EFECTOS DEL CONSUMO DE SUPLEMENTOS PROTEICOS Y DE CARBOHIDRATOS EN FISICOCULTURISTAS Y/O DEPORTISTAS DE FUERZA

LEONARDO HERNÁNDEZ CÁRdenas

Universidad Nacional de Colombia
Facultad de ciencias agrarias, Cundinamarca
Bogotá D.C., Colombia
2019
EFECTOS DEL CONSUMO DE SUPLEMENTOS PROTEICOS Y DE CARBOHIDRATOS EN FISICOCULTURISTAS Y/O DEPORTISTAS DE FUERZA

LEONARDO HERNÁNDEZ CÁRDENAS

Trabajo final de profundización presentado como requisito parcial para optar al título de:
Magister en ciencia y tecnología de los alimentos

Director:
NESTOR ALGECIRA ENCISO

Universidad Nacional de Colombia
Facultad de ciencias agrarias, Cundinamarca
Bogotá D.C., Colombia
2019
Tabla de contenido

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planteamiento del problema</td>
<td>8</td>
</tr>
<tr>
<td>Objetivos</td>
<td>9</td>
</tr>
<tr>
<td>Objetivo General</td>
<td>9</td>
</tr>
<tr>
<td>Objetivos Específicos</td>
<td>9</td>
</tr>
<tr>
<td>Introducción</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Lista de figuras, gráficos y diagramas de flujo</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Lista de tablas</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Lista de símbolos y abreviaturas</td>
<td>6</td>
</tr>
<tr>
<td>Definiciones básicas</td>
<td>7</td>
</tr>
<tr>
<td>1.1 Suplemento</td>
<td>7</td>
</tr>
<tr>
<td>1.2 Proteína</td>
<td>7</td>
</tr>
<tr>
<td>1.2.1 Función de la proteína en el cuerpo humano</td>
<td>9</td>
</tr>
<tr>
<td>1.3 Carbohidratos</td>
<td>10</td>
</tr>
<tr>
<td>1.3.1 Función de los carbohidratos en el ser humano</td>
<td>11</td>
</tr>
<tr>
<td>1.4 Biodisponibilidad de la proteína</td>
<td>11</td>
</tr>
<tr>
<td>1.5 Biodisponibilidad carbohidratos</td>
<td>13</td>
</tr>
<tr>
<td>MÚSCULO, EJERCICIO Y DIETA</td>
<td>15</td>
</tr>
<tr>
<td>2.1 Músculo esquelético</td>
<td>15</td>
</tr>
<tr>
<td>2.2 Glucógeno</td>
<td>17</td>
</tr>
<tr>
<td>2.3 Efecto del ejercicio en el músculo</td>
<td>20</td>
</tr>
<tr>
<td>2.4 Efecto de la testosterona y hormona de crecimiento en musculo</td>
<td>21</td>
</tr>
<tr>
<td>2.5 Dieta de fisicoculturistas y deportistas de fuerza</td>
<td>23</td>
</tr>
<tr>
<td>2.5.1 Energía</td>
<td>23</td>
</tr>
<tr>
<td>2.5.2 Carbohidratos</td>
<td>24</td>
</tr>
<tr>
<td>2.5.3 Proteína</td>
<td>26</td>
</tr>
<tr>
<td>2.5.4 Lípidos</td>
<td>27</td>
</tr>
<tr>
<td>2.5.5 Agua y electrolitos</td>
<td>27</td>
</tr>
<tr>
<td>2.5.6 Micronutrientes</td>
<td>28</td>
</tr>
<tr>
<td>SUPLEMENTO</td>
<td>31</td>
</tr>
<tr>
<td>3.1 Descripción suplementos y consumo máximo de micronutrientes</td>
<td>31</td>
</tr>
<tr>
<td>3.2 PROTEÍNA EN LOS SUPLEMENTOS DEPORTIVOS</td>
<td>46</td>
</tr>
</tbody>
</table>
3.3 Suero de leche .. 49
 3.3.1 Ultrafiltración .. 50
 3.3.2 Secado por aspersión ... 52
 3.3.3 Suero de leche concentrado .. 52
 3.3.4 Suero de leche aislado ... 53
 3.3.5 Suero de leche hidrolizado .. 53
3.4 Carbohidratos en los suplementos deportivos .. 53
 3.4.1 Glucosa - dextrosa .. 53
 3.4.2 Fructosa ... 54
 3.4.3 Maltodextrina ... 54
 3.4.4 Isomaltosa ... 55
 3.4.5 Isomaltulosa .. 56

4 EFECTOS DEL CONSUMO DE SUPLEMENTOS PROTEICOS Y/O CARBOHIDRATOS EN FISICOCULTURISTAS Y/O DEPORTISTAS DE FUERZA 57
4.1 Efecto del consumo de suplementos .. 57
4.2 Suplementos de proteína en deportistas ... 59
 4.2.1 Aminoácidos de cadena ramificada (BCAA) .. 64
 4.2.2 Leucina ... 66
 4.2.3 Mammalian target of rapamycin (mTOR), p70S6k1 y 4E-BP1 68
 4.2.4 L-carnitina ... 69
 4.2.5 L-glutamina .. 71
 4.2.6 Monohidrato de creatina .. 72
 4.2.7 Colágeno ... 75
 4.2.8 Picolinato de cromo .. 75
 4.2.9 HMB (β-hidroximetilburitarato de calcio) ... 77
4.3 Suplementos de carbohidratos en deportistas ... 78
 4.3.1 AAKG(L-arginina – α-cetoglutarato) ... 88
 4.3.2 Cafeína .. 89
4.4 Suplementos de carbohidrato-proteína en deportistas .. 90
4.5 Efectos negativos del consumo de proteína y/o carbohidratos 93
 4.5.1 Proteína ... 93
 4.5.2 Carbohidrato .. 96
 4.5.3 Excesos vitaminas A, niacina y zinc ... 99
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Tema</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Recomendación para formulación de suplementos y mejor estimulo del mTOR</td>
<td>101</td>
</tr>
<tr>
<td>5.1</td>
<td>Formulación de suplementos según el momento de consumo y nivel de actividad física</td>
<td>101</td>
</tr>
<tr>
<td>5.2</td>
<td>Como estimular el mTOR para un aumento en la síntesis proteica</td>
<td>103</td>
</tr>
<tr>
<td>6</td>
<td>Conclusiones</td>
<td>105</td>
</tr>
<tr>
<td>7</td>
<td>Bibliografía</td>
<td>109</td>
</tr>
</tbody>
</table>
Resumen

El consumo de suplementos de proteína y/o carbohidratos en los físicoculturistas y deportistas de fuerza, se ha popularizado durante el tiempo. Producendo que investigadores estudien sus efectos en el desempeño físico, composición corporal y posibles efectos perjudiciales. En estos estudios se ha encontrado efectos positivos en la suplementación de proteína y/o carbohidratos, como mejorar el desempeño físico, composición corporal, recuperación después del ejercicio y adaptación al ejercicio. Además, estos suplementos vienen con adiciones de compuestos que, según sus distribuidores, mejoran la condición física y corporal. Siendo algunos realmente efectivos y otros no.

Los suplementos son una gran industria, en donde se cree que para el año 2013 se gastaron US$ 12.000 millones en estos suplementos, esto ha generado que el mercado se expanda, en el número de empresas y productos que ofrece cada una.

Entre las adiciones se encuentra creatina, carnitina, colágeno, HMB, glutamina, picolinato de cromo, AKG, glutamina y cafeína. De estos compuestos, el picolinato de cromo no tiene pruebas concluyentes sobre algún efecto benéfico. Con relación al AKG, este no presenta ningún beneficio. El resto de las adiciones en los suplementos si tienen algún efecto de mejoramiento en el deportista.

En cuanto a los efectos perjudiciales para la salud, estos ocurren principalmente cuando hay un sobre consumo de estos alimentos o cuando estos alimentos vienen con cantidades mayores de macro y/o micronutrientes a las recomendadas. Generando enfermedades y por ende disminución en el desempeño de los deportistas.

Palabras clave: Suplemento, proteína, carbohidrato, deportista, físicoculturista.
Abstract

The consumption of protein and/or carbohydrate supplements in bodybuilders and strength athletes has become popular over time. Producing researchers to study its effects on physical performance, body composition and possible harmful effects. In these studies, positive effects on protein and/or carbohydrate supplementation have been found, such as improving physical performance, body composition, recovery after exercise and adaptation to exercise. In addition, these supplements come with additions of compounds that, according to their distributors, improve physical and body condition. Being some really effective and others not.

The supplements are a large industry, where it is believed that by 2013, US $ 12,000 million was spent on these supplements, this has generated that the market expanded, in the number of companies and products offered by each.

Among the additions are creatine, carnitine, collagen, HMB, glutamine, chromium picolinate, AKG, glutamine and caffeine. Of these compounds, chromium picolinate has no conclusive evidence of any beneficial effect. In relation to the AKG, this does not present any benefits. The rest of the additions in the supplements if they have any effect of improvement in the athlete.

As for the harmful effects on health, these occur mainly when there is an over consumption of these foods or when these foods come with greater amounts of macro and / or micronutrients to the recommendations. Generating diseases and therefore decrease in the performance of athletes.

Keywords: Supplement, protein, carbohydrate, athlete, bodybuilder.
Planteamiento del problema

Para lograr una mejor alimentación de los fisicoculturistas y/o deportistas de fuerza, se han venido creando suplementos especializados o alimentos enriquecidos. Variando los suplementos desde bebidas energéticas, BCAAS (Aminoácidos ramificados), módulos proteicos y creatinas (Maughan, Depiesse, & Geyer, 2007), siendo principalmente ofrecidos como módulos en polvo. Los módulos de proteína son los más consumidos entre deportistas (Knapik et al., 2016).

Los deportistas amateurs o profesionales que se dedican al fisicoculturismo y/o deportes de fuerza, tienen mayores requerimientos de nutrientes, por su mayor peso metabólico y actividad física. Por esta razón se viene popularizando el consumo de suplementos, para un mejor desempeño.

Los diferentes suplementos que se encuentran en el mercado tienen diferentes propósitos, según sus fabricantes. Como son la recuperación física, mejor desempeño físico, disminución del tejido adiposo y aumento de masa muscular.

Los fisicoculturistas y/o deportistas de fuerza deben consumir alimento inmediatamente acaba la sesión de entrenamiento, para una recuperación más rápida (Aragon & Schoenfeld, 2013). Requiere alimentos con alto contenido de macronutrientes como proteína y carbohidratos. Por ende, los suplementos son una opción viable a esta situación.

Aunque en el mercado actual de suplementos, estos contienen más macronutrientes de los recomendados por dosis, además de que estos recomiendan su consumo varias veces al día. Producien un sobre consumo de proteína y carbohidratos para los deportistas y generando esto posibles efectos secundarios que deterioran la salud del deportista.

Por ende, se describirá el suplemento recomendado para el consumo antes, durante y después del ejercicio, además del que se debe consumir entre comidas. Permitiendo un buen desarrollo de masa muscular, con una mejora del rendimiento físico, y que a su vez no produzca efectos secundarios indeseados.

Por consiguiente, en esta monografía se recopila informacion sobre los suplementos proteína y carbohidratos, describiendo sus beneficios en deportistas y sus posibles efectos negativos. Además de los compuestos adicionados que traen algunos de estos productos.
Objetivos

Objetivo General
Describir los efectos de los suplementos de proteína y/o carbohidratos en los fisicoculturistas y/o deportistas de fuerza.

Objetivos Específicos
- Conocer los efectos positivos del uso de suplementos proteicos y/o carbohidratos en fisicoculturistas o deportistas de fuerza.
- Conocer los efectos negativos del uso de suplementos proteicos y/o carbohidratos en fisicoculturistas o deportistas de fuerza.
Introducción

La nutrición por parte de los fisicoculturistas y/o deportistas de fuerza se caracteriza por tener un mayor contenido de proteínas y carbohidratos. Por ende se diferencian la dieta de los fisicoculturistas y/o deportistas de fuerza con otros deportistas, adultos mayores, jóvenes, mujeres embarazadas, niños, etc. (Ministerio de la Salud y Protección Social, 2016). Para lograr satisfacer estos requerimientos, muchos deportistas consumen suplementos.

Este auge en el consumo de suplementos es debido a que contienen una mayor concentración de nutrientes, que a su vez son de mejor biodisponibilidad. Algunas bondades son el aumento del rendimiento físico, una mayor hipertrofia muscular y una recuperación más rápida (Moore, Camera, Areta, & Hawley, 2014).

Además, el consumo de suplementos se ha venido normalizando entre los deportistas por producir una mejor adaptación a entrenamientos de resistencia y/o fuerza (Moore et al., 2014). Además de que estos ayudan al aumento en tamaño y fuerza de los músculos (Churchward-Venne, Burd, & Phillips, 2012). Siendo el principal objetivo en fisicoculturistas un aumento en el tamaño del músculo, y en los deportistas de fuerza un aumento en la fuerza que pueden ejercer.

Para esto se ha descrito el efecto anabólico que produce en el cuerpo los suplementos proteicos, debido principalmente a los BCAAs (aminoácidos de cadena ramificada), siendo el principal la leucina (Cermak, Res, Groot, Saris, & Loon, 2012; Cribb, 2008; Di Camillo, Eduati, Nair, Avogaro, & Toffolo, 2014; Hemant H Gangurde, Mayur A Chordiya, Pooja S Patil, 2017; Hida et al., 2012; Yang et al., 2012). Este aminoácido estimula la transcripción del ARNm mediante el mTOR (Mammalian Target of Rapamycin) y este a su vez induce p70S6k1 y 4E-BP1, produciendo el mayor efecto anabólico (Churchward-Venne et al., 2012; Phillips, Tang, & Moore, 2009; Rowlands et al., 2014; G. Wu, 2016a; Yang et al., 2012). Para esto se describen las cantidades de proteína para el nivel de entrenamiento, el momento de consumo, el consumo de leucina recomendado por porción y como se aumenta el efecto anabólico por el ejercicio.

2 Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

En cuanto a los efectos negativos, se discute los posibles efectos del consumo de suplementos de proteína y/o carbohidratos. Como son trastornos gastrointestinales, hiperaminoacidemia, hiperamonemia, hiperinsulinemia, deshidratación, irritación, náuseas, diarrea, lesiones hepáticas y renales, fatiga, dolor de cabeza, convulsiones, aumento en riesgo de enfermedades cardiovasculares y la muerte (G. Wu, 2016a), esto cuando la ingesta de proteína es mayor a los requerimientos.

En cuanto al excesivo consumo de carbohidratos esta la obesidad, hiperinsulinemia y la diabetes tipo 2 (Evert et al., 2013; Feinman et al., 2015). Todo esto se describe según las dosis que recomiendan las etiquetas de los suplementos.

En algunos casos, algunos suplementos contienen más de los requerimientos necesarios de micronutrientes, como son las vitaminas y minerales. Conllevando a problemas de salud por su sobre consumo.

Para lograr lo anteriormente descrito, se describió de manera breve algunos términos, después se describió el efecto del ejercicio en el musculo, posteriormente el contenido nutricional de los suplementos, después el efecto del consumo de suplementos deportivos en deportistas y finalmente el efecto negativo de los suplementos.
1.1 Lista de figuras, gráficos y diagramas de flujo

<table>
<thead>
<tr>
<th>Figura</th>
<th>Descripción</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aminoácido.</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Carbohidrato.</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Músculo.</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>Representación de la ultrafiltración del suero de leche.</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>Glucosa.</td>
<td>54</td>
</tr>
<tr>
<td>6</td>
<td>Fructosa.</td>
<td>54</td>
</tr>
<tr>
<td>7</td>
<td>Maltodextrina.</td>
<td>55</td>
</tr>
<tr>
<td>8</td>
<td>Isomaltosa.</td>
<td>55</td>
</tr>
<tr>
<td>9</td>
<td>Isomaltulosa.</td>
<td>56</td>
</tr>
<tr>
<td>10</td>
<td>Funcionamiento básico del mTOR.</td>
<td>69</td>
</tr>
<tr>
<td>11</td>
<td>Dosis recomendada de suplemento antes, durante y después del ejercicio.</td>
<td>102</td>
</tr>
<tr>
<td>12</td>
<td>Esquema de la estimulación de mTOR por ejercicio, proteína, carbohidratos,</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>insulina, testosterona y hormona de crecimiento.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Producción de CO2, por oxidación de aminoácidos.</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Sólidos y contenido de proteína en leche.</td>
<td>49</td>
</tr>
<tr>
<td>3</td>
<td>Nivel síntesis de proteína según el estímulo.</td>
<td>59</td>
</tr>
<tr>
<td>4</td>
<td>Ganancia de masa muscular según la fuente de proteína.</td>
<td>63</td>
</tr>
<tr>
<td>5</td>
<td>Síntesis de glucógeno en el músculo, cuando se compara el consumo de</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>carbohidratos vs carbohidratos y proteína.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Efecto de la intensidad y duración del ejercicio (no mayor a 30 minutos),</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>en el uso de sustratos metabólicos.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Efecto de la intensidad y duración del ejercicio (90-120 minutos), en el</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>uso de sustratos metabólicos.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Síntesis de glucógeno.</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>Paso de glucógeno a glucosa.</td>
<td>19</td>
</tr>
</tbody>
</table>
1.2 Lista de tablas

<table>
<thead>
<tr>
<th>Tabla</th>
<th>Título</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aminoácidos esenciales y no esenciales</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Aminoácidos glucogénicos y cetogénicos</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Energía requerida para la actividad física</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>Requerimientos energía adulto</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>Consumo carbohidratos para actividad física moderada y alta</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>Requerimientos diarios de proteína según el nivel de actividad física (ISSN)</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>Pautas sobre el reemplazo de agua y electrolitos en la actividad física (ACSM)</td>
<td>28</td>
</tr>
<tr>
<td>8</td>
<td>Nivel de ingesta máximo tolerable (UL) e requerimiento promedio estimado (EAR) de vitaminas y minerales en hombres y mujeres de 19-50 años</td>
<td>31</td>
</tr>
<tr>
<td>9</td>
<td>Descripción de algunos suplementos de proteína que se encuentran en el mercado colombiano e internacional</td>
<td>32</td>
</tr>
<tr>
<td>10</td>
<td>Descripción de algunos suplementos de carbohidratos que se encuentran en el mercado colombiano e internacional</td>
<td>38</td>
</tr>
<tr>
<td>11</td>
<td>Descripción de algunos suplementos de proteína + carbohidratos que se encuentran en el mercado colombiano e internacional</td>
<td>41</td>
</tr>
<tr>
<td>12</td>
<td>Comparación de la calidad proteica de diferentes proteínas alimentarias determinadas por distintos métodos</td>
<td>47</td>
</tr>
<tr>
<td>13</td>
<td>Composición aminoácidos esenciales de diferentes fuentes de proteína y cuerpo humano, con análisis PDCAAS Y UNP para las diferentes fuentes</td>
<td>48</td>
</tr>
<tr>
<td>14</td>
<td>Contenido nutrientes suero de leche</td>
<td>50</td>
</tr>
<tr>
<td>15</td>
<td>Composición estimada de distintos aislados proteicos y suero de leche</td>
<td>51</td>
</tr>
<tr>
<td>16</td>
<td>Filtración del suero de leche por membrana</td>
<td>51</td>
</tr>
<tr>
<td>17</td>
<td>Requisitos de aminoácidos no esenciales en humanos según edad y actividad física</td>
<td>60</td>
</tr>
<tr>
<td>18</td>
<td>Estudios sobre los efectos del consumo de proteína</td>
<td>61</td>
</tr>
<tr>
<td>19</td>
<td>Estudios sobre los efectos del consumo de BCAAs</td>
<td>65</td>
</tr>
<tr>
<td>20</td>
<td>Estudios sobre los efectos del consumo de leucina</td>
<td>67</td>
</tr>
<tr>
<td>21</td>
<td>Estudios sobre los efectos del consumo de L-carnitina</td>
<td>70</td>
</tr>
<tr>
<td>22</td>
<td>Estudios sobre los efectos del consumo de L-glutamina</td>
<td>71</td>
</tr>
<tr>
<td>23</td>
<td>Estudios sobre los efectos del consumo de creatina</td>
<td>74</td>
</tr>
<tr>
<td>24</td>
<td>Estudio sobre los efectos del consumo de colágeno</td>
<td>75</td>
</tr>
<tr>
<td>25</td>
<td>Estudios sobre los efectos del consumo de picolinato de cromo</td>
<td>76</td>
</tr>
<tr>
<td>26</td>
<td>Estudios sobre los efectos del consumo de HMB</td>
<td>77</td>
</tr>
<tr>
<td>27</td>
<td>Tasas de oxidación de carbohidratos exógenos para varias mezclas de carbohidratos, durante ejercicio de intensidad moderada</td>
<td>80</td>
</tr>
<tr>
<td>28</td>
<td>Consumo de carbohidratos (g/kg), según el nivel de actividad y el momento del día</td>
<td>83</td>
</tr>
<tr>
<td>29</td>
<td>Consumo de carbohidratos durante el ejercicio y post ejercicio</td>
<td>84</td>
</tr>
<tr>
<td>30</td>
<td>Estudios sobre los efectos del consumo de carbohidratos</td>
<td>86</td>
</tr>
<tr>
<td>31</td>
<td>Estudios sobre los efectos del consumo de AAKG</td>
<td>88</td>
</tr>
<tr>
<td>32</td>
<td>Estudios sobre los efectos del consumo de cafeína</td>
<td>89</td>
</tr>
</tbody>
</table>
Introducción

Tabla 33: Estudios sobre los efectos del consumo de carbohidrato-proteína. 91
Tabla 34: Estudio sobre el efecto del consumo alto de proteína. ... 96
Tabla 35: Estudios sobre el efecto del consumo alto de carbohidratos. .. 98
Tabla 36: Consumo recomendado de proteína y carbohidratos para deportistas de fuerza y/o físicoculturistas durante el día. ... 103
1.3 Lista de símbolos y abreviaturas

<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Término</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAKG</td>
<td>L-arginina α cetoglutarato</td>
</tr>
<tr>
<td>Akt</td>
<td>Proteína quinasa B</td>
</tr>
<tr>
<td>AMDR</td>
<td>Rango de distribución aceptable de macronutrientes (siglas en inglés)</td>
</tr>
<tr>
<td>BCAA</td>
<td>Aminoácidos de cadena ramificada</td>
</tr>
<tr>
<td>EAA</td>
<td>Aminoácidos esenciales</td>
</tr>
<tr>
<td>CO₂</td>
<td>Dióxido de carbono</td>
</tr>
<tr>
<td>Dex</td>
<td>Dextrosa</td>
</tr>
<tr>
<td>Frc</td>
<td>Fructosa</td>
</tr>
<tr>
<td>g</td>
<td>Gramo</td>
</tr>
<tr>
<td>Gal</td>
<td>Galactosa</td>
</tr>
<tr>
<td>Glu</td>
<td>Glucosa</td>
</tr>
<tr>
<td>GLUT1</td>
<td>Transportador glucosa 1</td>
</tr>
<tr>
<td>GLUT4</td>
<td>Transportador glucosa 4</td>
</tr>
<tr>
<td>GLUT5</td>
<td>Transportador glucosa 5</td>
</tr>
<tr>
<td>h</td>
<td>Hora</td>
</tr>
<tr>
<td>IGF-1</td>
<td>Factor de crecimiento insulínico tipo 1</td>
</tr>
<tr>
<td>Isom</td>
<td>Isomaltosa</td>
</tr>
<tr>
<td>k</td>
<td>Kilo</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodaltons</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramo</td>
</tr>
<tr>
<td>Mal</td>
<td>Maltodextrina</td>
</tr>
<tr>
<td>Min.</td>
<td>Minutos</td>
</tr>
<tr>
<td>mTOR</td>
<td>Mammalian Target of Rapamycin</td>
</tr>
<tr>
<td>Pág.</td>
<td>Página</td>
</tr>
<tr>
<td>SGLT1</td>
<td>Transportador glucosa-sodio dependiente 1</td>
</tr>
<tr>
<td>Treha</td>
<td>Trehalosa</td>
</tr>
<tr>
<td>µg</td>
<td>Microgramo</td>
</tr>
<tr>
<td>Vit.</td>
<td>Vitamina</td>
</tr>
<tr>
<td>VO₂max</td>
<td>Consumo máximo de oxígeno</td>
</tr>
<tr>
<td>WPC</td>
<td>Proteína suero de leche concentrado (siglas en inglés)</td>
</tr>
<tr>
<td>WPI</td>
<td>Proteína de suero de leche aislado (siglas en inglés)</td>
</tr>
</tbody>
</table>
 Definiciones básicas

Se describe brevemente los conceptos de suplemento, proteína, aminoácido, carbohidrato. Además de una breve descripción de cómo funciona la proteína en el cuerpo, los carbohidratos y la biodisponibilidad de estos.

