí predijo la fertilización. En este sentido, para poder dar cuenta del efecto de la expulsión de espuma en la fertilización se deben considerar aspectos como el garantizar una
inseminación (por medio de examinación) y determinar el tiempo transcurrido entre cópula y expulsión.

Desarrollo y Maduración

El peso del animal en el día de ovoposición inicial suele ser un indicador de la madurez de los animales. En el presente experimento dicho peso fue similar (aunque no igual) para los dos grupos y las distribuciones de estos pesos no tuvieron diferencias significativas (Apéndice A). Adicionalmente, a lo largo del experimento, como se observó en la Figura 13, la comparación del peso de los animales no mostró diferencias entre grupos. En esta misma vía, en este experimento el promedio y la mediana del peso del primer huevo para los dos grupos fueron iguales (Apéndice B). Estas semejanzas en los pesos eran de esperarse debido a que los animales mantuvieron condiciones idénticas de alimentación (Akinola et al., 2012) y además estaban emparentados (Alkan, Mendes, Karabag, & Balcioglu, 2011).

Por otro lado, en este experimento el día inicial promedio para la ovoposición fue distinto para los dos grupos, el GE inició la postura de huevos en promedio dos días antes que el GC (Apéndice C), aunque dichas diferencias no fueron estadísticamente significativas. No obstante, es importante anotar que las hembras del GE tuvieron una experiencia social temprana con un macho maduro y el día inicial promedio de ovoposición fue más temprano que el del GC.

En investigaciones anteriores se sugiere que diferencias en el desarrollo de estructuras reproductivas pueden estar relacionadas con una maduración acelerada vinculada a la experiencia auditiva con un coespecífico maduro del sexo opuesto (Guyomarc'h et al., 1984). En el presente experimento hubo diferencias (aunque no significativas) entre las tasas de ovoposición de los grupos. No obstante, se requiere de nuevos estudios y mediciones fisiológicas directas (e.g., peso del oviducto; Guyomarc'h et al., 1984) para comprobar si en hembras jóvenes la presencia de un
macho adulto tiene incidencia en la madurez sexual y, más específicamente, en la tasa de ovoposición.

A la hora de tener en cuenta la tasa de ovoposición se observó que entre los días 41 y 60 el GE tuvo en promedio un mayor porcentaje que el GC (Figura 15). A lo largo del experimento, la tasa aumentó para los dos grupos, aunque el promedio de la tasa de postura entre los días 61 y 68 para el GE fue 90% y para el GC fue 85.7%. Finalmente, la tasa promedio de postura entre los días 69 y 76 para el GE fue 93% y para el GC fue 95%; aunque estas diferencias no son significativas entre grupos. En otras palabras, el GE comenzó y mantuvo un promedio de tasa de ovoposición superior que el del GC entre los días 41 y 68; pero, entre los días 69 y 76, el GC superó el promedio de la tasa de ovoposición del GE. No obstante, ninguna de estas diferencias fue significativa entre grupos. Probablemente, el hecho de que el GC —una vez en estado de madurez— haya superado la tasa de ovoposición del GE después de la fase copulatoria puede sugerir que este cambio está asociado a la exposición a un macho maduro (por primera vez en la adultez) y la ovulación. Tal y como lo evidenció Matthews (1939) en hembras de paloma, la ovulación está asociada particularmente a la estimulación visual de coespecíficos del mismo sexo o del sexo opuesto.

Es importante recordar que, aunque en este experimento las tasas de ovoposición entre grupos son diferentes, dichas diferencias no son significativas y no se pueden atribuir exclusivamente a la experiencia social temprana o a la experiencia copulatoria en la adultez. En este sentido, para poder comprobar que tanto la experiencia social temprana como la experiencia copulatoria tienen incidencia en la tasa de ovoposición en las hembras se sugiere realizar mediciones directas de la ovulación y controlar el aumento en la tasa de ovoposición asociado al desarrollo.
Recomendaciones para Futuras Investigaciones

A continuación se ofrecen algunas recomendaciones para tener en cuenta en futuros estudios para explorar el comportamiento sexual influenciado por la experiencia temprana en hembras.

En cuanto a variables fisiológicas, se recomienda hacer mediciones directas o indirectas de los niveles hormonales en la hembra; por ejemplo, la medición de la apertura cloacal (Barragán & Gutiérrez, 2007). Sin embargo, si las hembras están en fase de prueba copulatoria, dicha medición debería procurar no inducir la expulsión de espuma debido a la manipulación.

Por otro lado, como se comentó antes respecto al desarrollo, las mediciones de la madurez de los SSTs, ovulación y tasa de ovoposición, en relación con la experiencia social temprana deberían realizarse a lo largo de la ontogenia. Lo anterior serían útil si se quiere corroborar que la convivencia con un macho adulto puede tener implicaciones en la madurez sexual de la hembra, y que esto está mediado por el aumento de secreciones hormonales (en una edad temprana; e.g. Pescatore & Marquez, 1977). Para lograr esto, como lo describieron Holm y Ridderstråle (2002), se debe prestar atención al desarrollo de los SSTs en la región de la unión útero-vaginal a partir del día 28 y hasta el día 49 de edad. Además, se sugiere explorar si el almacenamiento de espuma puede estar relacionado con la fertilización después de varios días pos cópula y si esto, a su vez, tiene que ver con la experiencia social temprana.

Como se ha comentado anteriormente, cópulas forzadas y no forzadas tiene un éxito de fertilidad semejante (Adkins-Regan, 1995). Sin embargo, para próximas investigaciones se sugiere establecer una discriminación entre cópulas y cópulas forzadas, en hembras con experiencia social temprana como en hembras que no tuvieron dicha experiencia.

Por otro lado, el comportamiento de levantarse, se refiere a que la hembra se encuentra en una locomoción constante (e.g., girar) durante la monta (locomoted constantly while mounted;
Adkins-Regan, 1975); y en este sentido, puede que una medida más precisa sea en términos de duración y no de frecuencia.

El comportamiento de huida por más de cuatro segundos (o long avoidance; Noble, 1972) no se pudo medir exactamente en este experimento debido a las dimensiones del instrumento. Probablemente, si se quiere estudiar la receptividad de la manera en la que se reporta en la literatura (Noble, 1972) puede ser indispensable contar un espacio más amplio para dicha observación.

Por otro lado, la expulsión de espuma no se controló fuera de las sesiones y en los análisis no se tuvo en cuenta el tiempo transcurrido entre cópula y expulsión de espuma, lo cual resulta relevante a la hora de evaluar receptividad y fertilidad en investigaciones anteriores (Adkins-Regan, 1995).

Se sugiere describir el comportamiento del macho, es decir, discriminar topográficamente el agarre, monta y contacto cloacal. En este estudio se tuvieron en cuenta solamente los intentos de cópula (ver sección Método para descripción). Sería ideal tener proporciones de agarres, montas y contactos (DelVille at al., 1986) teniendo en cuenta que las hembras pueden interrumpir alguno de estos comportamientos y una alta eficacia copulatoria se podría ver reflejada en menos interrupciones. Por otro lado, sería de utilidad el corroborar los contactos cloacales dependiendo de si hubo o no inseminaciones, para lo cual se requiere de una examinación pos intento de cópula.

En cuanto al diseño experimental, puede que al variarse la duración y las características de la experiencia social temprana con coespecíficos maduros (e.g., visual, auditiva o de contacto) se logren evidenciar diferencias estadísticamente significativas en relación con variables fisiológicas del desarrollo; por ejemplo, en el peso del oviducto (Guyomarc'h et al., 1984) u ovulación (Erickson, 1970).
Adicionalmente, Mace et al. (1997) evidenciaron que es posible que codornices japonesas de tan solo 12 días de edad puedan condicionarse a una preferencia por un lugar que les ofrece comida normal con tan solo un ensayo de entrenamiento. En esta misma vía, Adkins-Regan y MacKillop (2003) observaron el efecto del condicionamiento contextual positivo y negativo en hembras adultas y sus efectos en el número de inseminaciones en cajas EC+ y en el porcentaje de huevos fertilizados asociados. En relación con lo anterior, también Gutiérrez y Domjan (1997) observaron que presentaciones pareadas de un estímulo condicionado y la oportunidad de cópula aumentaron la duración del comportamiento de agacharse en las hembras adultas.

Por esta razón, para próximas investigaciones que vinculen la experiencia social temprana se sugiere que se considere un diseño experimental que vincule un condicionamiento contextual o un estímulo condicionado pareado con la presentación de un macho adulto.

Conclusión

En la presente investigación se pudo evidenciar que comportamientos asociados a receptividad (i.e., agacharse e intentos de cópulas) fueron exhibidos en mayor proporción por el grupo de hembras que tuvo una experiencia social temprana con un macho maduro sexualmente que en el grupo que no tuvo. Por el contrario, la presentación de comportamientos característicos de no receptividad (e.g., expansión de plumas) fueron predominantes en el grupo que no tuvo experiencia social temprana con un coespecífico maduro.

Por otro lado, los promedios de los porcentajes de fertilidad total fueron superiores para el grupo que tuvo la experiencia social temprana. A su vez, dicho grupo logró fertilizar un porcentaje de huevos significativamente mayor una vez finalizaron las exposiciones copulatorias.

Las tasas de ovoposición iniciales fueron mayores para el caso del grupo que tuvo la experiencia temprana con el macho maduro, aunque las diferencias no fueron estadísticamente significativas.
Finalmente, la presente investigación logró evidenciar que la experiencia social temprana con coespecíficos maduros del sexo opuesto puede tener implicaciones en el comportamiento de receptividad sexual de la hembra de codorniz japonesa adulta, así como una incidencia en los porcentajes de fertilidad.
Referencias

Ernst, R. A. (1978). Raising and propagating Japanese quail. Division of Agricultural Sciences, University of California,

Apéndices

Apéndice A

Tabla del promedio de peso del día de postura inicial

<table>
<thead>
<tr>
<th>Grupo</th>
<th>X</th>
<th>DE</th>
<th>Mdn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>147.9</td>
<td>10.3</td>
<td>144.7</td>
</tr>
<tr>
<td>Control</td>
<td>147.5</td>
<td>10.7</td>
<td>149.4</td>
</tr>
</tbody>
</table>