1.1 Suplemento

Según el decreto 3429 de 2006, un suplemento “Es aquel producto cuyo propósito es adicionar a la dieta normal y que es fuente concentrada de nutrientes y otras sustancias con efecto fisiológico o nutricional que puede contener vitaminas, minerales, proteínas, aminoácidos, otros nutrientes y derivados de nutrientes, plantas, concentrados y extractos de plantas solas o en combinación” (Ministerio de la Salud y Protección social, 2006).

1.2 Proteína

Las proteínas son biomoléculas conformadas principalmente de carbono, hidrógeno, oxígeno y nitrógeno, aunque también pueden contener en algunos casos azufre, fósforo, hierro, magnesio y cobre (V. Guillén Luque, 2011).

El término proteína viene del griego “greek” que significa primario, siendo este término apropiado en la nutrición, ya que la proteína es el componente más fundamental en los tejidos (G. Wu, 2016a).

Figura 1: Aminoácido.

Estas biomoléculas son polímeros de aminoácidos, unidos por enlaces peptídicos (Augustin, Martínez, & Muñoz, 2006; Hemant H Gangurde, Mayur A Chordiya, Pooja S Patil, 2017; V. Guillén Luque, 2011). Dependiendo de la cantidad de aminoácidos enlazados, estos se conocen como, péptidos (1, 2, 3), oligopéptidos (menos de 10), polipéptidos (menos de 100) y proteínas (más de 100).
Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

El nombre que tienen estas moléculas (aminoácidos) corresponde a la composición química de las mismas. Ya que tienen un grupo amino (-NH₂) y un grupo carboxilo (-COOH), unido a un carbono α (-C-) (V. Guillén Luque, 2011), como muestra la figura 1. Existen 20 L-alfa-aminoácidos comunes (Hemant H Gangurde, Mayur A Chordiya, Pooja S Patil, 2017).

Los más importantes en la nutrición son los aminoácidos esenciales, aquellos que no sintetiza el cuerpo y deben ser adquiridos en la dieta (V. Guillén Luque, 2011). Estos son fenilalanina, isoleucina, leucina, lisina, metionina, treonina, triptófano, valina, arginina e histidina, como se ve en la tabla 1.

Los aminoácidos no esenciales son aquellos que puede sintetizar el cuerpo (Azcona, 2010).

Tabla 1: Aminoácidos esenciales y no esenciales.

<table>
<thead>
<tr>
<th>AMINOÁCIDOS</th>
<th>Esenciales</th>
<th>No esenciales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fenilalanina(Phe)</td>
<td></td>
<td>Tirosina (Tyr)</td>
</tr>
<tr>
<td>Isoleucina(Ile)</td>
<td></td>
<td>Arginina(Arg)</td>
</tr>
<tr>
<td>Leucina(Leu)</td>
<td></td>
<td>Ácido aspártico(Asp)</td>
</tr>
<tr>
<td>Lisina(Lys)</td>
<td></td>
<td>Asparagina(Asn)</td>
</tr>
<tr>
<td>Metionina(Met)</td>
<td></td>
<td>Ácido Glutámico(Glu)</td>
</tr>
<tr>
<td>Treonina(Thr)</td>
<td></td>
<td>Glutamina(Gln)</td>
</tr>
<tr>
<td>Triptófano(Trp)</td>
<td></td>
<td>Glicina(Gly)</td>
</tr>
<tr>
<td>Valina (Val)</td>
<td></td>
<td>Prolina(Pro)</td>
</tr>
<tr>
<td>Arginina(Arg)</td>
<td></td>
<td>Serina(Ser)</td>
</tr>
<tr>
<td>histidina(His)</td>
<td></td>
<td>Cisteína(Cys)</td>
</tr>
</tbody>
</table>

Otros como hidroxiprolina, hidroxilisina, selenocisteína, se sintetizan a partir de la prolina, lisina y cisteína respectivamente. La hidroxiprolina hace parte del colágeno, la hidroxilisina hace parte del sistema inmunológico y la selenocisteína tienen función antioxidante, metabolismo de hormonas tiroideas y maduración de espermatozoides (Rodwell, 2018).

Además de la cantidad de aminoácidos que componen a una proteína, está el hecho de las diferentes formas que puede adquirir una proteína. Siendo sus posibles formas la primaria, secundaria, terciaria y cuaternaria (Santos, 2009; V. Guillén Luque, 2011).

La secuencia lineal de aminoácidos se le conoce como estructura primaria, estos van unidos por enlaces covalentes. Cuando esta secuencia de aminoácidos se pliega, se considera la estructura secundaria. Cuando esta secuencia de aminoácidos se pliega en el espacio, se considera de forma terciaria (V. Guillén Luque, 2011). La unión de varias cadenas polipeptídicas confiere la forma cuaternaria. Estas forma son complejos macromoleculares (V. Guillén Luque, 2011).

Las estructura secundaria, terciaria y cuaternaria tiene enlaces covalentes y no covalentes.
La estructura secundaria contiene hélices alfa y hojas beta que se forman al momento de plegarse la cadena polipeptídica. Esto debido a los puentes de hidrógeno, que se forma entre los grupos -CO- y -NH- del enlace peptídico (Santos, 2009; V. Guillén Luque, 2011). El enrollamiento en espiral de la cadena, alrededor de cada carbono alfa, se le denomina hélice alfa.

La secuencia de aminoácidos en las proteínas, se deriva de la secuencia de nucleótidos en el ADN (Hemant H Gangurde, Mayur A Chordiya, Pooja S Patil, 2017; Suárez Medina, 2013; V. Guillén Luque, 2011). Esta secuencia conlleva a una función en la proteína, que se conoce como especificidad.

1.2.1 Función de la proteína en el cuerpo humano

Cada proteína tiene una función según su estructura primaria y su conformación espacial, esto se le conoce como especificidad. Si esta secuencia se cambia, se pierde la función de la proteína.

Las funciones generales de las proteínas en los seres vivos es crecimiento, reparación y renovación de tejidos (Azcona, 2010). En el cuerpo la proteína es aproximadamente 17%, siendo de ese porcentaje estructural y hemoglobina el 25% (Augustin et al., 2006).

Las proteínas también tienen función de resistencia o estructural, que es de gran importancia ya que confiere elasticidad y resistencia a órganos y tejidos (V. Guillén Luque, 2011). Algunos ejemplos de estas proteínas son colágeno, retícula, elastina, histonas, queratinas y glucoproteínas.

También tienen función enzimática, es decir son biocatalizadores en reacciones químicas. Las moléculas en las que actúan las enzimas se les denomina catalizadores. Esto ocurre cuando este se sitúa en el sitio activo de la enzima, produciendo que se disminuya el tiempo en que se produce una reacción (Hemant H Gangurde, Mayur A Chordiya, Pooja S Patil, 2017; V. Guillén Luque, 2011).

Otras funciones que tiene las proteínas son hormonales, defensivas, de transporte, reserva, reguladoras, contracción muscular y homeostática (Hemant H Gangurde, Mayur A Chordiya, Pooja S Patil, 2017; V. Guillén Luque, 2011).

En algunos casos se puede usar la proteína como fuente de energía, teniendo está en promedio 4 kcal/gramo de proteína (Azcona, 2010). Esto ocurre en casos como la inanición e hiperacalorismo, cuando no se han consumido fuentes de energía como lípidos y carbohidratos, y además de que se han consumido todas las reservas del cuerpo.

Para que ocurra esto, los aminoácidos funcionan como precursores de carbohidratos y/o lípidos, dándoles el nombre de glucogénicos y cetogénicos respectivamente, en algunos casos algunos aminoácidos pueden ser los dos (Nora, 2002). Como muestra la tabla 2.
Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

Todas las diferentes funciones que pueden tener las proteínas se pueden perder debido a la desnaturalización de estas, esto significa la pérdida de la estructura terciaria y secundaria. Ocurriendo cuando hay cambios en temperatura, pH, fuerzas mecánicas, etc. (V. Guillén Luque, 2011).

Tabla 2: Aminoácidos glucogénicos y cetogénicos

<table>
<thead>
<tr>
<th>Glucogénicos</th>
<th>Cetogénicos</th>
<th>Glucogénicos y cetogénicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanina</td>
<td>Arginina</td>
<td>Leucina</td>
</tr>
<tr>
<td>Aspartato</td>
<td>Cisteína</td>
<td>Lisina</td>
</tr>
<tr>
<td>Glutamato</td>
<td>Glicina</td>
<td>Fenilalanina</td>
</tr>
<tr>
<td>Histidina</td>
<td>Metionina</td>
<td>Triptófano</td>
</tr>
<tr>
<td>Prolina</td>
<td>Serina</td>
<td>Tirosina</td>
</tr>
<tr>
<td>Treonina</td>
<td>valina</td>
<td></td>
</tr>
</tbody>
</table>

1.3 Carbohidratos

Los hidratos de carbono se componen de carbono, hidrógeno y oxígeno, además de caracterizarse por tener una fórmula empírica $C_n(H_2O)_m$ (figura 2). Estos hidratos de carbono se dividen en grupos como monosacáridos, disacáridos, oligosacáridos, polisacáridos y otros (Fernández Sevilla, 2005).

Figura 2: Carbohidrato

Los monosacáridos corresponden a un azúcar simple o hidrato de carbono más sencillo, y los disacáridos a la unión de dos monosacáridos. Los monosacáridos son aldehídos o cetonas polihidroxilados (Trudy McKee, 2013). Este nombre se les brinda porque tienen grupos funcionales aldehídos o cetosas.

Los oligosacáridos corresponden a pocas unidades de monosacáridos o hasta 10-15 de estas enlazadas (Fernández Sevilla, 2005; Trudy McKee, 2013). En cuanto a los polisacáridos, son largas cadenas de polímeros de monosacáridos.
1.3.1 Función de los carbohidratos en el ser humano
La función principal de los carbohidratos es como fuente de energía. El principal en los mamíferos es la glucosa, que se encuentra en la sangre. Este monosacárido “se oxida para producir energía, calor y dióxido de carbono (CO$_2$) que se elimina por la respiración” (Latham, 2002).

En cuanto a los disacáridos y demás carbohidratos, necesitan ser convertidos en monosacáridos para su absorción en las paredes del tracto gastrointestinal (Latham, 2002).

El glucógeno es un polisacárido de gran importancia para los mamíferos, ya que es la fuente de energía inmediata para músculos. Este se almacena principalmente en hígado y músculos, aunque también se encuentra en riñón, cerebro, corazón, tejido adiposo y eritrocitos (Adeva-Andany, González-Lucán, Donapetry-García, Fernández-Fernández, & Ameneiros-Rodríguez, 2016; Décombaz et al., 2011; Latham, 2002; Wallis et al., 2008). La energía media que brindan los hidratos de carbono es de 4 kcal/gramo (Azcona, 2010).

Los carbohidratos también se unen a las proteínas del cuerpo por enlaces covalentes, para generar una función (Latham, 2002). Algunas de estas se llaman proteoglucanos, las glucoproteínas y los glucolípidos.

En plantas se producen carbohidratos mediante la fotosíntesis, y su principal función es de sostén en los tejidos de la planta (Fernández Sevilla, 2005). De la planta el humano asimila muy poco de estos carbohidratos, solo de los frutos o algunas partes comestibles se pueden digerir.

De los carbohidratos consumidos por el humano en forma de frutos o partes comestibles, existe un porcentaje de carbohidratos que se les reconoce como fibra. Esta adquiere este nombre porque no puede ser absorbida o bioasimilada por el humano. La fibra tiene diferentes funciones en el cuerpo y la industria. La principal función en el cuerpo es como coadyuvante en el tránsito intestinal, pero en la industria puede servir como formador de geles, aditivos y estabilizantes (Fernández Sevilla, 2005).

1.4 Biodisponibilidad de la proteína
La biodisponibilidad en algunos casos o autores engloba el concepto de bioaccesibilidad y bioactividad (Ana María, 2016).

La bioaccesibilidad es la fracción que se libera de una matriz alimentaria, y que puede ser absorbida intestinalmente (Ana María, 2016). También se puede considerar la cantidad de un nutriente que se puede absorber después de la digestión (Castellanos, Universitaria, & Universitaria, 2017).

La bioactividad, se considera la cantidad de nutriente que logra ejercer una función en un órgano dado u objetivo (Ana María, 2016).
La biodisponibilidad tradicionalmente en alimentos se describe como la cantidad de un nutriente que es absorbido y puede ser utilizado por el metabolismo (Ana María, 2016; Castellanos et al., 2017). Este se divide en tres componentes que son digestibilidad, integridad química y ausencia de interferencias metabólicas (Augustin et al., 2006). En el caso de la proteína, se refiere a los aminoácidos.

Otra forma en la que se habla de biodisponibilidad de la proteína es la calidad proteica. Esto describe la cantidad de aminoácidos de la dieta que se usan para la síntesis proteica (Augustin et al., 2006).

La biodisponibilidad de la proteína en los alimentos es de gran importancia, ya que la proteína es necesaria para diferentes funciones en el cuerpo, como estructura, transporte, almacenamiento, catalítica, etc. (Castellanos et al., 2017; Sanz, 2010; V. Guillén Luque, 2011).

La bioaccesibilidad de la proteína en los alimentos se deriva de si estas están unidas a otras moléculas, a su conformación tridimensional y si están acompañadas de sustancias anti nutricionales en el alimento (Ana María, 2016; Castellanos et al., 2017). También depende de procesos de transformación que ocurrren en algunos alimentos, almacenamiento, solubilidad, glicosilación o salud del consumidor y estado fisiológico del mismo (Augustin et al., 2006).

Algunas sustancias anti nutricionales pueden ser inhibidores de proteína, como son la tripsina, taninos, fitatos, glucosinolatos, etc. (Augustin et al., 2006). En cuanto algunos procesos de transformación están los tratamientos térmicos, pH, fuerzas mecánicas, etc. (V. Guillén Luque, 2011).

Cuando no se alcanzan los requerimientos de proteína y/o energía, se produce un retraso en el crecimiento, alteraciones patológicas y aumento en la mortalidad (Augustin et al., 2006). Por ende, se desea que los alimentos contengan proteína, con un alto valor biológico.

Aparte se debe tener en cuenta los (EAA) aminoácidos esenciales. Debido a que estos no los puede sintetizar el organismo humano, y deben ser suministrados por la dieta para un adecuado crecimiento y mantenimiento del cuerpo (Augustin et al., 2006). Cuando la dieta no brinda la cantidad adecuada de aminoácidos (dieta desbalanceada), la producción de CO₂ aumenta (L. Wu & Birch, 2011), como muestra la gráfico 1. Cuando la dieta es balanceada en el consumo de aminoácidos, la producción de CO₂ es menor.

Al consumir proteína, esta es digerida y absorbida en el tracto gastro intestinal (Augustin et al., 2006; Sanz, 2010). Para esto primero debe ocurrir una desnaturalización de la proteína, que ocurre al entrar en contacto con el ácido gástrico intestinal (Augustin et al., 2006; Sanz, 2010). Después, sufre hidrólisis por las proteasas gástricas y pancreáticas, convirtiendo las proteínas en péptidos y aminoácidos (Augustin et al., 2006; Sanz, 2010; G. Wu, 2016a). Posteriormente se transporta al epitelio gastrointestinal donde ocurre de nuevo una hidrólisis por las células mucosales, mediante las peptidasas intracelulares (Augustin et al., 2006; Sanz, 2010).
De estos aminoácidos, parte es usada por los enterocitos como energía o recambio celular, y el resto sufre una transformación metabólica (transaminación de aminoácidos dicarboxílicos), antes de pasar a la sangre (Augustin et al., 2006; G. Wu, 2016a). Donde se dirigen al hígado.

El hígado toma parte de estos aminoácidos y los usa para sí mismo, dejando el resto para los órganos periféricos (Augustin et al., 2006; Sanz, 2010), como el músculo esquelético (G. Wu, 2016a).

Cuando aumenta el consumo de proteína o aminoácidos en la dieta, aumenta la oxidación de los aminoácidos de acuerdo a la relación sustrato-enzima (cinética de Michaelis–Menten) (G. Wu, 2016a). Donde se describe la velocidad de la reacción de las enzimas-sustrato, generando un producto (A. Ocaña, 2012).

Gráfico 1: Producción de CO2, por oxidación de aminoácidos

Cuando ocurre la degradación de las proteínas en el organismo, se forma amonio que es transformado en urea por el hígado y es excretado en la orina (Sanz, 2010).

1.5 Biodisponibilidad carbohidratos

Los carbohidratos son la principal fuente de energía, considerando que representa entre 50-60% de las calorías consumidas en la dieta (Azcona, 2010; Latham, 2002; Tomás Pascual Sánz, 2010). Aunque no todos los carbohidratos en los alimentos se consideran como fuente de energía, como el caso de la fibra dietaria.

La fibra no puede ser asimilada por los humanos, de ahí su nombre. Pero esto no implica que no tengan un papel importante en la alimentación, ya que ayuda al tránsito intestinal. Aunque cuando llega al colon, esta se degradada parcialmente por enzimas de microbiota que allí habita, produciendo ácidos grasos de cadena corta, que posteriormente puede absorber el cuerpo (Almaraz, Fuentes, Milla, & Plaza, 2015; Tomás Pascual Sánz, 2010).
14 Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

Algunos carbohidratos provenientes de las plantas tienden a ser más difíciles de biosimilar. Aunque si estos se someten a tratamiento térmico, enzimático, hidratación, etc. Se puede mejorar su bioaccesibilidad. Aquellos que no se puede aprovechar el humano son la celulosa, hemicelulosa, lignina, pectinas y gomas (Latham, 2002; Tomás Pascual Sánz, 2010).

Cuando el humano consume polisacáridos u oligosacáridos como el almidón, estos son reducidos mediante hidrólisis por acción de la amilasa salivar y enzimas pancreáticas (Luna & López, 2007; Tomás Pascual Sánz, 2010). Al convertir estas macromoléculas en disacáridos, estas vuelven a ser sometidas a hidrólisis por enzimas como maltasa, lactasa y sacarasa, permitiendo que se dividan en monosacáridos y así ser absorbidos por el yeyuno y/o a través de la vena porta (Latham, 2002; Tomás Pascual Sánz, 2010). Estos monosacáridos se dirigen al hígado, donde son metabolizados (Adeva-Andany et al., 2016; Décombaz et al., 2011; Tomás Pascual Sánz, 2010; Wallis et al., 2008).

Aunque el 20% de los monosacáridos que son biodisponibles pueden llegar al colon, donde son fermentados y absorbidos (Almaraz et al., 2015; Luna & López, 2007; Tomás Pascual Sánz, 2010).

El consumo de carbohidratos mayor a lo requerido, se almacena en el cuerpo como lípidos (Latham, 2002).
2 MÚSCULO, EJERCICIO Y DIETA

Los fisicoculturistas o deportistas de fuerza trabajan su músculo esquelético para adquirir un mayor tamaño y/o una mayor fuerza, ya que sus competencias dependen del tamaño en el caso de fisicoculturistas y de su fuerza en el caso de deportistas de fuerza. Esto mediante ejercicio de resistencia y/o de fuerza, que genera un gasto de energía (glucógeno).

Para lograr esto se debe conocer primeramente el músculo, el glucógeno (síntesis y catálisis), el efecto del ejercicio en el músculo y los cambios hormonales que ocurren al ejercitar el músculo.

El buen desarrollo del ejercicio y una dieta balanceada puede generar un efecto ergogénico. Esto significando una mayor capacidad en el ejercicio, mejor adaptación al entrenamiento y más rápida recuperación después del ejercicio (Kreider et al., 2010).

2.1 Músculo esquelético

El músculo corresponde en promedio al 40% del peso del cuerpo y contiene entre 50-75% de las proteínas del cuerpo (Frontera & Ochala, 2015; Trovato, Imbesi, Conway, & Castrogiovanni, 2016). Del total de la proteína que contiene el músculo, el 20% se constituye principalmente de glutamina (Street, Byrne, & Eston, 2011).

El músculo contiene 75% agua, 20% proteína, y 5% de grasa, minerales y carbohidratos (Frontera & Ochala, 2015). El músculo esquelético se conoce también como el músculo voluntario, ya que puede ser controlado consciente por el humano, en cambio el músculo liso y el cardiaco no (Nayak, Khedkar, Khedkar, & Khedkar, 2016).

El funcionamiento y mantenimiento del músculo depende del balance entre síntesis y degradación de este (Frontera & Ochala, 2015). Los factores que afectan este balance se dan por la nutrición, balance hormonal, actividad física (ejercicio), lesiones, enfermedades, etc. (Frontera & Ochala, 2015; Street et al., 2011; Trovato et al., 2016).

El músculo convierte la energía química en energía mecánica, es reservorio de aminoácidos para otros tejidos, reservorio de carbohidratos, productor de calor para el cuerpo, etc. (Dideriksen, Reitelseder, & Holm, 2013; Frontera & Ochala, 2015; Kimball & Jefferson, 2010; Trovato et al., 2016).

El tamaño del músculo está determinado por el número y tamaño de fibras individuales que componen el músculo (Frontera & Ochala, 2015), como muestra la figura 3. Existen fibras tipo I (contracción lenta, metabolismo oxidativo, prefiere como fuente de energía los lípidos, baja actividad ATPasa, ricas en mitocondrias y mioglobina y resistente a la fatiga), fibras tipo IIA (contracción rápida, metabolismo oxidativo y glucolítico, alta actividad ATPasa, ricas en mitocondrias y mioglobina, y pueden usar lípidos y glucógeno como energía) y fibra tipo IIB (contracción muy rápida, alta actividad ATPasa, baja cantidad en mitocondrias y
mioglobina, glucolítica, genera ATP (adenosín trifosfato) por la fermentación anaeróbica de glucosa a ácido láctico y son de fácil fatiga) (Frontera & Ochala, 2015; Nayak et al., 2016).

Los entrenamientos de resistencia pueden llegar a incrementar el tamaño muscular, aunque no está muy relacionado con esto (Frontera & Ochala, 2015; Trovato et al., 2016). Pero cuando se combina con entrenamientos de fuerza, ocurre una hipertrofia del músculo y un aumento del tamaño de este (Frontera & Ochala, 2015; Trovato et al., 2016). Donde el aumento del tamaño muscular ocurre por el aumento de las fibras musculares, debido a un incremento en la síntesis proteica (Cermak et al., 2012; Churchward-Venne et al., 2012; Cribb, 2008; Frontera & Ochala, 2015; Phillips et al., 2009; Wilborn et al., 2013; G. Wu, 2016a).

 Esto se puede dar por la señal que desencadena el ejercicio, como el factor de crecimiento insulínico tipo 1 (IGF-1), que induce la activación de la proteína Akt (Proteína quinasa B) y está a la vez activa el mTOR que regula el factor de síntesis proteica (Di Camillo et al., 2014; Frontera & Ochala, 2015; James P. White1, Song Gao1, Melissa J. Puppa1, Shuichi Sato1, Stephen L. Welle2, 2013; Proud, 2007).

En cuanto al Akt, esta se estimula vía contracción muscular intensa, durante un tiempo prolongado o mediante la insulina (Creer et al., 2005; Di Camillo et al., 2014; Sakamoto, Aschenbach, Hirshman, & Goodyear, 2015). Esta proteína puede generar crecimiento y desarrollo celular (Creer et al., 2005).

La energía requerida para la contracción el músculo se da por la conversión de ATP a ADP (adenosín difosfato), liberando energía. La enzima miosina ATPasa cataliza la reacción en presencia de Ca$^{2+}$ y Mg$^{2+}$ (Nayak et al., 2016), como se ve en la ecuación 1.1.

$$\text{ATP} \xrightarrow{\text{Miosina ATPasa}} \text{ADP} + \text{Pi} + \text{energía}$$

(1.1)

La restauración de ATP se da por la contracción adicional del músculo, donde la fosfocreatina dona un fosfato de alta energía que se une al ADP y forma el ATP (Nayak et al., 2016). Esta reacción es catalizada por la enzima creatinquinasa, como se ve en la ecuación 1.2.

$$\text{Fosfocreatina} + \text{ADP} \xrightarrow{\text{creatinquinasa}} \text{ATP} + \text{CREATINA}$$

(1.2)

Cuando la fosfocreatina es agotada, el nuevo ATP es generado por la respiración aeróbica. Pero si el gasto de ATP es mayor que el que puede producir el músculo aeróbicamente, este pasa a producirlo anaeróbiticamente, produciendo ácido láctico (Nayak et al., 2016). Este ácido láctico se transfiere a la sangre y después al hígado donde reacciona con O$_2$ (oxígeno) para formar CO$_2$, H$_2$O Y ATP, aunque una pequeña parte del ácido láctico queda en el músculo (Nayak et al., 2016).
2.2 Glucógeno

El glucógeno es un polímero ramificado de glucosa que se almacena en el hígado y músculo esquelético, que suministra glucosa al cuerpo en periodos de ayuno o de contracción muscular (Adeva-Andany et al., 2016; Potgieter, 2013).

La formación de glucógeno requiere coordinación de muchas enzimas (diagrama de flujo 1). El transporte de la membrana extracelular a la célula se da por GLUT1 (transportador glucosa 1) Y GLUT4 (transportador glucosa 4) (Adeva-Andany et al., 2016). Donde el GLUT1 permanece en la membrana celular en condiciones basales, mientras el GLUT4 permanece almacenado en las vesículas en condición basal. Cuando se estimula el músculo por la contracción y/o insulina, GLUT4 sale a la membrana celular (Adeva-Andany et al., 2016).

La síntesis del glucógeno es mayor cuando se consume glucosa, que fructosa (Adeva-Andany et al., 2016; Wallis et al., 2008).

El consumo de glucosa más una suplementación con galactosa o fructosa aumenta la restauración del glucógeno en el hígado después de rutinas ejercicio y evita o ahorra moderadamente el uso de glucógeno en el músculo, que al solo consumir glucosa (Adeva-Andany et al., 2016; Décombaz et al., 2011; Wallis et al., 2008). Esto se debe a que el transporte activo de la glucosa (SGLT1: Transportador glucosa-sodio dependiente 1) se satura y esto limita la absorción (Décombaz et al., 2011; A. Jeukendrup, 2014; A. E. Jeukendrup, 2010). Aparte, si la concentración de ácidos grasos libres en plasma es alta, esto puede evitar en parte el uso del glucógeno muscular (Adeva-Andany et al., 2016).
La fructosa y galactosa consumida es convertida por el hígado en glucosa, que después se almacena como glucógeno en el hígado y músculo (Décombaz et al., 2011).

Diagrama de flujo 1: Síntesis de glucógeno.

Durante el ejercicio el glucógeno disminuye en el músculo, ya que se debe liberar glucosa para realizar la contracción muscular, siendo esta es la mayor fuente de energía para el músculo (diagrama de flujo 2) (Adeva-Andany et al., 2016; Peinado, Rojo-Tirado, & Benito, 2013; Wallis et al., 2008).

La realización continua de ejercicio (días, meses, años) permite aumentar las reservas de glucógeno en el músculo, además de que aumenta la capacidad del músculo para metabolizar lípidos (Adeva-Andany et al., 2016). Otra forma de aumentar las reservas de glucógeno en el músculo, es el consumo de L-carnitina (Adeva-Andany et al., 2016; Stephens, Constantin-Teodosiu, Laithwaite, Simpson, & Greenhaff, 2006). Cabe destacar que el consumo mayor de carbohidratos no aumenta las reservas de glucógeno en el músculo, solo las restaura (Adeva-Andany et al., 2016).

Cuando se ingiere leucina más insulina, aumenta la síntesis de glucógeno en comparación con solo insulina y además aumenta el efecto de Akt (Adeva-Andany et al., 2016; Di Camillo et al., 2014).

La glucosa consumida es principalmente usada para la síntesis de glucógeno en el músculo. En cambio la fructosa se considera que se usa principalmente para la síntesis de glucógeno en el hígado, además de estimular la glucógeno sintasa y atenuar la glucógeno fosforilasa (Décombaz et al., 2011).

Diagrama de flujo 2: Paso de glucógeno a glucosa.

2.3 Efecto del ejercicio en el músculo
El ejercicio de fuerza y resistencia estimula la síntesis de proteína muscular (Dideriksen et al., 2013; Kumar et al., 2009), que se expresa eventualmente como hipertrofia (Burd, West, et al., 2010; Lars Holm et al., 2010). En cuanto a fuerza, esta aumenta cuando se combina ejercicio de fuerza más el consumo de proteína y carbohidratos (Dideriksen et al., 2013). En cambio, los ejercicios de resistencia estimulan la síntesis proteica del músculo, con una dependencia mayor al consumo de carbohidratos, más que al consumo de proteína (Dideriksen et al., 2013). Por esto se recomienda el entrenamiento de fuerza y resistencia para un mayor grado de hipertrofia (Cribb, 2008; Dideriksen et al., 2013; L. Holm et al., 2008; Joy et al., 2013; Krieger, 2010).

Se ha demostrado que el manejo de altas cargas en el ejercicio, acercándose al 100% de la fuerza pero no usando el 100%, combinando con ejercicio de resistencia, produce el mayor aumento de masa muscular, aumento de testosterona y aumento en la hormona de crecimiento (Burd, West, et al., 2010; L. Holm et al., 2008; Schoenfeld, Ogborn, & Krieger, 2017; West & Phillips, 2010). El 100% de la fuerza, se considera el máximo peso que se puede mover en una única repetición.

Se considera que el manejo del 70-90% de la máxima fuerza combinada con resistencia, logra el mayor efecto de síntesis proteica en el músculo (Burd, West, et al., 2010; Hackney, Hosick, Rubin, & Battaglini, 2012; Lars Holm et al., 2010), debido a que este método recluta todas las fibras del músculo al momento de realizar el ejercicio (Burd, West, et al., 2010; Peinado et al., 2013).

En el caso de que se maneje rutinas de ejercicio con cargas moderadas(60-70% de la fuerza), combinadas con resistencia y que son de larga duración, generan una reducción en los niveles de testosterona (Anderson, Lane, Hackney, & Physiol, 2016; Hackney et al., 2012; Vingren et al., 2010). Siendo esto perjudicial, debido a que la testosterona es una de las hormonas más anabólicas del cuerpo (Vingren et al., 2010; West & Phillips, 2010).

En las rutinas de ejercicio se recomienda que las sesiones comiencen con los músculos de mayor tamaño y seguir con los de menor tamaño, debido a que esto genera una mayor aumento en la testosterona y consecuente síntesis proteica, que entrenar solitariamente un músculo pequeño (Vingren et al., 2010; West & Phillips, 2010).

Aparte se recomienda sesiones de ejercicio mayores de 4-6 series, para generar un mayor aumento de fuerza, efecto anabólico y consecuente de hipertrofia muscular (Krieger, 2010; Schoenfeld et al., 2017; Vingren et al., 2010). Ya que usar máximas cargas, a bajas repeticiones o una por serie, no genera aumento de la hipertrofia, fuerza y aumento de testosterona (Krieger, 2010; Schoenfeld et al., 2017; Vingren et al., 2010). A estas diferencias en las rutinas, siendo tiempo de reposo, peso máximo y repeticiones, se le denomina volumen de entrenamiento (Kreider et al., 2010; Krieger, 2010; Potgieter, 2013; Schoenfeld et al., 2017; Vingren et al., 2010).
Recientes investigaciones han demostrado que el ejercicio extenuante produce un efecto negativo en la síntesis proteica (Dideriksen et al., 2013; Joy et al., 2013; G. Wu, 2016b). En cambio se ha encontrado que el ejercicio con menor intensidad pero con cargas, permite la prolongada utilización de aminoácidos que circulan en el cuerpo, para una síntesis proteica positiva, durante un continuo consumo de proteína (Bechshoef et al., 2013; Dideriksen et al., 2013; L. Holm et al., 2008).

Se debe tener también en cuenta el recambio proteico que produce el entrenamiento en los deportistas. Este recambio se define como la continua degradación y síntesis de las proteínas del cuerpo, que puede ser del 1-2% en la mayoría de las personas (A. G. Hernández, 2019). En el caso de personas que realizan deporte es mayor el recambio proteico por el traumatismo que genera el ejercicio, pero cabe destacar que en personas que están acostumbradas al ejercicio, es menor el recambio proteico, que personas que recién comienzan a realizar ejercicio (A. G. Hernández, 2019; R. Hernández, 2003).

Los ejercicios ya sean de resistencia o de fuerza generan un dolor tardío, debido al daño muscular al realizar estas actividades (Bassit et al., 2010; Street et al., 2011). Esto puede generar debilidad muscular y dolores continuos post ejercicio, que pueden durar días (Bassit et al., 2010; Rahimi, Shab-Bidar, Mollahosseini, & Djafarian, 2017; Shenoy, Dhawan, & Sandhu, 2016; Street et al., 2011).

Algunas personas después del ejercicio presentan falta de apetito, es un efecto que se presenta raramente (Potgieter, 2013). Esto puede generar que deportistas no consuman inmediatamente post ejercicio alimentos, que los ayuden a recuperarse de las sesiones de ejercicio.

2.4 Efecto de la testosterona y hormona de crecimiento en musculo
La testosterona (17b-hidroxi-4-androstene-3-uno), es una hormona esteroidal producida a partir del colesterol (Vingren et al., 2010). Por esto el consumo de colesterol está fuertemente asociado con los niveles de testosterona, denotando que cuando se baja el consumo, puede bajar los niveles en hombres y mujeres (Helms, Eric R, Argon, Alan A., Fitschen, 2014).

La testosterona en una hormona hidrofóbica (Vingren et al., 2010). Por esto la mayor parte de la testosterona se une a proteínas hidrofílicas, para un mejor transporte en la sangre. Algunas de estas proteínas son SHBG (sex hormone-binding globulin), que se une con el 44-60% la testosterona libre, el resto se use a la albúmina u otras proteínas (Vingren et al., 2010). Solo cerca del 0,2-2 % de la testosterona queda libre, siendo esta la que tiene mayor actividad biológica, debido a que al no estar unida a ninguna otra molécula, puede traspasar más fácilmente la membrana celular (Vingren et al., 2010).
La testosterona es una de las hormonas andrógénicas más potentes para generar anabolismo, con efectos como el aumento de tamaño del músculo (Urban, 2011; Vingren et al., 2010; West & Phillips, 2010). En el músculo la testosterona estimula la síntesis proteica y aceptación de aminoácidos intramuscularmente, e inhibe la catálisis muscular (ej. cortisol) (Urban, 2011; Vingren et al., 2010; West & Phillips, 2010), generando hipertrofia muscular, aumento en la fuerza y aumento en la resistencia (Urban, 2011; Vingren et al., 2010). Estas señales están moduladas por la interacción entre la testosterona y el receptor androgénico intracelular, resultando en una emigración de estos al núcleo, generando la transcripción de genes específicos (Vingren et al., 2010).

En condiciones normales, el ejercicio de fuerza con resistencia aumenta la testosterona y la hormona de crecimiento en el hombre, volviendo a niveles basales después de 30-60 min acabado el ejercicio, además de aumentar la testosterona en reposo (Vingren et al., 2010; West & Phillips, 2010). En el caso de la mujer no se producen cambios en las concentraciones de testosterona pero sí en la hormona de crecimiento por ejercicio de fuerza con resistencia, debido a que la mujer no tiene células de Leydig, aunque sí aumenta la testosterona en reposo (Vingren et al., 2010; West & Phillips, 2010). La testosterona en reposo es el nivel de testosterona cuando no se realiza ejercicio (Vingren et al., 2010). La testosterona es importante en mujeres, para el mantenimiento de la masa muscular (Vingren et al., 2010).

Las células de Leydig se encuentran en los testículos, esto deriva en que el hombre tenga 10 veces más concentración de testosterona que la mujer (Vingren et al., 2010).

En el hombre los aumentos de testosterona por ejercicio se presentan después de la pubertad, aumentando en mayor medida en la adultez (Vingren et al., 2010). Cuando el ejercicio es demasiado intenso, se puede generar una reducción de la testosterona total y la testosterona libre, permaneciendo durante los dos días siguientes al ejercicio (Vingren et al., 2010).

En el caso de la edad, después de los 35-40 años comienza a disminuir entre 1-3% la circulación de testosterona por cada año transcurrido, generando con el tiempo la andropausia (Vingren et al., 2010). Pudiendo generar sarcopenia, que es la pérdida de la fuerza y masa muscular (Vingren et al., 2010).

Si el objetivo es aumentar la testosterona en hombres, se debe realizar ejercicio de fuerza y resistencia (Vingren et al., 2010), no generando sobre entrenamiento.

En algunos casos hay deportistas que se administran diferentes formas farmacológicas de la testosterona. Para producir un mayor rendimiento, aumento en la síntesis proteica y aumento en la masa muscular, ya sea en hombres o mujeres (Urban, 2011; Vingren et al., 2010; West & Phillips, 2010).

El abuso en el consumo exógeno de diferentes formas de testosterona aumenta el contenido de receptores androgénicos intracelulares, reduciéndose a niveles basales después de haber detenido la administración exógena de testosterona (meses) (Vingren et al., 2010).
La administración de testosterona exógena u hormona de crecimiento exógena incrementa el IGF-1 en sangre (Urban, 2011; Vingren et al., 2010; West & Phillips, 2010). Siendo también el IGF-1 una potente hormona anabólica, que incrementa la transcripción de genes anabólicos vía Akt/mTOR (James P. White1, Song Ga1, Melissa J. Puppa1, Shuichi Sato1, Stephen L. Welle2, 2013; Proud, 2007; Vingren et al., 2010).

La hormona de crecimiento tiene un efecto menor en la síntesis proteica, en comparación con la testosterona (Urban, 2011).

Cuando se administra testosterona y hormona de crecimiento, aumenta en mayor medida la síntesis proteica en el músculo (Urban, 2011; Vingren et al., 2010; West & Phillips, 2010).

2.5 Dieta de fisicoculturistas y deportistas de fuerza

La dieta es el factor complementario más importante a la actividad física, ya sea amateur o profesional (Potgieter, 2013). Cuando la dieta es adecuada, permite una actividad física más intenso, una más rápida recuperación muscular y adaptaciones metabólicas para ejercicio de resistencia (Kreider et al., 2010; Potgieter, 2013). Cuando la dieta es insuficiente se reduce el rendimiento deportivo y la adaptación a la actividad física (Kreider et al., 2010).

Las dietas que recomienda el ISSN (International Society for Sport Nutrition) para los deportistas varían según su tipo de deporte, la intensidad del deporte y su peso corporal (Potgieter, 2013).

2.5.1 Energía

Los deportistas tienen mayores requerimientos de energía que otros grupos poblacionales (Potgieter, 2013). En el caso de fisicoculturistas y/o deportistas de fuerza que tienen un mayor peso y/o altura, tienen un mayor desafío en cubrir sus requerimientos energéticos. También como aquellos que tienen actividades físicas de alta intensidad (Potgieter, 2013).

Tabla 3: Energía requerida para la actividad física.

<table>
<thead>
<tr>
<th>Nivel de actividad física</th>
<th>Kcal/kg/día</th>
<th>Kcal/día</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actividad física general (30-40 min/día, 3 veces a la semana)</td>
<td>23-35</td>
<td>1800-2400*</td>
</tr>
<tr>
<td>Nivel moderado de entrenamiento (2-3 horas/día, 5 a 6 veces por semana)</td>
<td>50-80</td>
<td>2500-8000**</td>
</tr>
<tr>
<td>Nivel alto de entrenamiento (3-6 horas/día, 1-2 sesiones día, 5-6 veces por semana)</td>
<td>50-80</td>
<td>2500-8000**</td>
</tr>
</tbody>
</table>

24 Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

En la tabla 3 se muestra la cantidad de calorías aproximadas que debería consumir un deportista según su nivel de actividad física y peso corporal. Los deportistas de fuerza y/o fisicoculturistas se encuentran entre los deportistas de alta intensidad. Ya que estos llegan a entrenar dos veces al día, con tiempos de entrenamiento de larga duración. Gastando en promedio de 600-1200 Kcal por hora de entrenamiento, inclusive más dependiendo de la intensidad (Kreider et al., 2010).

Un balance negativo de energía es común en deportistas de alta resistencia, como ciclistas, maratonistas, ultraman, etc. (Potgieter, 2013). También es negativo en deportistas que buscan reducir su tejido adiposo para las competencias, como fisicoculturistas, boxeadores, deportistas de fuerza, etc. (Potgieter, 2013). Esta pérdida de peso puede resultar también en pérdida de masa muscular, menor desempeño en la competencia y/o ejercicio, lesiones, enfermedades y posible efecto de sobre entrenamiento, debido a un balance negativo de energía (Kreider et al., 2010; Potgieter, 2013).

Los requerimientos de energía derivan principalmente en el consumo de carbohidratos antes, durante y después del ejercicio (Potgieter, 2013). Ya que esto permite un adecuado rendimiento al momento del ejercicio, evita una pérdida de peso (masa muscular) y mantiene un buen estado de salud (Kreider et al., 2010; Potgieter, 2013).

El consumo de carbohidratos, proteína y lípidos en la población que realiza esporádicamente ejercicio, 3 veces a la semana entre 30-40 min, es diferentes a los que entrenan más seguido. En el grupo que realiza esporádicamente ejercicio, se recomienda la ingesta de energía en relación 45-55% de carbohidratos, 10-15 proteína y 25-35% en lípidos (Kreider et al., 2010), semejante a la recomendación por el ministerio de salud con respecto al consumo de energía y nutrientes para la población colombiana (Agudelo Cañas, 2018). Como muestra la tabla 4.

Tabla 4: Requerimientos energía adulto.

<table>
<thead>
<tr>
<th>Macronutrientes</th>
<th>AMDR (% del Requerimiento de energía)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adultos</td>
</tr>
<tr>
<td>Proteína</td>
<td>14-20</td>
</tr>
<tr>
<td>Grasa total</td>
<td>20-35</td>
</tr>
<tr>
<td>Ácidos grasos poliinsaturados ω-6</td>
<td>5-10</td>
</tr>
<tr>
<td>Ácidos grasos poliinsaturados ω-9</td>
<td>0,3-1,2</td>
</tr>
<tr>
<td>Carbohidratos</td>
<td>50-65</td>
</tr>
</tbody>
</table>

En cuanto a los deportistas que entrenan de manera moderada o alta, el consumo de proteína y carbohidratos debe ser mayor, para alcanzar un mejor rendimiento y adaptación al ejercicio (Kreider et al., 2010).

2.5.2 Carbohidratos

El consumo de carbohidratos debe ser acorde al tiempo, ya sea antes del ejercicio para alcanzar un buen desempeño en el mismo, como después para aumentar la recuperación post ejercicio (Potgieter, 2013).
En cuanto al consumo de carbohidratos antes del ejercicio se recomienda que sea abundante, ya que el glucógeno almacenado, dura entre 90 min a 3 horas, en actividades físicas altas o moderadas respectivamente (Potgieter, 2013). Por ende el consumo antes puede mejorar la resistencia a la actividad física, como también ayudará a la recuperación del glucógeno gastado (Potgieter, 2013).