Nota: No hubo diferencias significativas entre las distribuciones de peso de huevos ($t=.079; p>.05$)
Tabla del promedio de peso del primer huevo puesto

<table>
<thead>
<tr>
<th>Grupo</th>
<th>X</th>
<th>DE</th>
<th>Mdn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>7.9</td>
<td>0.84</td>
<td>7.7</td>
</tr>
<tr>
<td>Control</td>
<td>7.9</td>
<td>0.70</td>
<td>7.7</td>
</tr>
</tbody>
</table>

Nota: No hubo diferencias significativas entre las distribuciones de peso de huevos ($t=0.91$; $p>0.05$)
Apéndice C

Tabla del día promedio de la primera postura

<table>
<thead>
<tr>
<th>Grupo</th>
<th>X</th>
<th>DE</th>
<th>Mdn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>43.3</td>
<td>2.1</td>
<td>44</td>
</tr>
<tr>
<td>Control</td>
<td>45.3</td>
<td>2.6</td>
<td>45</td>
</tr>
</tbody>
</table>

Nota: No hubo diferencias significativas entre las distribuciones de peso de huevos ($t=-1.708; p>.05$)
Apéndice D

Tabla de promedio de la latencia de agacharse a lo largo de las sesiones

<table>
<thead>
<tr>
<th>Grupo</th>
<th>X</th>
<th>DE</th>
<th>Mdn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>281.1</td>
<td>243.3</td>
<td>207.5</td>
</tr>
<tr>
<td>Control</td>
<td>505.1</td>
<td>303.3</td>
<td>516.3</td>
</tr>
</tbody>
</table>

Nota: No hubo diferencias significativas entre grupos ($t=-1.629; p>.05$)
Apéndice E

Tabla del promedio de la latencia de intento de cópula a lo largo de las sesiones

<table>
<thead>
<tr>
<th>Grupo</th>
<th>X</th>
<th>DE</th>
<th>Mdn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>187.1</td>
<td>146.8</td>
<td>178.8</td>
</tr>
<tr>
<td>Control</td>
<td>344.1</td>
<td>207.2</td>
<td>381</td>
</tr>
</tbody>
</table>

No hubo diferencias significativas entre grupos ($t=-1.748; \ p>.05$)
Apéndice F

Tabla del promedio de la latencia de Levantarse a lo largo de las sesiones

<table>
<thead>
<tr>
<th>Grupo</th>
<th>X</th>
<th>DE</th>
<th>Mdn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>166.5</td>
<td>183.6</td>
<td>66.1</td>
</tr>
<tr>
<td>Control</td>
<td>129.2</td>
<td>101.4</td>
<td>111.1</td>
</tr>
</tbody>
</table>

No hubo diferencias significativas entre grupos ($t=0.504; p>.05$)
Tabla del promedio de la latencia de huida a lo largo de las sesiones

<table>
<thead>
<tr>
<th>Grupo</th>
<th>X</th>
<th>DE</th>
<th>Mdn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>511.1</td>
<td>213.3</td>
<td>564.2</td>
</tr>
<tr>
<td>Control</td>
<td>612.3</td>
<td>347.1</td>
<td>730.9</td>
</tr>
</tbody>
</table>

No hubo diferencias significativas entre grupos ($t=-0.702; p>.05$)
Apéndice H

Tabla del promedio de la latencia de Picoteo al Macho a lo largo de las sesiones

<table>
<thead>
<tr>
<th>Grupo</th>
<th>X</th>
<th>DE</th>
<th>Mdn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>1150.6</td>
<td>127.1</td>
<td>1173.8</td>
</tr>
<tr>
<td>Control</td>
<td>1021.4</td>
<td>218.4</td>
<td>1080.8</td>
</tr>
</tbody>
</table>

No hubo diferencias significativas entre grupos (t=1.446; p>.05)
Tabla del promedio de la latencia de Expulsión de Espuma a lo largo de las sesiones

<table>
<thead>
<tr>
<th>Grupo</th>
<th>(X)</th>
<th>(D\varepsilon)</th>
<th>(Mdn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>1268.6</td>
<td>158.4</td>
<td>1271.6</td>
</tr>
<tr>
<td>Control</td>
<td>1149.6</td>
<td>121.8</td>
<td>1137</td>
</tr>
</tbody>
</table>

No hubo diferencias significativas entre grupos \((t=1.683; p>.05)\)
Apéndice J

Tabla del promedio de la latencia de apertura de alas a lo largo de las sesiones

<table>
<thead>
<tr>
<th>Grupo</th>
<th>X</th>
<th>DE</th>
<th>Mdn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>1606.1</td>
<td>200.1</td>
<td>1622.9</td>
</tr>
<tr>
<td>Control</td>
<td>1477.9</td>
<td>381.3</td>
<td>1525</td>
</tr>
</tbody>
</table>

No hubo diferencias significativas entre grupos ($t=0.842; p>0.05$)