Cuando la actividad física es de alta duración, más de 2 horas y 30 minutos, se recomienda la ingesta de carbohidratos durante la actividad física, ya que se al no hacerlo, se puede sufrir de fatiga (“el muro”), baja tasa de recuperación, pérdida de concentración, mareos, irritabilidad, desmayos e hipoglucemia (Potgieter, 2013).

Una adecuada ingesta de carbohidratos permite la recuperación de los niveles de glucosa en sangre y de glucógeno muscular (Potgieter, 2013). Por ende, la ingesta después del ejercicio es necesario para la recuperación, debido a que el glucógeno y la glucosa son la principal fuente de energía para la contracción muscular (Potgieter, 2013).

Cuando se realiza ejercicio moderado de 5-6 veces por semana, se recomienda el consumo de 5-8 g de carbohidratos por kg de peso (55-65% dieta) (Kreider et al., 2010). Cuando es de alta intensidad, este aumenta a 8-10 g de carbohidratos por kg de peso. Como muestra la tabla 5.

Para el caso de persona que se ejercitan 30-40 min/día, 3 veces a la semana, no se necesita un consumo mayor de carbohidratos (Kreider et al., 2010).

Cuando las sesiones de ejercicio tienen una diferencia de 8 horas entre sesiones, el consumo de carbohidratos es mayor, para una mayor recuperación (Burke et al., 2011; Décombaz et al., 2011; Potgieter, 2013).

Tabla 5: Consumo carbohidratos para actividad física moderada y alta.

<table>
<thead>
<tr>
<th>Nivel de actividad física</th>
<th>Consumo carbohidratos (g/kg peso corporal)</th>
<th>Peso deportista (kg)</th>
<th>Consumo carbohidratos por día</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderado</td>
<td>5-8</td>
<td>50-150</td>
<td>250-1200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alto</td>
<td>8-10</td>
<td>50-150</td>
<td>400-1500</td>
</tr>
</tbody>
</table>

En el caso de deportistas que entrenan a diario, se aconseja el consumo 30 minutos post ejercicio para aumentar rápidamente los niveles de glucógeno que se gastaron durante el ejercicio (Potgieter, 2013). Pero si existe un día de por medio entre ejercicio, se considera que se puede ser más laxo en el momento de consumo (Potgieter, 2013).
El requerimiento de carbohidratos mediante la dieta (pasta, cereales, vegetales, frutas, etc.), se hace físicamente difícil para los deportistas, debido al tamaño de porción que se debe proporcionar para obtener los carbohidratos requeridos (Kreider et al., 2010). Por ende se recomienda el consumo de suplementos con alto contenido de carbohidratos, ya que no producen saciedad y a su vez satisfacen las necesidades de carbohidratos, que no se lograría mediante el consumo de alimentos durante el día (Kreider et al., 2010).

El consumo de carbohidratos para deportistas se ha determinado por n gramos de carbohidratos por cada kg de peso del deportista (n*g carbohidratos/kg peso corporal), variando n según la intensidad del ejercicio y la duración de este (Potgieter, 2013).

2.5.3 Proteína

Los deportistas de fuerza y/o resistencia necesitan consumir más proteína, debido a que la proteína es necesaria para la síntesis de proteína muscular, reducir la degradación de proteínas musculares y reparar el daño muscular causado por el entrenamiento (Kreider et al., 2010; Potgieter, 2013).

El consumo para deportistas de fuerza y/o resistencia que recomienda la ACSM (American College of Sports Medicine) es de 1,2 a 1,7 g/kg/día (Potgieter, 2013). Estos valores pueden variar o ser mayores (Kreider et al., 2010), como muestra la tabla 6.

Tabla 6: Requerimientos diarios de proteína según el nivel de actividad física (ISSN).

<table>
<thead>
<tr>
<th>Nivel actividad física</th>
<th>g/kg peso corporal/día</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumo adulto en general</td>
<td>0.8-1.0</td>
</tr>
<tr>
<td>Adulto mayor</td>
<td>1.0-1.2</td>
</tr>
<tr>
<td>Entrenamiento moderado</td>
<td>1.0-1.5</td>
</tr>
<tr>
<td>Alto volumen de entrenamiento intenso</td>
<td>1.5-2.0</td>
</tr>
</tbody>
</table>

Para el caso en que el objetivo es bajar de peso, sin disminuir la masa muscular, la IOC (International Olympic Committee) recomienda consumir 1,8-2,7 g/kg/día de proteína, con un consumo de carbohidratos de 3-4 g/kg/día. Esto es de gran importancia para fisicoculturistas que se preparan para su presentación, o para deportistas de fuerza que quieren entrar en una categoría de menor peso.

En cuanto al consumo de proteína antes del ejercicio, la ISSN recomienda un consumo 0,15-0,25g/kg/día, en cambio la IOC recomienda que el consumo debería ser después, debido a que el consumo post ejercicio se asocia con un óptimo nivel de síntesis proteico en el músculo (Potgieter, 2013).
Durante el ejercicio se recomienda el consumo de proteína con carbohidratos, ya que esto favorece la resistencia, incrementa los niveles de glucógeno en el músculo, reduce el daño muscular y promueve una mejor adaptación al ejercicio (Potgieter, 2013).

El consumo post ejercicio de proteína está recomendado, debido a que se ha probado que eleva la síntesis de proteína post ejercicio en el músculo, permitiendo el mantenimiento del músculo, reparación del musculo y aumento de masa del mismo, según sea el ejercicio realizado (Kreider et al., 2010; Potgieter, 2013). Se recomienda que este entre las primeras tres horas post ejercicio (Potgieter, 2013). Siendo la cantidad recomendada entre 20-25 g post ejercicio, ya que más de 25 g no genera mayores efectos en la síntesis proteica (Potgieter, 2013).

Cuando el consumo de proteína post ejercicio viene acompañado de carbohidratos, promueve el aumento de fuerza y una mejor condición corporal, cuando se ha realizado ejercicio de alta intensidad (Kreider et al., 2010; Potgieter, 2013).

2.5.4 Lípidos

En cuanto al consumo de lípidos, este es igual o en algunos casos mayor al consumo normal, dependiendo del deporte (Kreider et al., 2010; Potgieter, 2013). Con el objetivo de tener un buen estado de salud, un óptimo balance de energía, un apropiado consumo de ácidos grasos esenciales, consumo de vitaminas liposolubles y para reponer las reservas de triacilglicerol intramuscular (Kreider et al., 2010; Potgieter, 2013).

El ACSM recomienda un consumo de lípidos de 20-35% diario de la energía consumida, nunca siendo menor de 20, el ISSN recomienda un 30% diario de la energía consumida y la IOC del 15-20% diario de la dieta (Kreider et al., 2010; Potgieter, 2013). Para tener un adecuado consumo de vitaminas liposolubles y ácidos grasos esenciales (Potgieter, 2013). Estas variaciones dependen también del tipo de ejercicio, como por ejemplo los deportistas denominados ultraman, que deben consumir 50% de su energía diaria en lípidos, debido a su alto volumen de entrenamiento (Potgieter, 2013).

Las dietas altas en lípidos no son recomendadas para deportistas, que no tienen entrenamiento de alta intensidad (Potgieter, 2013). En cambio si se desea disminuir de peso, se recomienda un consumo de lípidos de 0,5-1g/kg peso/día (Kreider et al., 2010).

2.5.5 Agua y electrolitos

Cuando se pierde el 2% o más del peso del deportista en agua (sudor), durante una rutina de ejercicio, se produce una disminución del rendimiento en el ejercicio (Kreider et al., 2010; Potgieter, 2013). Para evitar esto se recomienda un consumo de 6-8 onzas de agua cada 5-15 minutos, esto dependiendo del nivel de intensidad de la actividad física, temperatura del ambiente y humedad del ambiente (Kreider et al., 2010).
Tabla 7: Pautas sobre el reemplazo de agua y electrolitos en la actividad física (ACSM).

<table>
<thead>
<tr>
<th>Antes del ejercicio</th>
<th>El consumo de agua debe hacerse varias horas antes, para asegurar una buena absorción de esta y una expulsión normal de orina. Bebidas o alimentos con altos contenidos de sodio, pueden generar sensación de sed y una mayor retención de líquidos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durante el ejercicio</td>
<td>Se debe consumir lo suficiente para evitar una pérdida de peso mayor al 2%, esto se genera calculando el peso antes y después del entrenamiento. El líquido debe contener carbohidratos y electrolitos para mantener el balance corporal y mantener un buen rendimiento en el ejercicio.</td>
</tr>
<tr>
<td>Después del ejercicio</td>
<td>Bebidas y/o alimentos consumidos después del ejercicio deben contener sodio, para la reposición de este. El consumo después del ejercicio de bebidas con sodio permite una mayor recuperación, estimulando la sed y permitiendo retener líquidos.</td>
</tr>
</tbody>
</table>

Cuando se pierde 4% de agua o más del peso total, se puede producir agotamiento por calor, insolación y una posible muerte (Kreider et al., 2010).

El consumo de agua después de rutinas de ejercicio mayores a dos horas debería venir acompañado de sodio, ya que se pierde bastante sodio durante el ejercicio (Potgieter, 2013).

Se recomienda el consumo de agua antes, durante y después del ejercicio (tabla 7), para tener un buen desempeño durante el entrenamiento o la competencia.

2.5.6 Micronutrientes
Las vitaminas y minerales son nutrientes esenciales para una buena salud (Potgieter, 2013).

Por lo general los deportistas no necesitan una suplementación de vitaminas ni minerales, ya que los diferentes alimentos que consumen, contienen las cantidades necesarias (Potgieter, 2013). Solo en casos de deportistas que han sufrido lesiones, enfermedades o son vegetarianos, deben suplementarse en cierto grado (Potgieter, 2013). Los vegetarianos deben suplementarse con vitamina B12, hierro, calcio, vitamina D, riboflavina y zinc (Potgieter, 2013).
Cuando se realizan actividad física muy intensa, se recomienda el consumo de vitamina C y E, ya que reducen el daño oxidativo causado por la intensidad de la actividad física, además de mantener un sistema inmunológico saludable (Kreider et al., 2010; Potgieter, 2013). Siendo el recomendado en vitamina C 75mg/día hombre y 60mg/día mujer, sin pasar de 2000 mg/día, en el caso de la vitamina E se recomienda 10mg/día hombre y 7,5 mg/día mujer, sin pasar de 300mg/día. Como muestra la tabla 8.

Aparte del consumo de vitamina C y E, se recomienda una baja dosis de multivitamínicos después del ejercicio, cuando la actividad física es muy intensa (Kreider et al., 2010).

El requerimiento de minerales en deportistas está dado por su actividad física. Estos solo deben ser suplementados, cuando la dieta es desbalanceada. En el caso que se deba suplementar y no ocurra, esto conlleva a reducir el rendimiento en las actividades físicas (Kreider et al., 2010).

El calcio se suplementa para evitar osteoporosis y mantener una buena composición corporal (Kreider et al., 2010; Potgieter, 2013). Sodio y el fosfato incrementa el máximo oxígeno consumido, el umbral anaeróbico y la capacidad de resistencia (Kreider et al., 2010; Potgieter, 2013). Zinc reduce los cambios en el sistema inmune, que produce la actividad física (Kreider et al., 2010; Potgieter, 2013).
Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza
3 SUPLEMENTO

Los suplementos son una gran industria, en donde se cree que para el año 2013 se gastaron US$ 12.000 millones en estos suplementos (D, 2013). Por esto se ha venido estudiando diferentes fuentes de alimentos, para que funcionen como materia prima de los suplementos. Los suplementos de proteína han optado principalmente por el suero de leche como materia prima (tabla 9 y 11). Ya que es un subproducto de la quesería, que tienen un bajo costo y un buen perfil de aminoácidos para deportistas, siendo el más importante la leucina. En el caso de los carbohidratos, se brinda glucosa en diferentes formas y/o fructosa (tabla 10 y 11). Además de proteína o carbohidratos, algunos brindan altas cantidades de micronutrientes, que pueden llegar a ser mayores a las recomendadas (tabla 8).

3.1 Descripción suplementos y consumo máximo de micronutrientes

Tabla 8 Nivel de ingesta máximo tolerable (UL) e requerimiento promedio estimado (EAR) de vitaminas y minerales en hombres y mujeres de 19-50 años.

<table>
<thead>
<tr>
<th>Nutriente</th>
<th>Hombre (EAR)</th>
<th>Mujer (EAR)</th>
<th>Nivel de ingesta máximo tolerable (UL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamina A</td>
<td>625 µg/día</td>
<td>500 µg/día</td>
<td>3000 µg/día</td>
</tr>
<tr>
<td>Vitamina D</td>
<td>400 µg/día</td>
<td>400 µg/día</td>
<td>100 µg/día</td>
</tr>
<tr>
<td>Vitamina E</td>
<td>10 mg/día</td>
<td>7,5 mg/día</td>
<td>300 mg/día</td>
</tr>
<tr>
<td>Vitamina K</td>
<td>70 µg/día</td>
<td>60 µg/día</td>
<td>60 µg/día</td>
</tr>
<tr>
<td>Vitamina C</td>
<td>75 mg/día</td>
<td>60 mg/día</td>
<td>2000 mg/día</td>
</tr>
<tr>
<td>Tiamina</td>
<td>1 mg/día</td>
<td>0,9 mg/día</td>
<td>-</td>
</tr>
<tr>
<td>Riboflavina</td>
<td>1,1 mg/día</td>
<td>0,9 mg/día</td>
<td>-</td>
</tr>
<tr>
<td>Niacina</td>
<td>12 mg/día</td>
<td>11 mg/día</td>
<td>35 mg/día</td>
</tr>
<tr>
<td>Vitamina B6</td>
<td>1,1 mg/día</td>
<td>1,1 mg/día</td>
<td>100 mg/día</td>
</tr>
<tr>
<td>Folato</td>
<td>320 µg/día</td>
<td>320 µg/día</td>
<td>1000 µg/día</td>
</tr>
<tr>
<td>Vitamina B12</td>
<td>2 µg/día</td>
<td>2 µg/día</td>
<td>-</td>
</tr>
<tr>
<td>Ácido pantoténico</td>
<td>5 mg/día</td>
<td>5 mg/día</td>
<td>-</td>
</tr>
<tr>
<td>Calcio</td>
<td>800 mg/día</td>
<td>800 mg/día</td>
<td>3000 mg/día</td>
</tr>
<tr>
<td>Fósforo</td>
<td>580 mg/día</td>
<td>580 mg/día</td>
<td>4000 mg/día</td>
</tr>
<tr>
<td>Magnesio</td>
<td>340 mg/día</td>
<td>260 mg/día</td>
<td>350 mg/día</td>
</tr>
<tr>
<td>Sodio</td>
<td>1500 mg/día</td>
<td>1500 µg/día</td>
<td>2300 mg/día</td>
</tr>
<tr>
<td>Potasio</td>
<td>4700 mg/día</td>
<td>4700 mg/día</td>
<td>-</td>
</tr>
<tr>
<td>Hierro</td>
<td>9 mg/día</td>
<td>11,7 mg/día</td>
<td>45 mg/día</td>
</tr>
<tr>
<td>Zinc</td>
<td>12 mg/día</td>
<td>6,5 mg/día</td>
<td>40 mg/día</td>
</tr>
<tr>
<td>Yodo</td>
<td>95 µg/día</td>
<td>95 µg/día</td>
<td>1100 µg/día</td>
</tr>
<tr>
<td>Selenio</td>
<td>45 µg/día</td>
<td>45 µg/día</td>
<td>400 µg/día</td>
</tr>
<tr>
<td>Cobre</td>
<td>700 µg/día</td>
<td>700 µg/día</td>
<td>10000 µg/día</td>
</tr>
<tr>
<td>Fluoruro</td>
<td>4 mg/día</td>
<td>3 mg/día</td>
<td>10 mg/día</td>
</tr>
</tbody>
</table>

Tabla 9: Descripción de algunos suplementos de proteína que se encuentran en el mercado colombiano e internacional.

<table>
<thead>
<tr>
<th>Marca comercial</th>
<th>Referencia</th>
<th>Cantidad (PRO)</th>
<th>Adición</th>
<th>Exceso</th>
<th>Presentación producto</th>
<th>Materia prima proteína.</th>
<th>Modo de consumo</th>
<th>Dosis diarias aprox.</th>
<th>PRO por dosis</th>
<th>Consumo total al día.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSCLE TECH</td>
<td>NITRO TECH WHEY GOLD</td>
<td>1 cucharada (33 g) contiene 24 g.</td>
<td>-</td>
<td>-</td>
<td>Polvo</td>
<td>Proteína suero de leche.</td>
<td>Entre comidas, antes y después del ejercicio.</td>
<td>1 cucharada, dos a cuatro veces al día.</td>
<td>24 g.</td>
<td>48-96 g proteína.</td>
</tr>
<tr>
<td>MUSCLE TECH</td>
<td>NITRO TECH CRUNCH</td>
<td>1 barra de 65 g contiene 22 g.</td>
<td>-</td>
<td>-</td>
<td>Barra</td>
<td>Proteína suero de leche.</td>
<td>Después del ejercicio.</td>
<td>1 barra al día.</td>
<td>22 g.</td>
<td>22 g proteína.</td>
</tr>
<tr>
<td>MUSCLE TECH</td>
<td>PHASE 8</td>
<td>1 cucharada (42 g) contiene 26 g.</td>
<td>-</td>
<td>-</td>
<td>Polvo</td>
<td>Proteína de leche (caseína y suero).</td>
<td>Entre comidas y después del ejercicio.</td>
<td>4 cucharadas (dividida en 2-4 dosis).</td>
<td>26-52 g.</td>
<td>104 g proteína.</td>
</tr>
<tr>
<td>MUSCLE TECH</td>
<td>ANABOLIC HALO</td>
<td>1 cucharada (34 g) contiene 20 g.</td>
<td>Creatina 2,5 g</td>
<td>Vit. C 30 mg</td>
<td>Polvo</td>
<td>Proteína de leche (caseína y suero).</td>
<td>Una vez al día. En días de ejercicio, consumirlo post ejercicio.</td>
<td>1 cucharada, una a dos veces al día.</td>
<td>20-40 g.</td>
<td>20-40 g proteína y 2,5-5 g creatina.</td>
</tr>
<tr>
<td>Marca</td>
<td>Producto</td>
<td>Dosis: 1 cucharada</td>
<td>Vitaminas/Ingredientes</td>
<td>Forma</td>
<td>Consumo recomendado</td>
<td>Dosis al día</td>
<td>1 cucharada/month</td>
<td>500-1000 mg (L-c y L-t) y 250-500 mg CLA</td>
<td>30-60 g proteína</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------------------</td>
<td>--------------------</td>
<td>------------------------</td>
<td>-------</td>
<td>---</td>
<td>-------------</td>
<td>-------------------</td>
<td>--</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>MUSCLE TECH</td>
<td>NITRO TECH RIPPED</td>
<td>43 g</td>
<td>500 mg (L-c:L-t) y 250 mg CLA</td>
<td>Polvo</td>
<td>Proteína suero de leche. Consumir 30 a 60 min antes de una comida principal.</td>
<td>30 g</td>
<td>1 cucharada, una a dos cucharadas al día</td>
<td>30-60 g proteína, 500-1000 mg (L-c y L-t) y 250-500 mg CLA</td>
<td>30-60 g proteína</td>
<td></td>
</tr>
<tr>
<td>UPN LAB</td>
<td>MEGA WHEY Low calorías</td>
<td>65 g</td>
<td>-</td>
<td>Polvo</td>
<td>Proteína suero de leche. Entre comidas y después del ejercicio.</td>
<td>39 g</td>
<td>2 cucharadas, una a tres veces al día</td>
<td>39-117 g proteína</td>
<td>52 g proteína, 10 g colágeno, 2 g L-c y 800 µg de picolinato de cromo</td>
<td></td>
</tr>
<tr>
<td>UPN LAB</td>
<td>Bi-PRO-Lite</td>
<td>54 g</td>
<td>5 g, L-c 1 g y picolinato de cromo 400 µg</td>
<td>Polvo</td>
<td>Proteína suero de leche. Después del ejercicio y antes de dormir.</td>
<td>26 g</td>
<td>1 cucharada, dos veces al día</td>
<td>52 g proteína, 10 g colágeno, 2 g L-c y 800 µg de picolinato de cromo</td>
<td>52 g proteína</td>
<td></td>
</tr>
<tr>
<td>UPN LAB</td>
<td>BI-PRO-MASS</td>
<td>75 g</td>
<td>1 g de HMB.</td>
<td>Polvo</td>
<td>Proteína suero de leche. Después del ejercicio y antes de dormir.</td>
<td>30 g</td>
<td>0.5 cucharadas, dos veces al día</td>
<td>60 g proteína y 2 g de HMB.</td>
<td>60 g proteína</td>
<td></td>
</tr>
<tr>
<td>UPN LAB</td>
<td>MEGAPLEX EX COMPLEX NIGHT</td>
<td>55 g</td>
<td>-</td>
<td>Polvo</td>
<td>Proteína de leche (caseína y suero). Después del ejercicio y antes de dormir.</td>
<td>40 g</td>
<td>1 cucharada, dos veces al día</td>
<td>80 g proteína.</td>
<td>80 g proteína</td>
<td></td>
</tr>
</tbody>
</table>
34 Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

Una descripción de algunos suplementos de proteína que se encuentran en el mercado colombiano e internacional.

<table>
<thead>
<tr>
<th>Marca</th>
<th>Nombre del Suplemento</th>
<th>Descripción</th>
<th>Tipo</th>
<th>Calidad</th>
<th>Uso recomendado</th>
<th>Proteína contenido</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPN LAB</td>
<td>MEGA SOY</td>
<td>2 cucharadas (55 g) contiene 45 g.</td>
<td>Polvo</td>
<td>Aislado de proteína de soya.</td>
<td>Entre comidas y después del ejercicio.</td>
<td>45 g.</td>
</tr>
<tr>
<td>BSN FINISH</td>
<td>SYNTHA-6 ISOLATE</td>
<td>1 cucharada (38 g) contiene 25 g.</td>
<td>Polvo</td>
<td>Proteína de leche (caseína y suero).</td>
<td>Antes y después del ejercicio.</td>
<td>25 g.</td>
</tr>
<tr>
<td>BSN FINISH</td>
<td>SYNTHA-6 RTD</td>
<td>1 botella de 429 mL contiene 40 g.</td>
<td>Líquido</td>
<td>Proteína de leche (caseína y suero).</td>
<td>Después del ejercicio.</td>
<td>40 g.</td>
</tr>
<tr>
<td>BSN FINISH</td>
<td>SYNTHA-6 EDGE</td>
<td>1 cucharada (38 g) contiene 24 g.</td>
<td>Polvo</td>
<td>Proteína de leche (caseína y suero).</td>
<td>Después del ejercicio y según su requerimiento nutricional.</td>
<td>-</td>
</tr>
<tr>
<td>BSN FINISH</td>
<td>SYNTHA-6</td>
<td>1 cucharada (47 g) contiene 22 g.</td>
<td>Polvo</td>
<td>Proteína de leche (caseína y suero).</td>
<td>Después del ejercicio y según su requerimiento nutricional.</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabla 9: Descripción de algunos suplementos de proteína que se encuentran en el mercado colombiano e internacional.
Tabla 9: Descripción de algunos suplementos de proteína que se encuentran en el mercado colombiano e internacional.

<table>
<thead>
<tr>
<th>Suplemento</th>
<th>Proteína</th>
<th>Dosificación</th>
<th>Uso recomendado</th>
<th>Vl proteína</th>
<th>Proteína recomendada</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSN FINISH FIRST PROTEIN CRISP</td>
<td>1 barra de 57 g contiene 20 g.</td>
<td>-</td>
<td>Barra</td>
<td>20 g</td>
<td>20-60 g proteína</td>
</tr>
<tr>
<td>UNIVER SAL EGG PRO</td>
<td>1 cucharada (34 g) contiene 24 g.</td>
<td>-</td>
<td>Polvo</td>
<td>24 g</td>
<td>48 g proteína</td>
</tr>
<tr>
<td>UNIVER SAL MILK AND EGG</td>
<td>1 cucharada (33 g) contiene 24 g.</td>
<td>-</td>
<td>Polvo</td>
<td>24 g</td>
<td>ng proteína según el peso corporal</td>
</tr>
<tr>
<td>UNIVER SAL ULTRA ISO WHEY</td>
<td>1 cucharada (31.5 g) contiene 25 g.</td>
<td>-</td>
<td>Polvo</td>
<td>25 g</td>
<td>25-75 g proteína</td>
</tr>
</tbody>
</table>
36 Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

Tabla 9: Descripción de algunos suplementos de proteína que se encuentran en el mercado colombiano e internacional.

<table>
<thead>
<tr>
<th>UNIVER SAL</th>
<th>ULTRA WHEY PRO</th>
<th>1 cucharada (30 g) contiene 21 g.</th>
<th>-</th>
<th>-</th>
<th>Polvo</th>
<th>Proteína suero de leche.</th>
<th>45 min después del ejercicio y entre comidas.</th>
<th>1-2 cucharadas, el día sin ejercitar. 1-2 cucharadas, dos veces el día de ejercicio.</th>
<th>21-42 g día sin ejercitar. 42g-84 g día de ejercicio.</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIVER SAL</td>
<td>HI PROTEIN BAR</td>
<td>1 barra de 85 g contiene 33 g.</td>
<td>-</td>
<td>-</td>
<td>Polvo</td>
<td>Proteína suero de leche y proteína de soya.</td>
<td>Cualquier momento del día.</td>
<td>-</td>
<td>33 g.</td>
</tr>
<tr>
<td>OPTIMUM NUTRITION</td>
<td>GOLD ESTÁNDAR 100% CASEIN</td>
<td>1 cucharada (33 g) contiene 24 g.</td>
<td>-</td>
<td>-</td>
<td>Polvo</td>
<td>Caseína</td>
<td>Post ejercicio y antes de dormir.</td>
<td>1 cucharada, dos veces al día.</td>
<td>24 g.</td>
</tr>
<tr>
<td>OPTIMUM NUTRITION</td>
<td>GOLD ESTANDAR 100% ISOLATE</td>
<td>1 cucharada (31 g) contiene 25 g.</td>
<td>-</td>
<td>-</td>
<td>Polvo</td>
<td>Proteína suero de leche.</td>
<td>Post ejercicio y entre comidas.</td>
<td>1 cucharada, dos a tres veces al día.</td>
<td>24 g.</td>
</tr>
</tbody>
</table>
Tabla 9: Descripción de algunos suplementos de proteína que se encuentran en el mercado colombiano e internacional.

| Suplemento | GOLD-ESTÁNDAR 100% PLANT | GOLD-ESTÁNDAR 100% WHEY | PROTEIN WATER | Consumo diario (g) | Proteína de arveja, sacha inchi y arroz. | Post ejercicio y entre comidas. | Consumo diario (g) | Proteína suero de leche. | Post ejercicio y entre comidas. | Rendimiento total diario (g) | Proteína suero de leche. | Durante el ejercicio, post ejercicio o en cualquier momento. | Cuantas veces se quiera al día. | Cantidad diaria recomendada (g) | N=Cantidad de gramos equivalente a peso corporal (1g proteína por kg peso corporal). Cantidad (PRO): se refiere a la cantidad de PRO en una cantidad dada de producto, según la tabla nutricional del producto. |
|----------------------------------|--------------------------|-------------------------|---------------|--------------------|--|---------------------------------|-------------------|--------------------------|---------------------------------|-----------------------------|------------------------------|---------------------------------|-------------------------------|---|
| OPTIMUM NUTRITION | 1 cucharada (38 g) contiene 24 g. | 1 cucharada (30.4 g) contiene 23,9 g. | 1 botella de 473 mL contiene 20 g. | - | - | Polvo | - | - | 24 g. | 24- 72g proteína. | 20 g | 20 g proteína o más. | 1 botella, cuantas veces se quiera al día. | 23,9-71,7 g proteína. | PRO=proteína, CHO=carbohidratos, aprox.: aproximado, L-c=L-carnitina, L-t=L-tartrato CLA= Ácido linoleico conjugado, HMB=β-hidroximetilburitarato de calcio, Vit.: vitamina, min: minuto. Polvo consumir con agua. Exceso: nutriente que está por encima del 50% del consumo diario para una dieta de 2000 calorías, sin considerar la proteína. Consumo total al día: Consumo de PRO y adiciones que vienen sugeridos en los suplementos. N=Cantidad de gramos equivalente a peso corporal (1g proteína por kg peso corporal). Cantidad (PRO): se refiere a la cantidad de PRO en una cantidad dada de producto, según la tabla nutricional del producto. |
38 Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

Tabla 10: Descripción de algunos suplementos de carbohidratos que se encuentran en el mercado colombiano e internacional.

<table>
<thead>
<tr>
<th>Marca comercial</th>
<th>Referencia</th>
<th>Cantidad CHO</th>
<th>Adición</th>
<th>Exceso</th>
<th>Presentación producto</th>
<th>Materia prima CHO.</th>
<th>Modo de consumo</th>
<th>Dosis diarias aprox.</th>
<th>CHO por dosis</th>
<th>Consumo total al día.</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPN LAB</td>
<td>NITRO SS</td>
<td>2 cucharadas (70 g) contiene 58 g.</td>
<td>3 g AKG, 2 g taurina, 1g L-c, 0,1 g glutamina y 0,2 g cafeína.</td>
<td>-</td>
<td>Polvo</td>
<td>Mal y Dex.</td>
<td>Antes de ejercitar y después de 30 min ejercitando.</td>
<td>1 cucharada, dos veces al día.</td>
<td>29 g.</td>
<td>58 g CHO, 3 g AKG, 2 g taurina, 1g L-c, 0,1 g glutamina y 0,2 g cafeína.</td>
</tr>
<tr>
<td>UPN LAB</td>
<td>MEGA CARBS</td>
<td>1 cucharada (70 g) contiene 40 g.</td>
<td>2 g glutamina, 2 g leucina, 1 g valina y 1,5 g de triglicéridos de cadena media.</td>
<td>Vit. C 60 mg</td>
<td>Polvo</td>
<td>Mal, Isom y Dex.</td>
<td>Durante el ejercicio.</td>
<td>1 cucharada</td>
<td>40 g.</td>
<td>40 g CHO(10 g isomaltosa), 2 g glutamina, 2 g leucina, 1 g valina y 1,5g de triglicéridos de cadena media.</td>
</tr>
<tr>
<td>RONNIE COLEMAN</td>
<td>KING CARB</td>
<td>1 cucharada (33 g) contiene 30 g.</td>
<td>-</td>
<td>-</td>
<td>Polvo</td>
<td>Dex.</td>
<td>Durante o después del ejercicio.</td>
<td>1 cucharada, una a dos veces al día.</td>
<td>30 g.</td>
<td>30-60 g CHO.</td>
</tr>
</tbody>
</table>
Tabla 10: Descripción de algunos suplementos de carbohidratos que se encuentran en el mercado colombiano e internacional.

<table>
<thead>
<tr>
<th>Marca</th>
<th>Nombre</th>
<th>Dosis 1 cucharada (g)</th>
<th>Forma</th>
<th>Sabor</th>
<th>Momento de consumo</th>
<th>Comentarios</th>
<th>Cucharadas/día</th>
<th>CHO (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMIX</td>
<td>CARBOJE T GAIN</td>
<td>1 cucharada (50 g) contiene 34 g. Además 7.5 PRO</td>
<td>Polvo</td>
<td>Mal, Dex, Isom y fructosa.</td>
<td>En cualquier momento del día.</td>
<td>1 cucharada, dos a tres veces al día.</td>
<td>34 g.</td>
<td>68-102 g</td>
</tr>
<tr>
<td>UNIVERSAL</td>
<td>CARBO PLUS</td>
<td>1 cucharada (18 g) contiene</td>
<td>Polvo</td>
<td>Dex y Mal.</td>
<td>Post ejercicio.</td>
<td>3 cucharadas</td>
<td>51 g.</td>
<td>51 g CHO.</td>
</tr>
<tr>
<td>Now SPORTS</td>
<td>CARBO GAIN</td>
<td>2/3 cucharada (67 g) contiene 63 g.</td>
<td>Polvo</td>
<td>Isom.</td>
<td>Antes, durante y después del ejercicio. Duplicar consumo si el entrenamiento dura más de 2 horas.</td>
<td>1 cucharada, 3 veces al día o 2 cucharadas, 3 veces al día.</td>
<td>63-126 g.</td>
<td>189-378 g CHO.</td>
</tr>
<tr>
<td>Now SPORTS</td>
<td>DEXTROSE POWDER</td>
<td>2 cucharadas (20 g) contiene 18 g.</td>
<td>Polvo</td>
<td>Dex.</td>
<td>Antes, durante y después del ejercicio. Duplicar consumo si el entrenamiento dura más de 2 horas.</td>
<td>2 cucharadas, 3 veces al día o 4 cucharadas, 3 veces al día.</td>
<td>18-36 g.</td>
<td>54-108 g CHO.</td>
</tr>
</tbody>
</table>
Tabla 10: Descripción de algunos suplementos de carbohidratos que se encuentran en el mercado colombiano e internacional.

<table>
<thead>
<tr>
<th>Suplemento</th>
<th>Descripción</th>
<th>Consumo</th>
<th>Beneficios</th>
<th>Exceso Nutricional</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTIMUM NUTRITION GLYCOMAIZE</td>
<td>1 cucharada (40 g) contiene 35 g.</td>
<td>Polvo</td>
<td>Antes durante y después del ejercicio. Consumir 3-5 g CHO por kg de (pc).</td>
<td>N cucharadas, tres veces al día.</td>
</tr>
<tr>
<td>MUSCLE MILK CYTOCARB II</td>
<td>4 cucharadas (56 g) contiene 52 g.</td>
<td>Polvo</td>
<td>Post ejercicio y entre comidas</td>
<td>4 cucharadas, dos veces al día.</td>
</tr>
<tr>
<td>EFX SPORTS KARBOLYN FUEL</td>
<td>1 cucharada (53,4 g) contiene 50 g.</td>
<td>Polvo</td>
<td>Antes durante y después del ejercicio.</td>
<td>1 cucharada, 3 veces al día.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marca comercial</th>
<th>Referencia</th>
<th>Cantidad (PRO-CHO)</th>
<th>Adición</th>
<th>Exceso</th>
<th>Presentación producto</th>
<th>Materia prima proteína.</th>
<th>Modo de consumo</th>
<th>Dosis diarias aprox.</th>
<th>PRO y CHO por dosis.</th>
<th>Consumo total al día.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSCLETech</td>
<td>PREMIUM MASS GAINER</td>
<td>2 cucharadas (330 g), contiene 53 g PRO y 260 g CHO.</td>
<td>-</td>
<td>-</td>
<td>Polvo</td>
<td>Maltodextrina y Proteína de leche (caseína y suero).</td>
<td>Antes de dormir y entre el desayuno y el almuerzo. Máximo dos dosis al día.</td>
<td>2</td>
<td>53 g PRO y 260 g CHO.</td>
<td>106 g PRO y 520 g CHO.</td>
</tr>
<tr>
<td>MUSCLETech</td>
<td>MASS TECH EXTREME 2000</td>
<td>6 cucharadas (499 g), contiene 63 g PRO y 384 g CHO.</td>
<td>10 g creatina</td>
<td>196 mg colesterol, Vit. C 30 mg, Vit. D 10 µg, tiamina 1,5 mg, riboflavina 1,5 mg, niacina 10,5 mg, Vit. B6 1,5 mg, ácido fólico 196 µg, B12 3 µg, biotina 158 µg, hierro 15 mg, yodo 79,5 µg, cromo 156 µg y cobre 1500 µg</td>
<td>Polvo</td>
<td>Dextrosa, isomaltosa y proteína de suero de leche.</td>
<td>6 cucharadas post ejercicio o 3 cucharadas post ejercicio y 3 entre comidas.</td>
<td>1</td>
<td>63 g PRO y 384 g CHO.</td>
<td>63 g PRO y 384 g CHO y 10 g creatina.</td>
</tr>
</tbody>
</table>
Tabla 11: Descripción de algunos suplementos de proteína + carbohidratos que se encuentran en el mercado colombiano e internacional.

<table>
<thead>
<tr>
<th>Suplemento</th>
<th>Cantidad</th>
<th>Contenido</th>
<th>Forma</th>
<th>Dosis</th>
<th>Fotografía</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSCLETECH</td>
<td>5 cucharadas (230g)</td>
<td>Calcio 750 mg y colesterol 200 mg</td>
<td>Polvo</td>
<td>5 cucharadas post ejercicio o 2.5 entre comidas</td>
<td></td>
</tr>
<tr>
<td>MEGAPLEX MASS TECH</td>
<td>3 cucharadas (135 g)</td>
<td>Polvo</td>
<td>Dextrosa, maltodextrina, Proteína de suero y creatina monohidrata</td>
<td>3 cucharadas post ejercicio y 3 entre comidas</td>
<td></td>
</tr>
<tr>
<td>UPN LAB X CREATINE POWER</td>
<td>4 cucharadas (265 g)</td>
<td>3 g creatina y 0.5 mg HMB</td>
<td>Polvo</td>
<td>Post ejercicio y antes de dormir</td>
<td></td>
</tr>
</tbody>
</table>

- 63 g PRO y 132 g CHO. | 2 | 44 g PRO y 220 g CHO. | 2 | 63 g PRO y 132 g CHO. |
Tabla 11: Descripción de algunos suplementos de proteína + carbohidratos que se encuentran en el mercado colombiano e internacional.

<table>
<thead>
<tr>
<th>Suplemento</th>
<th>Descripción</th>
<th>Cantidad</th>
<th>Dosis</th>
<th>Tiempo de Consumo</th>
<th>Proteína (g)</th>
<th>Carbohidratos (g)</th>
<th>HMB (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPN LAB GAINZ</td>
<td>3.5 cucharadas (290 g)</td>
<td>0.5 mg HMB</td>
<td>Polvo</td>
<td>Dextrosa, maltodextrina, proteína de soya y proteína de leche (caseína y suero).</td>
<td>Post ejercicio o entre comidas.</td>
<td>1</td>
<td>68 g PRO y 208 g CHO.</td>
</tr>
<tr>
<td>BSN FINISH TRUE MASS</td>
<td>3 cucharadas (165 g)</td>
<td>-</td>
<td>Polvo</td>
<td>Maltodextrina y proteína de leche (caseína y suero).</td>
<td>Post ejercicio y entre comidas.</td>
<td>2</td>
<td>46 g PRO y 90 g CHO.</td>
</tr>
<tr>
<td>BSN FINISH TRUE MASS 1200</td>
<td>2 cucharadas (310 g)</td>
<td>-</td>
<td>Polvo</td>
<td>Maltodextrina, proteína de leche (caseína y suero) y proteína de huevo.</td>
<td>Post ejercicio y entre comidas.</td>
<td>2</td>
<td>50 g PRO y 220 g CHO.</td>
</tr>
<tr>
<td>UNIVERSAL REAL GAINS</td>
<td>3,5 cucharadas (155 g)</td>
<td>-</td>
<td>Polvo</td>
<td>Maltodextrina y proteína de leche (caseína y suero).</td>
<td>Post ejercicio y antes de dormir.</td>
<td>2</td>
<td>52 g PRO y 87 g CHO.</td>
</tr>
</tbody>
</table>
Tabla 11: Descripción de algunos suplementos de proteína + carbohidratos que se encuentran en el mercado colombiano e internacional.

<table>
<thead>
<tr>
<th>OPTIMUM NUTRITION</th>
<th>SERIOUS MASS</th>
<th>2 cucharadas (334g), contiene 50g PRO y 252g CHO.</th>
<th>-</th>
<th>Vit. A 1500 µg, Vit. C 60 mg, Vit. E 20 mg, Vit. D 5 µg, tiamina 4,8 mg, niacina 50 mg, riboflavina 2 mg, B6 5 mg, ácido fólico 400 µg, B12 10 µg, biotina 300 µg, ácido pantoténico 25 mg, calcio 590 mg, yodo 150 mg, zinc 15 mg, selenio 70 µg, cobre 1600 µg, magnesio 2 mg, cloro 120 µg y molibdeno 75 µg.</th>
<th>Polvo</th>
<th>Maltodextrina, Proteína de leche (caseína y suero) y proteína de huevo.</th>
<th>Post ejercicio y entre comidas.</th>
<th>2</th>
<th>50 g PRO y 252 g CHO.</th>
<th>100 g PRO y 504 g CHO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTIMUM NUTRITION</td>
<td>GOLD ESTANDARD GAINER</td>
<td>2 cucharadas (203 g), contiene 55 g PRO y 112 g CHO.</td>
<td>-</td>
<td>Calcio 500 mg</td>
<td>Polvo</td>
<td>Almidón y Proteína de leche (caseína y suero).</td>
<td>Post ejercicio y entre comidas.</td>
<td>2</td>
<td>55 g PRO y 112 g CHO.</td>
<td>110 g PRO y 224 g CHO.</td>
</tr>
</tbody>
</table>
Suplemento

Tabla 11: Descripción de algunos suplementos de proteína + carbohidratos que se encuentran en el mercado colombiano e internacional.

| UNIVERSAL | GAIN FAST | 5 cucharadas (220 g), contiene 37 g PRO y 161 g CHO. | - | Vit. A 1450 µg, Vit. C 57 mg, Vit. E 19 mg, Vit. D 10 µg, tiamina 1,4 mg, niacina 19 mg, riboflavina 2 mg, B6 1,9 mg, ácido fólico 380 µg, B12 5,7 µg y ácido pantoténico 9,6 mg | Polvo Maltodextrina, fructosa, dextrosa y proteína suero de leche. | Cualquier momento del día. | 1-3 | 37 g PRO y 161 g CHO. | 111 g PRO y 483 g CHO. |

PRO: proteína, CHO: carbohidrato, Vit.: vitamina, HMB=ß-hidroximetilburitarato de calcio. Ninguno recomienda reducir el consumo de otros alimentos o comidas. Polvo consumir con agua. Exceso: nutriente que está por encima del 50% del consumo diario para una dieta de 2000 calorías, sin considerar PRO y CHO. Consumo total al día: Consumo de PRO y CHO y adiciones que vienen sugeridas en los suplementos. n=Cantidad de gramos equivalente a peso corporal (1g proteína por kg peso corporal). Cantidad (PRO-CHO): se refiere a la cantidad de PRO y CHO en una cantidad dada de producto, según la tabla nutricional del producto.
3.2 PROTEÍNA EN LOS SUPLEMENTOS DEPORTIVOS

Al momento de escoger las materias primas se analiza principalmente la calidad de la materia prima y el costo de esta. Por este fin se han estudiado diferentes fuentes de proteína para la creación de mejores suplementos deportivos. Como son la proteína de huevo, proteína de soya, proteína de arroz, caseína (80% proteína leche) y suero de leche (20 % proteína leche) (Garba & Kaur, 2014; Hemant H Gangurde, Mayur A Chordiya, Pooja S Patil, 2017). Donde el principal aminoácido que se espera presente es la leucina, por su efecto anabólico en la síntesis de proteína (Phillips et al., 2009; Rahimi et al., 2017).

Se han venido llevando estudios sobre las diferentes fuentes de proteínas y su impacto en el rendimiento y recuperación de actividades físicas moderadas e intensas. Llegando a la conclusión que las que mejor generan un desempeño son la caseína y el suero de leche (Dideriksen et al., 2013).

La proteína de huevo como suplemento, no demostró una mejora sustancial en cuanto a rendimiento físico (Hida et al., 2012). En el caso de la soya como suplemento proteico, se ha estudiado poco con relación a otras fuentes, pero teniendo algunos datos buenos en cuanto a su efectividad para atletas (Shenoy et al., 2016), aunque en el caso de adultos mayores se encontró un menor efecto en la síntesis de proteína en comparación con el suero de leche concentrado, al realizar ejercicios de resistencia (Yang et al., 2012). En otro estudio en personas mayores produjo una disminución de la fuerza y resistencia física en comparación con proteína de suero concentrado, (Thomson, Brinkworth, Noakes, & Buckley, 2016).

En cuanto a la proteína de arroz, esta mostró iguales resultados que la proteína de suero concentrado, mejorando el desempeño al realizar ejercicio, disminuyendo el tiempo de recuperación y el dolor post entrenamiento (Joy et al., 2013). Debido a que la proteína de arroz en comparación con la proteína de suero de leche, contiene dos terceras partes de leucina (Joy et al., 2013). Que estimula la síntesis de proteína en el músculo y el tiempo de recuperación de este (Churchward-Venne et al., 2012; Phillips et al., 2009; Wall et al., 2013a).

Cuando se realizaron estudios comparando la proteína de caseína con la de suero de leche, se encontraron diferencias y similitudes según los autores. En un estudio realizado en músculos de rata atrofiados intencionalmente, se encontró que la dieta que se suplementó con suero de leche tenía mejor resultado que la dieta de caseína, en cuanto a recuperación, fuerza y velocidad del músculo (Martín et al., 2013). En un estudio comparativo entre caseína y suero de leche como suplemento proteico para atletas de resistencia, los datos mostraron una mejora similar en el rendimiento físico (Wilborn et al., 2013). En otro se comparó el consumo de caseína y suero de leche concentrado 1,5 g/kg/día en comparación al aumento de fuerza y masa corporal magra, obteniendo una diferencia significativa, observando mejores resultados en aquellos que consumieron suero de leche concentrado(Cribb, 2008). En cambio, un estudio que medía la absorción de la proteína y su efecto anabólico encontró que el suero de leche concentrado es absorbido más rápido que la caseína, aunque la síntesis de proteína muscular con suero de leche concentrado y caseína son similares, se mantienen durante un
mayor tiempo la síntesis de proteína con el consumo de caseína (Churchward-Venne et al., 2012; Dideriksen et al., 2013; Hemant H Gargurde, Mayur A Chordiya, Pooja S Patil, 2017; Hernández-Rojas F & Vélez-Ruiz, 2014; Shenoy et al., 2016; Soop et al., 2012; Wilborn et al., 2013; G. Wu, 2016a; Yang et al., 2012). Cabe aclarar que la proteína de suero de leche y de la caseína, son la de mayor biodisponibilidad en comparación con la proteína huevo, arroz y soya (Churchward-Venne et al., 2012; Hemant H Gargurde, Mayur A Chordiya, Pooja S Patil, 2017; Phillips, 2012b; Wilborn et al., 2013).

Cuando se realizaron estudios con suero de leche en comparación con otras fuentes, se presentaron mayores resultados con el suero de leche, en comparación con las otras fuentes de proteína. Debido a su alto contenido de leucina, que estimula mTOR y a su vez disminuye el tiempo de recuperación de los músculos (Churchward-Venne et al., 2012; Di Camillo et al., 2014; Phillips et al., 2009; Rowlands et al., 2014; G. Wu, 2016a; Yang et al., 2012).

Cuando se compara la calidad de la proteína de suero de leche concentrado con las otras fuentes (tabla 12), esta es de mayor calidad (Hernández-Rojas F & Vélez-Ruiz, 2014). Pero cuando se aumenta la cantidad de proteína ingerida de otras fuentes en comparación a la de suero de leche concentrado, se presentan los mismo resultados (Joy et al., 2013). Pero esto mayor consumo de proteína puede conllevar a problemas de salud.

Tabla 12: Comparación de la calidad proteica de diferentes proteínas alimentarias determinadas por distintos métodos.

<table>
<thead>
<tr>
<th>Proteína</th>
<th>Computo de aminoácidos</th>
<th>PDCAAS</th>
<th>Digestibilidad (%)</th>
<th>PER</th>
<th>VB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buey</td>
<td>0,94</td>
<td>0,92</td>
<td>98</td>
<td>2,9</td>
<td>80</td>
</tr>
<tr>
<td>Caseína</td>
<td>1</td>
<td>1</td>
<td>99</td>
<td>2,5</td>
<td>80</td>
</tr>
<tr>
<td>Gluten (trigo)</td>
<td>0,45</td>
<td>0,25</td>
<td>91</td>
<td>0,34</td>
<td>54</td>
</tr>
<tr>
<td>Huevo</td>
<td>1,21</td>
<td>1</td>
<td>98</td>
<td>3,8</td>
<td>88-100</td>
</tr>
<tr>
<td>Soya</td>
<td>0,99</td>
<td>1</td>
<td>95</td>
<td>2,2</td>
<td>74</td>
</tr>
<tr>
<td>Suero lácteo</td>
<td>1,11</td>
<td>1</td>
<td>99</td>
<td>3,2</td>
<td>100</td>
</tr>
</tbody>
</table>

En la Tabla 12, PDCAAS se refiere a el análisis del aminoácido limitante indispensable en la proteína como porcentaje del mismo aminoácido en el patrón de referencia de aminoácidos indispensables dado por la FAO, ONU, IOM, FNB, corrigiendo este porcentaje con el coeficiente de digestibilidad verdadero de la proteína analizada (Augustin et al., 2006). Con relación a PER, se refiere al aumento de peso de un ser vivo (g), en relación al consumo de proteína (g). Todo valor de PER mayor a 2,5 en una proteína, se considera de buena calidad (Hernández-Rojas F & Vélez-Ruiz, 2014). En cuanto a valor biológico de la proteína, se relación con los aminoácidos presente en esta y los necesarios por el humano, teniendo en cuenta su digestión, absorción e incorporación a las proteínas del cuerpo (Moore & Soeters, 2015).
Los suplementos de proteína contienen principalmente como fuente de proteína suero de leche concentrado (Hernández-Rojas F & Vélez-Ruiz, 2014), en algunos casos caseína y en menor medida soya. Esto debido a la calidad de la proteína presente (Tabla 12) y el costo de esta. Además de que el suero de leche es un subproducto de la industria del queso, que tiene un bajo precio y un valor biológico mayor que las otras fuentes (Hemant H Gangurde, Mayur A Chordiya, Pooja S Patil, 2017; Hernández-Rojas F & Vélez-Ruiz, 2014).

Aunque la Tabla 12 muestra que varias fuentes de proteína tienen un PDCAAS (digestibility-corrected amino acid scores) igual a 1. Las que generan mayor síntesis proteica en el músculo son suero de leche concentrado y caseína, en comparación con la soya (Churchward-Venne et al., 2012; Potgieter, 2013). Además de que las proteínas de fuente animal son de mejor calidad que la vegetal, en cuanto a la proporción de aminoácidos (Joy et al., 2013; G. Wu, 2016a).

Como muestra la Tabla 13, en cuanto a la cantidad de aminoácidos ofrecidos por la soya, se nota una menor cantidad de mg de aminoácidos ofrecidos por gramos de proteína, en comparación con la composición corporal. Además de que muestra el suero de leche concentrado una mayor utilización neta de la proteína, en comparación con las otras fuentes.

Tabla 13: Composición aminoácidos esenciales de diferentes fuentes de proteína y cuerpo humano, con análisis PDCAAS Y UNP para las diferentes fuentes.

<table>
<thead>
<tr>
<th>Aminoácido (mg/g)</th>
<th>Sólidos leche (Sin materia grasa)</th>
<th>Caseína</th>
<th>Suero de leche concentrado</th>
<th>Proteína de Soya aislada</th>
<th>Proteína cuerpo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histidina</td>
<td>20</td>
<td>27</td>
<td>20</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>Isoleucina</td>
<td>63</td>
<td>54</td>
<td>76</td>
<td>44</td>
<td>35</td>
</tr>
<tr>
<td>Leucina</td>
<td>77</td>
<td>82</td>
<td>108</td>
<td>62</td>
<td>75</td>
</tr>
<tr>
<td>Lisina</td>
<td>54</td>
<td>73</td>
<td>101</td>
<td>62</td>
<td>73</td>
</tr>
<tr>
<td>Metionina+(Cys)</td>
<td>33</td>
<td>28</td>
<td>48</td>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td>Fenilalanina+(Tyr)</td>
<td>48</td>
<td>100</td>
<td>67</td>
<td>88</td>
<td>73</td>
</tr>
<tr>
<td>Treonina</td>
<td>37</td>
<td>54</td>
<td>44</td>
<td>32</td>
<td>42</td>
</tr>
<tr>
<td>Triptófano</td>
<td>15</td>
<td>12</td>
<td>26</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Valina</td>
<td>55</td>
<td>64</td>
<td>72</td>
<td>54</td>
<td>49</td>
</tr>
<tr>
<td>PDCAAS</td>
<td>121</td>
<td>123</td>
<td>115</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>UNP</td>
<td>86</td>
<td>78</td>
<td>92</td>
<td>72</td>
<td></td>
</tr>
</tbody>
</table>

Por razones como el bajo costo del suero de leche, calidad proteica del suero de leche y que esta es la principal materia prima en prácticamente todos los suplementos. Se revisa principalmente sobre la preparación del suero de leche concentrado. En el gráfico 2 se muestra la cantidad de sólidos totales en leche y la distribución de la proteína entre el suero de leche y la caseína.

Gráfico 2: Sólidos y contenido de proteína en leche.

3.3 Suero de leche

Este alimento por un largo tiempo se ha considerado un desecho de la industria (Hernández-Rojas F & Vélez-Ruiz, 2014; Ogilver, 2008). Pero con el paso del tiempo, se ha comenzado a usar para la generación de nuevos alimentos.

Algunos alimentos a base de suero de leche se pueden considerar alimentos funcionales. Porque aparte de su valor nutricional, puede brindar un efecto beneficioso al organismo (Hernández-Rojas F & Vélez-Ruiz, 2014). Resultando en un mejor estado de salud, bienestar y/o porque reduce la probabilidad de una enfermedad.

Algunas proteínas que contiene el suero de leche tiene efectos benéficos (Hemant H Gangurde, Mayur A Chordiya, Pooja S Patil, 2017). Como la β-lactoglobulina que brinda inmunidad pasiva, α-lactoalbúmina que previene el cáncer, inmunoglobulinas para el tratamiento y prevención de infecciones bacterianas, etc. (Augustín et al., 2006; Hemant H Gangurde, Mayur A Chordiya, Pooja S Patil, 2017; Hernández-Rojas F & Vélez-Ruiz, 2014; Ogilver, 2008).

Aparte suero de leche concentrado ofrece una alta cantidad de aminoácidos esenciales 42-45% (Phillips et al., 2009) incluso 45-55% (Cribb, 2008), siendo bajo en grasa, carbohidratos y lactosa.
Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

El suero de leche antes de sufrir cualquier tratamiento, debe ser pasteurizado para inactivar microorganismo y enzimas provenientes de la preparación del queso (Hernández-Rojas F & Vélez-Ruiz, 2014; Magali, 2013; Ogilver, 2008).

Los suplementos que generalmente consumen los deportistas son aquellos que vienen preparados en polvo, pastas, y/o alimentos preparados como los cakes.

Pero los que mayormente se ofrecen en el mercado son los que vienen en polvo. Estos suplementos se preparan usualmente mediante secado por aspersión o atomización (Magali, 2013; Ogilver, 2008). En cuanto a la microfiltración y ultrafiltración se usa como un coadyuvante antes del secado por aspersión (Magali, 2013). Existen otros métodos de secado, pero el más utilizado es este.

3.3.1 Ultrafiltración

En la ultrafiltración se retiene proteína, grasa y bacterias (Magali, 2013; Ogilver, 2008). La ultrafiltración se realiza igual que la microfiltración, mediante flujo cruzado a presión. La principal diferencia entre microfiltración y ultrafiltración, aparte del tamaño de partícula que retiene, es la concentración que adquiere el líquido a tratar. Lo retenido también se le conoce como retentado.

La ultrafiltración del suero crudo produce en promedio un aumento de sólidos totales de 9%, pasando de 7% a 16%. Aumentando en promedio 6.2 veces la concentración de proteína (Ogilver, 2008). Como muestra la tabla 14.

Tabla 14: Contenido nutricionales suero de leche.

<table>
<thead>
<tr>
<th></th>
<th>Suero</th>
<th>Grasa</th>
<th>Proteína</th>
<th>Lactosa</th>
<th>Minerales</th>
<th>Sólidos no grasos</th>
<th>Sólidos totales</th>
<th>Humedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crudo</td>
<td>0.29</td>
<td>1.25</td>
<td>4.48</td>
<td>0.74</td>
<td>6.47</td>
<td>6.76</td>
<td>93.24</td>
<td></td>
</tr>
<tr>
<td>Concentrado</td>
<td>2.09</td>
<td>7.79</td>
<td>5.25</td>
<td>1.12</td>
<td>14.16</td>
<td>16.25</td>
<td>83.75</td>
<td></td>
</tr>
</tbody>
</table>

Algunos tipos de proteínas que quedan en el retentado después de la ultrafiltración son α-lactoalbúmina, β-lactoglobulina, seroalbúmina bovina, inmunoglobulina, lactoferrina y péptidos proteicos (Hernández-Rojas F & Vélez-Ruiz, 2014; Ogilver, 2008).

El hecho de realizar primero una microfiltración o ultrafiltración antes de realizar el secado por aspersión aumenta el porcentaje de proteína en suero concentrado (Magali, 2013; Ogilver, 2008). Aumentando de 12% de proteína, que es lo normalmente ofrecido de suero en polvo, a un porcentaje de 47.32% de proteína en suero en polvo, por haber sido tratado anteriormente con ultrafiltración (Magali, 2013; Ogilver, 2008). Esto permite que la realización de productos en polvo con un mayor contenido de proteína sea posible.
El proceso de ultrafiltración ayuda en la separación de la proteína del suero de leche, produciendo una mayor concentración de esta (tabla 15). Esto es realmente útil, para optimizar el proceso de concentración del suero de leche. Y es más usado que la microfiltración (Hemant H Gangurde, Mayur A Chordiya, Pooja S Patil, 2017). Debido a que se puede retener más proteína con la ultrafiltración, como muestra la tabla 16.

Tabla 15: Composición estimada de distintos aislados proteicos y suero de leche.

<table>
<thead>
<tr>
<th>Productos</th>
<th>Proteína</th>
<th>Lactosa</th>
<th>Grasa</th>
<th>Minerales</th>
<th>Humedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suero leche (polvo)</td>
<td>11-14.5</td>
<td>63-75</td>
<td>1-1.5</td>
<td>8.2-8.8</td>
<td>3.5-5</td>
</tr>
<tr>
<td>WPC 34%</td>
<td>> 34</td>
<td>< 55</td>
<td>< 4</td>
<td>< 8</td>
<td>< 4</td>
</tr>
<tr>
<td>WPC 35%</td>
<td>34-35.4</td>
<td>51-54.5</td>
<td>3.5-5</td>
<td>3.1-8</td>
<td>-</td>
</tr>
<tr>
<td>WPI</td>
<td>80-82</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Tabla 16: Filtración del suero de leche por membrana.

<table>
<thead>
<tr>
<th>Proceso concentrar la proteína</th>
<th>Masa molecular retenida</th>
<th>Componentes retenidos</th>
<th>Permeado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microfiltración</td>
<td><100-500 kDa</td>
<td>Lípidos, bacterias, proteínas de alto peso molecular</td>
<td>Agua, minerales, lactosa y proteínas de bajo peso molecular</td>
</tr>
<tr>
<td>ultrafiltración</td>
<td><1-100 kDa</td>
<td>Proteínas, lípidos y bacterias</td>
<td>Agua, minerales, lactosa</td>
</tr>
<tr>
<td>Nanofiltración</td>
<td><0.1-1 kDa</td>
<td>Todo excepto agua y algunos iones</td>
<td>Agua e iones monovalentes</td>
</tr>
<tr>
<td>Osmosis reversa</td>
<td><0.1 kDa</td>
<td>Todo excepto el agua</td>
<td>Agua</td>
</tr>
</tbody>
</table>

En la figura 4 se muestra mediante una imagen, como el suero de leche es pasado por una membrana para realizar una ultrafiltración. En donde solo pasa lo que tenga una masa molecular menor a 100 KDA.
52 Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

Figura 4: Representación de la ultrafiltración del suero de leche.

3.3.2 Secado por aspersión
El secado por aspersión se usa más que otros tipos de secado, como puede ser secado de tambor, secado rotatorios, secado de charolas, etc. Debido a que el secado por aspersión evapora en un menor tiempo (Ogilver, 2008). Siendo esto es una ventaja al tratar un alimento como el suero de leche, ya que el lactosuero es un alimento sensible a el aumento de temperatura, y por ende debe ser secado lo más rápido posible (Ogilver, 2008).

El principio del secado por aspersión es pasar el líquido en forma de pequeñas gotas por una corriente de aire caliente, produciendo un muy breve tiempo de interacción entre los dos. Este proceso aparte de deshidratar el líquido, expulsa la humedad por la misma presión con la que se impulsa el aire caliente (Guardiola Rodríguez, 2015; Ogilver, 2008). Los compuestos sólidos caen al fondo, donde son recogidos.

La concentración del producto por deshidratación tiene una alta importancia en la conservación de los alimentos. Debido a que al retirar la humedad del producto, la actividad microbiana y enzimática se ve reducida o detenida (Ogilver, 2008). Aparte de mejorar la vida útil del producto, facilita el manejo y transporte de este, por el hecho de que reduce el tamaño al retirar la humedad de este (Guardiola Rodríguez, 2015; Magali, 2013; Ogilver, 2008).

3.3.3 Suero de leche concentrado
El suero de leche concentrado ofrece una alta cantidad de aminoácidos esenciales 45-55%, siendo bajo en grasa, carbohidratos y lactosa (Cribb, 2008; Phillips et al., 2009). Es una fuente alta de aminoácidos de cadena ramificada (BCAA) (23-25%) (Hemant H Gangurde, Mayur A Chordiya, Pooja S Patil, 2017), aportando 14g de leucina por cada 100g de proteína (Burd, Holwerda, et al., 2010; Cribb, 2008; Phillips et al., 2009).

Este suero de leche concentrado, tiene entre 35-85% de proteína (Hemant H Gangurde, Mayur A Chordiya, Pooja S Patil, 2017).
3.3.4 Suero de leche aislado

Conociendo esto, se puede absorber la proteína por intercambio catiónico. Esta después se libera con un cambio de pH, permitiendo aplicar los procesos de ultrafiltración y secado a la fase móvil, para una mayor concentración de la proteína (Garba & Kaur, 2014; Hemant H Gangurde, Mayur A Chordiya, Pooja S Patil, 2017). Esta proteína se caracteriza por un alto contenido de proteína, pero muy bajo en lactosa y lípidos (Garba & Kaur, 2014; Hemant H Gangurde, Mayur A Chordiya, Pooja S Patil, 2017). Esto podría permitir su consumo a los intolerantes a la lactosa.

3.3.5 Suero de leche hidrolizado
La hidrólisis de la proteína consiste en una “predigestión” de estas por enzimas hidrolíticas, que permite una mayor concentración de proteína y más fácil absorción de la proteína por el humano (Hemant H Gangurde, Mayur A Chordiya, Pooja S Patil, 2017; Silvestre et al., 2012). Este producto por su alta concentración de proteína y mayor digestibilidad, tiene un mayor precio (Hemant H Gangurde, Mayur A Chordiya, Pooja S Patil, 2017). Esto puede hacer que sea menos fácil de adquirir.

3.4 Carbohidratos en los suplementos deportivos
En cuanto al uso de carbohidratos en suplementos, los que principalmente se usan son maltodextrina e isomaltosa. En otros suplementos que no se encuentra en la tabla 10 y 11, se usa isomaltulosa. Estos pueden venir compuestos de glucosa y/o fructosa.

3.4.1 Glucosa - dextrosa
El nombre de la glucosa proviene de la palabra griega “glykys” que significa dulce más el sufijo “ose” que significa azúcar (Khowala, Verma, Rukmani, Mahavidyalaya, & Banik, 2008). Solo el de conformación D-glucosa en biológicamente activo (Khowala et al., 2008)

La glucosa es el carbohidrato más común en la naturaleza, también conocido como dextrosa (Paul M. Insel, R. Elaine Turner, 2006). Este usualmente no está presente como monosacárido en los alimentos, en cambio se encuentra unido a otros carbohidratos o a otras glucosas, formando disacáridos, almidón o fibra dietaria (Paul M. Insel, R. Elaine Turner, 2006).

En las células la glucosa brinda energía a las células (Paul M. Insel, R. Elaine Turner, 2006). Esta se oxidada en las células del hígado y producen adenosín trifosfato (ATP), siendo el principal compuesto de energía.
54 Efectos del consumo de suplementos proteicos y de carbohidratos en físicoculturistas y/o deportistas de fuerza

Figura 5: Glucosa

La fructosa, también conocido como el azúcar de las frutas, es adicionado en varios alimentos por su dulzor (Paul M. Insel, R. Elaine Turner, 2006). Este carbohidrato es transformado por el hígado en glucosa (Paul M. Insel, R. Elaine Turner, 2006).

La fructosa se considera el azúcar natural más dulce, siendo el doble de dulce que la sacarosa (Khowala et al., 2008; Paul M. Insel, R. Elaine Turner, 2006).

Figura 6: Fructosa

3.4.2 Fructosa

La maltodextrina tiene una composición promedio de monosacáridos 0.8%, disacáridos 2.9%, trisacáridos 4.4%, tetrasacáridos 3.8% y Pentasacáridos o superiores 88.1% (Balboa, 2014). La maltodextrina es el producto de la hidrólisis ácida, enzimática o mixta del almidón (Luis & García, 2013), que puede venir de diferentes fuentes y que se constituye por glucosas unidas mediante enlaces glucosídicos. La maltodextrina se digiere y absorbe en el intestino (Vargas-Zárate, 2016).

La hidrólisis enzimática se puede dar por α-amilasa, β-amilasa, glucoamilasa, pululanasa e isoamilasa (Luis & García, 2013). La α-amilasa es la enzima que más se usa al momento de obtener maltodextrina del almidón (Luis & García, 2013). Esta enzima ejerce la hidrólisis de forma aleatoria en los enlaces glucosídicos α(1-4) al interior del sustrato (Luis & García, 2013).
Cuando se produce maltodextrina por hidrólisis ácida, se somete el almidón al ácido clorhídrico o sulfúrico (Luis & García, 2013). Las moléculas del almidón son cortadas también al azar, como ocurre con la α-amilasa. Se considera mixta cuando se combina el método de hidrólisis enzimática e hidrólisis ácida.

La industria cada vez usa más la hidrólisis enzimática, por ser un método en el que se puede tener mayor control en la hidrólisis, no se obtienen materiales de color ni sabor amargo y se elimina la etapa de refinamiento y eliminación de materiales coloridos (Luis & García, 2013).

Figura 7: Maltodextrina

3.4.4 Isomaltosa

Figura 8: Isomaltosa
3.4.5 Isomaltulosa
La isomaltulosa o palatinosa es un disacárido de glucosa y fructosa unido por α(1-6) (figura 5), este se encuentra de forma natural en la miel y caña de azúcar (Sawale, Shendurse, Mohan, & Patil, 2017; Schmitz, Hofheins, & Lemieux, 2010).

La isomaltulosa se obtiene mediante la conversión enzimática de la sacarosa. La fermentación microbiana se da por bacterias inmovilizadas como Leuconos toco mesenteroides, L. mesenteroides, Erwinia (Preparation, Application, Data, & Wiseman, 1982; L. Wu & Birch, 2011). Pasando de sacarosa (a-D-glucopiranosil-1,2-D-fructofuranosa) a isomaltulosa o palatinosa (a-D-glucopiranosil-1,6-Dfructofuranosa)(L. Wu & Birch, 2011).

Figura 9: Isomaltulosa

4 EFECTOS DEL CONSUMO DE SUPLEMENTOS PROTEICOS Y/O CARBOHIDRATOS EN FISICOCULTURISTAS Y/O DEPORTISTAS DE FUERZA

4.1 Efecto del consumo de suplementos

Los efectos del consumo de suplementos de proteína, carbohidratos, proteína-carbohidratos se describen a continuación. Para el caso de fisicoculturistas y deportistas de fuerza, se analiza el efecto conjunto de ejercicio de fuerza y resistencia. Ya que ambos grupos, se deben ejercitar de ambas maneras para un mejor resultado (Cribb, 2008; Dideriksen et al., 2013; L. Holm et al., 2008; Joy et al., 2013).

Se considera que el consumo de suplementos, ya sea de proteína, carbohidratos, proteína-carbohidratos, se asimila más en presentación líquido, que como un sólido (Churchward-Venne et al., 2012; Wilborn et al., 2013). Esto indica que suplementos en polvos deben ser disueltos en agua para una mejor asimilación.

En cuanto al ejercicio, el ejercicio de resistencia y/o fuerza genera un efecto de hipertrofia, y un estado anabólico después de terminado este (Cribb, 2008; Dideriksen et al., 2013; Joy et al., 2013). Por esto, el mejor momento de consumo de los suplementos se da entre las primeras 0-3 horas después del ejercicio (Cermak et al., 2012; Churchward-Venne et al., 2012; Dideriksen et al., 2013; Lars Holm et al., 2010; G. Wu, 2016a), siendo este periodo de tiempo conocido como ventana anabólica. Debido a que el ejercicio aumenta la tasa de síntesis proteica entre 100-150% (gráfico 3) por encima de la tasa basal, esto acompañado de un consumo de buena calidad de proteína con suficiente energía (carbohidratos) post ejercicio, producirá el mayor efecto anabólico (Churchward-Venne et al., 2012).

Aunque la sensibilidad al consumo de proteína y síntesis proteica se mantiene durante 24-48 horas después del ejercicio (Bechshoef et al., 2013; Dideriksen et al., 2013; Phillips et al., 2009), esta decrece rápidamente después de tres horas (Churchward-Venne et al., 2012; G. Wu, 2016a). Con esta apertura de 48 horas se recomienda el consumo post ejercicio y el consumo entre comidas de suplementos de proteína y carbohidratos (G. Wu, 2016a).

Además se recomienda consumir la proteína y/o carbohidratos totales en diferentes momentos del día (G. Wu, 2016a). Ya que el hecho de consumir la mayor parte de proteína en una sola comida, genera menor síntesis proteica, que dividirla en varias comidas (Churchward-Venne et al., 2012; Cribb, 2008; Phillips et al., 2009).
También se considera que el consumo de suplementos proteicos entre comidas, tiene un efecto anabólico (Churchward-Venne et al., 2012; Cribb, 2008), pero no de la misma manera que al momento del post ejercicio (ventana anabólica).

En cuanto al consumo de suplementos de carbohidratos, este es beneficioso para síntesis de glucógeno gastado antes, durante y después del ejercicio (Burke et al., 2011; Churchward-Venne et al., 2012; Wallis et al., 2008). Permitiendo mantener un buen desempeño durante el ejercicio, además de una recuperación más rápida de este (Burke et al., 2011; Churchward-Venne et al., 2012; A. Jeukendrup, 2014; A. E. Jeukendrup, 2010; A. E. Jeukendrup & Jentjens, 2000; Peinado et al., 2013). Evitando la hipoglicemia, siendo este un limitante de la actividad física y por ende del rendimiento (Décombaz et al., 2011; Peinado et al., 2013; Wallis et al., 2008).

El consumo de proteína debe ser no mayor a 20-25g por porción, y el consumo de carbohidratos según su nivel de actividad física y peso, en relación 1:3-4 respectivamente (Dideriksen et al., 2013; Phillips et al., 2009; Potgieter, 2013).

Todo este efecto anabólico se convierte en una mayor síntesis proteica en el músculo, aumento en el tamaño muscular, recuperación del músculo y mejorando en el rendimiento deportivo (Churchward-Venne et al., 2012; Dideriksen et al., 2013).

Los suplementos se consideran ergogénicos si muestran algún efecto positivo en el deportista como mayor rapidez, poder levantar más peso, una recuperación más rápida, una adaptación más rápida y en mayor rendimiento en general al momento del ejercicio (Kreider et al., 2010). En este caso los suplementos de proteína y carbohidratos lo son.

Aparte se describe brevemente las adiciones que contienen los suplementos, demostrando según la literatura si tienen o no efecto.

Este consumo de suplementos es beneficioso para el deportista cuando lo consume en el momento y cantidad adecuada. Pero cuando el deportista consume más de lo recomendado se puede presentar diferentes problemas de salud. Como son incomodidad intestinal, hiperaminoacidemia, hiperamonemia, hiperinsulinemia, deshidratación, irritación, náuseas, diarrea, lesiones hepáticas y renales, fatiga, dolor de cabeza, convulsiones, aumento en riesgo de enfermedades cardiovasculares, diabetes, sobrepeso y la muerte (G. Wu, 2016a), esto en el caso de consumir más proteína de la recomendada.

Lo mismo ocurre con el consumo de carbohidratos, cuando resulta ser mayor de lo que necesita el cuerpo. Produciendo diabetes tipo 2, hiperinsulinemia y obesidad (Feinman et al., 2015; Hasegawa-tanaka & Machida, 2016; Sylvia H. Ley, PhD, RDa, Osama Hamdy, MD, PhDb, V. Mohan, MD, Hu, & MD, PhDa, 2016).

Además, algunos suplementos contienen micronutrientes en cantidades altas, que pueden producir efectos secundarios.
4.2 Suplementos de proteína en deportistas

Gráfico 3: Nivel síntesis de proteína según el estímulo.

El consumo normal de proteína para un adulto según la RDA (Recommended Daily Allowances) es de 0.8 g/kg/día, pudiendo elevarse hasta 1 g/kg/día (Baum, Kim, & Wolfe, 2016; Dideriksen et al., 2013; Joy et al., 2013; Moore & Soeters, 2015; Phillips, 2012b; Potgieter, 2013; G. Wu, 2016a). Este valor está basado en el balance de nitrógeno, indicado por el nitrógeno consumido y el excretado (Joy et al., 2013; Phillips, 2012b).

En cuanto al consumo de proteína para deportistas de exigencia moderada y/o de resistencia se considera que deben consumir 1.3 g/kg/día, y para aquellos que su exigencia es intensa o de fuerza 1.6 g/kg/día (Phillips, 2012b; G. Wu, 2016a), pudiendo alcanzar hasta 2 g/kg/día (Di Girolamo et al., 2017; Joy et al., 2013; G. Wu, 2016a).

En algunos casos se tiene a fisicoculturistas que consumen entre 2.5-3.5 g/kg/día (Phillips, 2012b; G. Wu, 2016a).

Según algunos estudios se recomienda una dosis mínima de 20 g de proteína para adultos jóvenes después del ejercicio (86-91 kg peso) (Churchward-Venne et al., 2012; Phillips et al., 2009; Potgieter, 2013; Yang et al., 2012) y de 40g para adultos mayores (Yang et al., 2012). Esto debido a que el adulto mayor metaboliza en menor medida la proteína (Dideriksen et al., 2013; Phillips et al., 2009). Entre 20 a 25 g de proteína de suero concentrado contiene 2.5-3 g de leucina (Churchward-Venne et al., 2012).
60 Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

Tabla 17: Requisitos de aminoácidos no esenciales en humanos según edad y actividad física.

<table>
<thead>
<tr>
<th>Grupo</th>
<th>Aminoácidos esenciales</th>
<th>Aminoácidos no esenciales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Lys</td>
</tr>
<tr>
<td>Infantes</td>
<td>402</td>
<td>71.3</td>
</tr>
<tr>
<td>Niños</td>
<td>295</td>
<td>52.3</td>
</tr>
<tr>
<td>Mayores de 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actividad mínima</td>
<td>268</td>
<td>47.5</td>
</tr>
<tr>
<td>Actividad moderada</td>
<td>348</td>
<td>61.8</td>
</tr>
<tr>
<td>Actividad intensa</td>
<td>429</td>
<td>76</td>
</tr>
</tbody>
</table>

En general las proteínas de suero de leche concentrado, soya, arroz, huevo y caseína inhiben la degradación de la proteína muscular (Cermak *et al*., 2012; Cribb, 2008; Street *et al*., 2011; Wilborn *et al*., 2013), aumentan la ganancia de peso (aumento de las fibras musculares-síntesis de proteína) (Cermak *et al*., 2012; Churchward-Venne *et al*., 2012; Cribb, 2008; Hemant H Gangurde, Mayur A Chordiya, Pooja S Patil, 2017; Phillips *et al*., 2009; Street *et al*., 2011; Wilborn *et al*., 2013; G. Wu, 2016a) y disminuye la grasa corporal en una dieta hipocalórica, mejorando la oxidación de los lípidos sin detrimento de la masa muscular (Cribb, 2008; Engberink *et al*., 2015; Frestedt, Zenk, Kuskowski, Ward, & Bastian, 2008; Hemant H Gangurde, Mayur A Chordiya, Pooja S Patil, 2017; G. Wu, 2016a). Pero este efecto aumenta cuando la fuente de proteína es de alta calidad y es combinada con ejercicio (Cermak *et al*., 2012; Churchward-Venne *et al*., 2012; Cribb, 2008), aumentando la síntesis de proteína en el músculo. La suplementación con proteína de suero de leche concentrado o caseína tiene un mayor efecto anabólico que las otras proteínas (gráfico 4) (Cermak *et al*., 2012; Cribb, 2008; Hemant H Gangurde, Mayur A Chordiya, Pooja S Patil, 2017; Hida *et al*., 2012; Yang *et al*., 2012).

Estos efectos son importantes para los fisicoculturistas y deportistas de fuerza, ya que aumentan la masa muscular magra y disminuye el tiempo de recuperación (Hemant H Gangurde, Mayur A Chordiya, Pooja S Patil, 2017).

El efecto de suplementarse con suero de leche concentrado aumento 25% más la fuerza en 12 semanas, que aquellos que usaron placebo (Cribb, 2008). En otro estudio se alcanzó aproximadamente un doble de ganancia de peso (2,1kg vs 1,2 kg) en el grupo que consumió 1.2g/kg/día de suero de leche concentrado en comparación del grupo que solo se suplemento con carbohidratos (Cribb, 2008). En otro se observó un aumento de fuerza significativo en la fuerza contra el grupo placebo, con respecto al peso levantado en una repetición de sentadilla, siendo en el grupo con suplemento 1,5 kg más fuerte (Cermak *et al*., 2012).
<table>
<thead>
<tr>
<th>Objetivo</th>
<th>Participantes</th>
<th>Tratamiento</th>
<th>Medición</th>
<th>Resultado</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto de consumo 42 g proteína pre y post ejercicio de fuerza.</td>
<td>15 atletas de fuerza. (19,7±1,5 años). Dos grupos. Repetición 4 veces.</td>
<td>Un grupo consume proteína y el otro grupo placebo.</td>
<td>Fuerza, resistencia y recuperación (24 h y 48 h).</td>
<td>Aumento fuerza, resistencia y recuperación en el grupo de proteína vs placebo.</td>
<td>(Hoffman, Ratamess, Rashti, & Kang, 2010)</td>
</tr>
<tr>
<td>Efecto suplemento proteína vs carbohidratos en recuperación, post daño muscular inducido.</td>
<td>17 no entrenados (23±5 años). Dos grupos, divididos en 9 y 8.</td>
<td>Un grupo consume proteína (9) y el otro grupo carbohidratos (8). 1,5 g/kg pc/día.</td>
<td>4 series de 10 repeticiones en sentadilla, extensión de pierna y presa.</td>
<td>Aumento fuerza y recuperación en el grupo de proteína vs carbohidratos</td>
<td>(Cooke, Rybalka, Stathis, Cribb, & Hayes, 2010)</td>
</tr>
<tr>
<td>Metaanálisis. Proteína de soya vs proteína animal.</td>
<td>5 estudios, en total 266 participantes</td>
<td>1 estudio soya vs suero de leche y 4 estudios soya vs proteína animal (carne, caseína y suero de leche)</td>
<td>Masa magra ganada y fuerza.</td>
<td>Aumento en fuerza, pero no en masa magra (soya vs suero de leche). Aumento fuerza y masa magra igual (soya vs proteína animal)</td>
<td>(Mark Messina, Heidi Lynch, Jared M. Dickinson, 2018)</td>
</tr>
<tr>
<td>Efecto consumo proteína de huevo vs carbohidratos antes del ejercicio.</td>
<td>30 deportistas femeninas, de 18-22 años. Dos grupos divididos en 15 y 15.</td>
<td>Un grupo consume proteína (15 g) y el otro grupo carbohidratos (75 g).</td>
<td>Masa magra ganada y fuerza 1 RPM.</td>
<td>No hubo cambios en masa magra ni fuerza.</td>
<td>(Hida et al., 2012)</td>
</tr>
</tbody>
</table>
Un estudio que comparó el consumo de proteína de suero de leche y caseína en fisicoculturistas (1,5 g/kg/día), mostró que hubo una mayor ganancia de fuerza el grupo suplementado con suero de leche, comparado con el de caseína (Wilborn et al., 2013). En cuanto a las diferencias entre consumir proteína de suero hidrolizada vs consumir proteína de suero concentrado o aislado, no produjo diferencias en el rendimiento del ejercicio (Lockwood et al., 2017).

<table>
<thead>
<tr>
<th>Efecto consumo proteína de suero de leche vs arroz después del ejercicio. 48 g proteína.</th>
<th>Efecto consumo proteína antes de dormir. 44 jóvenes (22±1 años). Dos grupos divididos en 22 y 22.</th>
<th>Efecto de diferentes niveles de proteína en la reducción de grasa corporal, manteniendo masa muscular. En déficit de energía.</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 deportistas de fuerza (21,3±1,9 años). Dos grupos.</td>
<td>Un grupo consume proteína suero de leche y el otro grupo proteína arroz.</td>
<td>Cada grupo con diferente consumo de g de proteína por kg pc (0,8, 1,8 y 2,4)</td>
</tr>
<tr>
<td></td>
<td>Recuperación, dolor y disposición a entrenar. Cambios en masa magra, masa muscular y potencia</td>
<td>Composición corporal y síntesis de proteína.</td>
</tr>
<tr>
<td></td>
<td>Aumento la masa muscular y potencia. Disminuyo la grasa corporal. No hubo diferencia entre tratamientos</td>
<td>Pérdida grasa corporal y síntesis de proteína mayor en grupos que consumieron 1,6g/kg pc/día o 2,4g/kg pc/día, con respecto a 0,8g.</td>
</tr>
</tbody>
</table>

Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

Gráfico 4: Ganancia de masa muscular según la fuente de proteína.

El consumo de suero de leche concentrado o caseína ayuda a aumentar la fosforilación de p70S6k1, siendo esta una importante quinasa que regula la síntesis de proteína muscular en respuesta a el ejercicio de resistencia (Churchward-Venne et al., 2012; Cribb, 2008; Phillips et al., 2009; Yang et al., 2012). También estimula la 4E-BP1 (4E-binding proteína 1), que influye en la síntesis proteica del músculo (Churchward-Venne et al., 2012; Dickinson et al., 2011).

El consumo de aminoácidos de cadena ramificada que contiene el suero de leche concentrado, puede disminuir el dolor post ejercicio, ayudar en la regulación de la insulina, acelerar el proceso de recuperación y aumentar la síntesis proteica (Churchward-Venne et al., 2012; Di Camillo et al., 2014; Dickinson et al., 2011; Hemant H Gangurde, Mayur A Chordiya, Pooja S Patil, 2017; Hida et al., 2012; Joy et al., 2013; Rahimi et al., 2017; Street et al., 2011; G. Wu, 2016a). Esto tiene una gran importancia para deportistas de fuerza y fisicoculturistas, ya que al disminuir el dolor post ejercicio y aumentar la recuperación de los músculos, puede aumentar la intensidad del entrenamiento días a la semana. Conllevando a cumplir metas en un tiempo más corto. El consumo de aminoácidos varía según la edad y el nivel de entrenamiento (tabla 17).

En ciertos casos se desea un alto consumo de proteína y un bajo consumo de carbohidratos y lípidos, para disminuir la grasa corporal. Esto es útil en cierto grado para bajar de peso sin deteriorar el músculo, pero el rendimiento muscular baja al no consumir carbohidratos suficientes para la formación de glucógeno (Phillips, 2012). Además que reduce los niveles de testosterona, por un bajo consumo de lípidos (Helms, Eric R, Argon, Alan A., Fitschen, 2014).
Se recomienda unas rutinas de ejercicio moderadas, que no llegan a ser largas ni exhaustas. Debido a que esto produce un balance negativo entre la síntesis proteica y catálisis proteica (Dideriksen et al., 2013; Joy et al., 2013; G. Wu, 2016a). Conllevando a un bajo rendimiento del atleta.

Para mejores resultados se recomienda entrenamiento moderado y consumo post ejercicio de proteína con un mínimo de 3g de leucina para un mayor efecto anabólico y un balance positivo (Churchward-Venne et al., 2012; Phillips et al., 2009). Generando las mejores ganancias de masa muscular, fuerza y resistencia (Churchward-Venne et al., 2012; Joy et al., 2013; G. Wu, 2016a).

En la tabla 18 se describen algunos estudios en los que se usó suplementación de proteína.

4.2.1 Aminoácidos de cadena ramificada (BCAA)

Los aminoácidos de cadena ramificada (BCAAs: por sus siglas en inglés) representan entre el 14-18% de los aminoácidos del músculo y 35% de los aminoácidos esenciales en las proteínas musculares (Joy et al., 2013; Shimomura et al., 2010). Estos son un grupo de aminoácidos esenciales (leucina, valina e isoleucina) que permiten una síntesis y recuperación de las proteínas (Dudgeon, Kelley, & Scheett, 2016; Howatson et al., 2012). Estos son primeramente catabolizados en el músculo, en comparación con otros aminoácidos esenciales que son catabolizados en el hígado (Shimomura et al., 2010).

Los aminoácidos de cadena ramificada han mostrado una reducción en el daño muscular ocasionado por el ejercicio (Howatson et al., 2012). Cuando se suplementa antes del ejercicio, disminuye la liberación de aminoácidos esenciales del músculo (Shimomura et al., 2010).

Estos BCAAs tienen un efecto de conservación del músculo, cuando existe un proceso catabólico (Dudgeon et al., 2016; Howatson et al., 2012). Cuando se realiza ejercicio de fuerza de alta intensidad, se ha demostrado que estos aminoácidos de cadena ramificada, disminuyen el daño muscular y aceleran el proceso de recuperación (Dudgeon et al., 2016; Howatson et al., 2012).

En la tabla 19 se describen algunos estudios en los que se usó suplementación de BCAAs.
Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

Tabla 19: Estudios sobre los efectos del consumo de BCAAs.

<table>
<thead>
<tr>
<th>Objetivo</th>
<th>Participantes, grupos, repeticiones y/o estudios</th>
<th>Tratamiento</th>
<th>Medición</th>
<th>Resultado</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto del consumo de BCAA en el dolor tardío, después de realizar sentadillas. (isoleucina: leucina: valina = 1:2.3:1.2).</td>
<td>12 mujeres sin entrenar. (22±1.6 años). Dos repeticiones experimentales. BCAA o placebo.</td>
<td>Consume en la mañana BCAA o placebo, 100 mg/kg pc/día. Después realiza sentadillas (7 series de 20 repeticiones), 3 min descanso.</td>
<td>Dolor tardío, fuerza y BCAA en sangre.</td>
<td>Disminución dolor tardío, menor disminución fuerza y BCAA en sangre elevado 2 horas post ejercicio en grupo con BCAA</td>
<td>(Shimomura et al., 2010)</td>
</tr>
<tr>
<td>Efecto del consumo de BCAA en dolor muscular.</td>
<td>12 deportistas hombres. (23±2 años). Dos grupos divididos en 6 y 6. BCAA o placebo.</td>
<td>Un grupo (6) consumo pre y post ejercicio de BCAA (10 g). Otro grupo (6) pre y post ejercicio placebo (10 g). 100 saltos</td>
<td>Creatina quinasa, dolor muscular, máxima contracción voluntaria.</td>
<td>Menor creatina quinasa, menor dolor muscular y mayor recuperación en máxima contracción voluntaria con BCAA</td>
<td>(Howatson et al., 2012)</td>
</tr>
<tr>
<td>Efecto del consumo BCAA en composición corporal y capacidad muscular. En disminución de CHO consumido.</td>
<td>17 deportistas hombre de 21-28 años. Dividido en dos grupos de 9 y 8.</td>
<td>Grupo (9) consume pre y post ejercicio 7 g BCAA. Otro grupo (8) consume placebo (CHO). Ejercicio alta intensidad.</td>
<td>Masa corporal, masa grasa, masa magra, 1 RPM en sentadilla, 1 RPM pecho plano y resistencia.</td>
<td>Disminución grasa corporal, mantenimiento masa magra, aumento en 1 RPM en sentadilla y pecho plano, y menor resistencia con BCAA</td>
<td>(Dudgeon et al., 2016)</td>
</tr>
</tbody>
</table>

4.2.2 Leucina

Los sueros de leche concentrado o caseína contienen leucina, isoleucina, valina y cisteína, ofreciendo un mayor efecto anabólico (Cribb, 2008; Rahimi et al., 2017; Yang et al., 2012). La leucina, isoleucina y valina conforman más de un tercio de la proteína muscular (Joy et al., 2013; Shimomura et al., 2010).

La leucina es un modulador de la síntesis de proteína en el músculo, ayuda con la resíntesis de glucógeno, aumenta la concentración de insulina en plasma y aumenta la saciedad, promoviendo la pérdida de grasa corporal (Churchward-Venne et al., 2012; Cribb, 2008; Di Camillo et al., 2014; Dideriksen et al., 2013; Hemant H Gangurde, Mayur A Chordiya, Pooja S Patil, 2017; Hida et al., 2012; Joy et al., 2013; Phillips et al., 2009; Rowlands et al., 2014; Wall et al., 2013b; Yang et al., 2012). Se recomienda que el consumo de leucina para un máximo efecto anabólico en el músculo es de 0,05 g/kg/día (Joy et al., 2013).

Como se comentó anteriormente, el consumo máximo sugerido de leucina es de 500mg*kg/día, ya que a mayor consumo aumenta la concentración de amonio, leucina en sangre y excreción de leucina en la orina (Elango, Chapman, Rafii, Ball, & Pencharz, 2012). La concentración normal de amonio es menor o igual a 35 μmol/L, aunque al consumir 500 mg*kg/día este valor aumenta, vuelve a descender a valores normales al siguiente día, lo que no ocurre con dosis mayores (Elango et al., 2012).

Cuando la leucina se administra de manera independiente no produce el mismo efecto anabólico (Churchward-Venne et al., 2012; Rowlands et al., 2014). En cambio su efecto se ve potenciado cuando esta con otros aminoácidos al momento del consumo (Churchward-Venne et al., 2012; Pasiakos et al., 2011; Yang et al., 2012). Ya que para la síntesis proteica en el músculo se requiere de los 20 aminoácidos (G. Wu, 2016a). Si no se consume de manera equilibrada los aminoácidos, los aminoácidos limitantes pueden afectar la síntesis proteica en el músculo esquelético, generando menor recuperación y disminución en la condición física (tabla 17).

El consumo mayor de 5 g de leucina acompañada de una fuente de proteína mínima de 20 g no demuestra mayores efectos significativos en la recuperación muscular (Rowlands et al., 2014), en personas con un peso de 80 kg. Por ende, se recomienda no consumir más de esta cantidad por dosis, para personas de 80 kg. Ya que no genera ningún efecto significativo en la recuperación del músculo (Joy et al., 2013). Se debe consumir más leucina, si su peso metabólico es mayor.

La concentración de leucina en suero de leche es aproximadamente de 11-12% en comparación con fuentes vegetales que es de 6-8% (Joy et al., 2013; Yang et al., 2012). Esto indica que se debe consumir menos proteína de suero de leche concentrado que de fuentes vegetales, para alcanzar el mayor efecto anabólico.
La leucina puede estimular mTOR, p70S6K1 y 4E-BP1, en cambio los aminoácidos de cadena ramificada pueden estimular en menor medida p70S6K1. (Churchward-Venne et al., 2012; Dickinson et al., 2011; Proud, 2007; Rowlands et al., 2014). Otros aminoácidos también pueden estimular mTOR, p70S6K1 y 4E-BP1, pero no en igual medida que la leucina (Dickinson et al., 2011; Proud, 2007).

Otro aminoácido que se encuentra en los suplementos proteicos, que se considera que genera un mejor rendimiento físico y síntesis proteica es la arginina. Pero esta no genera en efecto por sí sola en mayor síntesis proteica o mejorar en el rendimiento, más bien genera una vasodilatación, pero en altas dosis (30 g) (Tang et al., 2010).

En la tabla 20 se describen algunos estudios en los que se usó suplementación de leucina.

Tabla 20: Estudios sobre los efectos del consumo de leucina.

<table>
<thead>
<tr>
<th>Objetivo</th>
<th>Participantes, grupos, repeticiones y/o estudios</th>
<th>Tratamiento</th>
<th>Medición</th>
<th>Resultado</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto leucina en mTOR post ejercicio.</td>
<td>15 deportistas (mujeres). (27±2 años). Dos grupos.</td>
<td>Un grupo consume 260 mg/kg pc/día EAA (17,3% leucina). Otro grupo consume 260 mg/kg pc/día EAA. leucina reemplazada con glicina.</td>
<td>Biopsias después del ejercicio y en la madrugada antes de comer.</td>
<td>Aumento en el estimulo de mTOR cuando se consume leucina. 120% vs 49%.</td>
<td>(Marcus, Moberg, William, Apró. Inger, Ohlsson, Marjan, Pontén. Antonio & Björn, l Ekblom. Eva, 2014)</td>
</tr>
<tr>
<td>Efecto consumo de leucina en fuerza, masa ósea y masa grasa.</td>
<td>26 hombres sin entrenar. De 28,5 ± 8,2 años. Dos grupos.</td>
<td>Un grupo consume 4 g leucina, el otro consume 4 g de placebo.</td>
<td>Absorciometría dual de rayos x y peso máximo levantado en 5 repeticiones</td>
<td>Grupo con leucina aumento más la fuerza vs placebo (40,8% vs 31%). Masa ósea y masa grasa no hubo diferencias.</td>
<td>(Ispoglou, King, Remco, & Zanker, 2011)</td>
</tr>
</tbody>
</table>
Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

Continuación tabla 20.

<table>
<thead>
<tr>
<th>Efecto leucina sobre el daño muscular después de ejercicio muscular excéntrico.</th>
<th>27 hombres de 21,26±1,56 años. Tres grupos.</th>
<th>Un grupo suplementado con leucina (10) (250 mg/kg pc/día), otro grupo suplementado con placebo (9) (250 mg/kg pc/día) y un grupo control (8).</th>
<th>Creatina quinasa y mioglobina.</th>
<th>No hubo diferencia entre tratamientos.</th>
<th>(Kirby, 2010)</th>
</tr>
</thead>
</table>

4.2.3 Mammalian target of rapamycin (mTOR), p70S6k1 y 4E-BP1

El mTOR es una proteína que se relaciona con muchas otras proteínas, como p70S6k1 y 4E-BP1 (Proud, 2007). La fosforilación de p70S6k1 (p70 proteína ribosomal S6 quinasa) y 4E (eIF4E)-binding protein 1 (4E-BP1) se estimula por la insulina y factores de crecimiento (Frontera & Ochala, 2015; Proud, 2007; Timmerman et al., 2010; Vingren et al., 2010). Para esto las células deben tener suficientes aminoácidos, ya que al ocurrir lo contrario, se produce una desfosforilación de p70S6k1 y 4E-BP1, ya que se reduce drásticamente la actividad de mTOR (Proud, 2007).

El mTORC1 está correlacionado con el consumo de aminoácidos, y esto con la posterior síntesis proteica (Dickinson et al., 2011; Phillips et al., 2009; Proud, 2007). El aumento promedio en la síntesis proteica cuando se estimula el mTORC1 es del 60%, cuando el consumo de aminoácidos es suficiente (Dickinson et al., 2011). Cuando no se consumen aminoácidos, se produce un rápido deterioro del mTORC1 (Di Camillo et al., 2014; Dickinson et al., 2011; Phillips et al., 2009; Proud, 2007). El incremento en la actividad de mTORC1, aumenta la fosforilación de p70S6k1 y 4E-BP1 (Di Camillo et al., 2014; Dickinson et al., 2011; Proud, 2007). La activación de mTORC1 y la posterior activación de p70S6k1 y 4EBP-1 estimula la traducción del ARNm (Dickinson et al., 2011; Proud, 2007; Timmerman et al., 2010).

La p70S6k1 y 4EBP1 se pueden estimular vía insulina e IGF-1 (Frontera & Ochala, 2015; Proud, 2007; Timmerman et al., 2010; Vingren et al., 2010). En el caso de fisicoculturistas no naturales, esto puede generar un mayor desempeño. Debido a que la testosterona y hormona de crecimiento estimulan el IGF-1, que a su vez estimula el mTORC1 y este a su vez estimula p70S6k1, 4EBP-1 y la Akt proteína quinasa B (Proud, 2007; Urban, 2011; Vingren et al., 2010; West & Phillips, 2010), produciendo una mayor síntesis proteica. Esta mayor síntesis proteica se deriva en un aumento en el tamaño de las fibras musculares, generando una mayor hipertrofia (You et al., 2014).
Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

Figura 10: Funcionamiento básico del mTOR.

4.2.4 L-carnitina

La L-carnitina o 3-hidroxi-4-trimetilaminobutirato se encuentra almacenada principalmente en el músculo, siendo 95% de la carnitina (Orer, Gamze E. Guzel, 2014; Stephens et al., 2006; Wall et al., 2011). Esta se encuentra almacenada, ya sea como carnitina libre o como acil carnitina (Stephens et al., 2006).

La carnitina puede ser sintetizada a partir de los aminoácidos lisina y metionina, o puede ser consumido en la dieta (Orer, Gamze E. Guzel, 2014). Los alimentos donde se puede encontrar son los de origen animal como carne y productos lácteos (Orer, Gamze E. Guzel, 2014).
En forma libre sirve de sustrato para la formación de carnitina palmitoiltransferasa 1 (CPT1), siendo su función el transporte de ácidos grasos de cadena larga hacia la matriz mitocondrial, donde sufre una \(\beta\)-oxidación (Stephens et al., 2006; Wall et al., 2011).

En cuanto la acil carnitina, esta se forma cuando se realiza ejercicio intenso, siendo esencial para el mantenimiento de la coenzima A (CoA).

La L-carnitina en el músculo, se asocia con un aumento en la oxidación de los lípidos y una reducción en el uso del glucógeno (Stephens et al., 2006; Wall et al., 2011). Se ha demostrado que el consumo agudo de L-carnitina aumenta su concentración en músculo (Wall et al., 2011).

Tabla 21: Estudios sobre los efectos del consumo de L-carnitina.

<table>
<thead>
<tr>
<th>Objetivo</th>
<th>Participantes, grupos, repeticiones y/o estudios</th>
<th>Tratamiento</th>
<th>Medición</th>
<th>Resultado</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto de suplementar L-c en el rendimiento físico, en ejercicio de alta intensidad. Además de suplementar carbohidratos</td>
<td>14 hombres. (25,9±2,1 años). Dos grupos divididos en 7 y 7.</td>
<td>Dos grupos. Un grupo (7) consume 700 mL (contiene 80 g CHO y 2 g L-c) dos veces al día. Otro grupo (7) consume 700 mL (contiene 80 g CHO) dos veces al día.</td>
<td>Ejercicio de intensidad. Posteriormente se recogen biopsias. Se midió concentración carnitina y lactato</td>
<td>Aumento en carnitina y reducción en lactato, en el grupo que consumió carnitina, en comparación con el grupo control.</td>
<td>(Wall et al., 2011)</td>
</tr>
<tr>
<td>Efecto de suplementar con L-c, en ejercicio de resistencia.</td>
<td>26 deportistas. Con 17-19 años. Dos grupos divididos en 12 y 14.</td>
<td>Primera semana un grupo (12) consume 3 g L-c al día, el otro grupo (14) consume 4 g L-c al día, antes del ejercicio. La siguiente semana placebo</td>
<td>Ejercicio de resistencia, corriendo en una trotadora. Se mide lactato y ritmo cardíaco.</td>
<td>El lactato y ritmo cardíaco fue menor en el grupo suplementado con L-c.</td>
<td>(Orer, Gamze E. Guzel, 2014)</td>
</tr>
</tbody>
</table>

L-c: L carnitina, CHO: carbohidrato,

La presentación de L-carnitina y l-tartrato (LCLT) se da generalmente en relación 2:1, siendo cada 3 g LCLT, 2 g de carnitina (Broad, Maughan, & Galloway, 2011).

En la tabla 21 se describen algunos estudios en los que se usó suplementación de L-carnitina.
4.2.5 L-glutamina
La glutamina es el aminoácido no esencial más abundante en el músculo y en el plasma sanguíneo (Street et al., 2011). Está asociado con la respuesta inmune al daño muscular (Legault, Bagnall, & Kimmerly, 2015).

En la tabla 22 se describen algunos estudios en los que se usó suplementación de glutamina.

Tabla 22: Estudios sobre los efectos del consumo de L-glutamina.

<table>
<thead>
<tr>
<th>Objetivo</th>
<th>Participantes, grupos, repeticiones y/o estudios.</th>
<th>Tratamiento</th>
<th>Medición</th>
<th>Resultado</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto de suplementar L-g en la recuperación después de ejercicio excéntrico.</td>
<td>15 hombres activos. (21±1,5 años). Dos grupos, divididos 7 y 8.</td>
<td>Un grupo (7) consume 0,3 g/kg pc/día L-g y 0,3 g/kg pc/día de maltodextrina, el otro grupo (8) consume 0,3 g/kg pc/día de maltodextrina</td>
<td>Extensión de pierna. Fuerza, creatina quinasa y dolor post ejercicio.</td>
<td>Menor pérdida de fuerza y dolor en grupo con L-g. La creatina quinasa no fue diferente entre grupos.</td>
<td>(Street et al., 2011)</td>
</tr>
<tr>
<td>Efecto de suplementar L-g en la recuperación después de ejercicio excéntrico.</td>
<td>8 hombres y 8 mujeres (22±4 años). Dos grupos, divididos 8 y 8.</td>
<td>Un grupo (8) consume 0,3 g/kg pc/día L-g y 0,3 g/kg pc/día de maltodextrina, el otro grupo (8) consume 0,6 g/kg pc/día de maltodextrina</td>
<td>Extensión de pierna en diferentes ángulos.</td>
<td>Menor pérdida de fuerza y dolor en grupo con glutamina. La recuperación en músculo por L-g fue mayor en hombre que en mujer.</td>
<td>(Legault et al., 2015)</td>
</tr>
</tbody>
</table>

L-g: L-glutamina.
Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

Cuando se realiza ejercicio prolongando mayor a 2 horas, las concentraciones de glutamina en plasma y músculo se reducen en 20 a 30 % (Street et al., 2011). En este sentido, la suplementación de glutamina se hace esencial para restaurar la glutamina en plasma y músculo (Legault et al., 2015; Street et al., 2011). Así generando un balance de proteína positivo, reduciendo el dolor tardío post ejercicio, reduciendo la pérdida de fuerza y manteniendo la actividad de la creatina quinasa (Legault et al., 2015; Naclerio, Larumbe-Zabala, Cooper, Allgrove, & Earnest, 2015; Street et al., 2011).

En un contexto clínico cuando existen enfermedades, la producción endógena de glutamina no es suficiente, generando una disminución en la concentración de esta en músculo y plasma (Street et al., 2011; Wernerman, 2011). En este caso la suplementación de glutamina ha demostrado una mejora en el balance neto de proteína, función del sistema inmune y una restauración de la glutamina en el plasma sanguíneo (Naclerio et al., 2015; Street et al., 2011; Wernerman, 2011).

4.2.6 Monohidrato de creatina

La creatina se encuentra en alta concentración en carne y pescado (Cooper, Naclerio, Allgrove, & Jiménez, 2012; Kley RA, 2013). Cuando se consume monohidrato de creatina no es degradado y el 99% va hacia los tejidos o es excretado mediante la orina (Jagim et al., 2012). La creatina se almacena 95% en el músculo y el 5% restante en cerebro, hígado, riñón y testículos (Cooper et al., 2012). La creatina que es producida endógenamente, es sintetizada por el hígado, riñón y páncreas en cantidades de 1g/día (Cooper et al., 2012).

La creatina se encuentra en el cuerpo en dos formas, la primera es la creatina fosforilada que representa el 60% y la segunda es la libre que es el 40% (Cooper et al., 2012). Una persona de 70 kg tiene en promedio 120-140g de creatina, que varía según la cantidad de masa muscular y el tipo de fibra muscular, siendo mayormente almacenada en las fibras musculares tipo II (Bassit et al., 2010; Cooper et al., 2012).

La creatina mediante la contracción muscular y la creatina quinasa, transfiere un grupo fosforilo de alta energía (Kley RA, 2013). También tiene un rol en la transferencia de energía de la mitocondria al citosol, en tejidos con alta demanda energética, como cerebro y músculo esquelético (Kley RA, 2013). Además tiene un papel regulador en el metabolismo del músculo esquelético (Kley RA, 2013).

Cuando se realiza ejercicio durante un tiempo prolongado, se estimula la glucogenólisis, para la formación de ATP, y así mantener un desempeño en la contracción muscular (Bassit et al., 2010; Cooper et al., 2012). Para esto la suplementación de creatina aumenta la creatina en músculo y el glucógeno muscular en un 40% aproximadamente (Bassit et al., 2010; Cooper et al., 2012; Jagim et al., 2012). Este aumento de creatina en el músculo produce una rápida fosforilación de ADP a ATP, mediante la reacción de la creatina quinasa, mejorando el desempeño de la contracción muscular (Bassit et al., 2010; Cooper et al., 2012; Jagim et al., 2012).
Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

Cuando se suplementa con Monohidrato de creatina, resulta en un aumento en creatina total y fosfocreatina en músculo (Bassit et al., 2010; Cooper et al., 2012; Jagim et al., 2012; Kley RA, 2013). Algunos efectos de la suplementación son un aumento de la fuerza (Antonio & Ciccone, 2013; Bassit et al., 2010; Cooper et al., 2012; Jagim et al., 2012; Kley RA, 2013; Phillips, 2012b; Potgieter, 2013; Rawson et al., 2011) y el incremento de músculo magro (libre de grasa corporal) (Antonio & Ciccone, 2013; Cooper et al., 2012; Jagim et al., 2012; Kley RA, 2013; Phillips, 2012b; Rawson et al., 2011). Esto se debe al aumento de genes de transcripción y proteínas, relacionadas con la hipertrofia (Cooper et al., 2012; Kley RA, 2013).

La retención de creatina en el cuerpo aumenta en un 25% cuando es consumida con carbohidratos y/o proteína (Cooper et al., 2012).

El Monohidrato de creatina se asocia también con una disminución en lesiones musculares (Bassit et al., 2010). Esto más el aumento de fuerza es de gran importancia para fisicoculturistas y deportistas de fuerza, ya que las cargas que deben manejar durante sus ejercicios son altas y/o moderadas, durante un tiempo prolongado.

El monohidrato de creatina mejora la capacidad de ejercicio anaeróbico y aeróbico (Cooper et al., 2012; Jagim et al., 2012; Rawson et al., 2011).

La fase de carga se considera de 5 días, consumiendo 20-25 g de creatina al día, después viene una fase de mantenimiento de 4-6 semanas consumiendo 5 g creatina al día (Antonio & Ciccone, 2013; Bassit et al., 2010; Rawson et al., 2011). Se recomienda el consumo de creatina pre y post ejercicio (Phillips, 2012b).

Otra propiedad de la creatina es su propiedad antioxidante (Bassit et al., 2010).

En la tabla 23 se describen algunos estudios en los que se usó suplementación de creatina.
Tabla 23: Estudios sobre los efectos del consumo de creatina.

<table>
<thead>
<tr>
<th>Objetivo</th>
<th>Participantes , grupos, repeticiones y/o estudios.</th>
<th>Tratamiento</th>
<th>Medición</th>
<th>Resultado</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto de suplementar 5g creatina antes o después del ejercicio.</td>
<td>19 deportistas. (23.1±2.9 años). Dos grupos divididos en 9 y 10.</td>
<td>Un grupo (9) consume 5g creatina antes del ejercicio, el otro grupo (10) consume 5g creatina después del ejercicio.</td>
<td>Entrenamiento de fuerza 5 días a la semana por 5 semanas. Composición corporal y 1 RPM.</td>
<td>Composición corporal y fuerza es mayor al consumir creatina después del ejercicio.</td>
<td>(Antonio & Ciccone, 2013)</td>
</tr>
<tr>
<td>Efecto de suplementar creatina en marcadores de daño del músculo esquelético, después de ejercicio extenuante.</td>
<td>8 deportistas ironman de 28-43 años. Dos grupos divididos en 4 y 4.</td>
<td>Un grupo (4) consume 20g creatina y 50g maltodextrina durante 5 días antes de la competencia ironman, el otro grupo (4) consume 50g maltodextrina.</td>
<td>Muestra sangre antes de la competencia y después de 36 y 60 horas de la competencia. Creatina quinasa, lactato, etc.</td>
<td>Creatina quinasa, lactato, etc. Fue menor en el grupo suplementado por creatina.</td>
<td>(Bassit et al., 2010)</td>
</tr>
<tr>
<td>Efecto de suplementar creatina en baja dosis. En relación con la composición corporal, función muscular y retención creatina en el cuerpo.</td>
<td>12 hombres y 8 mujeres (21±2 años). Dos grupos divididos en 10 y 10.</td>
<td>Un grupo (10) consume 0.3g/kg pc/día creatina, el otro grupo (10) consume placebo. Por 6 semanas</td>
<td>Extensión de pierna, composición muscular y retención creatina.</td>
<td>Mayor resistencia, fuerza y creatina en plasma en el grupo creatina. No hubo cambios en la composición corporal en ambos grupos.</td>
<td>(Rawson et al., 2011)</td>
</tr>
</tbody>
</table>

RPM: repetición peso máximo.
4.2.7 Colágeno
El consumo de colágeno hidrolizado ejerce un efecto anabólico en el cartílago (Clark et al., 2008). Este se ha suplementado anteriormente en pacientes con osteoartritis u osteoporosis, mostrando efectos positivos (Clark et al., 2008; Elisângela Porfírio, 2016).

La suplementación en deportistas ha mostrado una mejora en aliviar el dolor de las articulaciones (Clark et al., 2008; Elisângela Porfírio, 2016). Esto es debido a que el colágeno es una alta fuente de proline y glicina, que cuando es consumida se acumula en el cartílago (Clark et al., 2008; Elisângela Porfírio, 2016). Estimulando la formación de colágeno tipo II (principal proteína en el cartílago articular) (Clark et al., 2008).

Esto es de gran importancia para aquellos deportistas que, por su nivel de entrenamiento y exigencias competitivas, se ve afectado por dolores en las articulaciones. Que conlleva a un menor desempeño.

El colágeno es una sustancia no gelatinizante y se puede disolver en el agua (Clark et al., 2008). De esta manera se puede presentar en polvo para una fácil disolución con agua, que es como viene la presentación del suplemento.

En la tabla 24 se describen algunos estudios en los que se usó suplementación de colágeno.

Tabla 24: Estudio sobre los efectos del consumo de colágeno.

<table>
<thead>
<tr>
<th>Objetivo</th>
<th>Participantes, grupos, repeticiones y/o estudios</th>
<th>Tratamiento</th>
<th>Medición</th>
<th>Resultado</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colágeno hidrolizado para el dolor articular</td>
<td>147 deportistas que manifiestan algún dolor. 97 terminaron en el análisis final</td>
<td>24 semanas. Un grupo (73) participantes 10g/día y el otro grupo (74) de participantes con placebo.</td>
<td>1-10. Medición visual y hablada. 1= No manifiesta síntomas y 10= Manifiesta síntomas severos</td>
<td>Reducción en el dolor de las articulaciones</td>
<td>(Clark et al., 2008)</td>
</tr>
</tbody>
</table>

4.2.8 Picolinato de cromo
La principal presentación del cromo en los suplementos es picolinato de cromo, debido a que tiene una mejor absorción en el cuerpo que otras presentaciones (Lukaski, 2019).

El consumo normal diario de cromo para personas sanas es 25 μg/día y 35 μg/día, para mujer y hombre respectivamente (Lukaski, 2019). Cuando se suplementa, el exceso es excretado vía orina (Lukaski, 2019). Otro factor que afecta la expresión de cromo es el entrenamiento de intervalos de alta intensidad o entrenamiento de resistencia, debido a que aumenta las pérdidas de cromo vía orina (Lukaski, 2019).
En cuanto a la efectividad, existen diferentes posiciones en cuanto a la suplementación de cromo. En algunos estudios se encuentra cambios en fuerza o composición corporal, como muestra la tabla 25 se describe un estudio que apoya esta posición, como también otro que no encontró cambios durante la suplementación de cromo.

En cambio, en otros se describe un cambio en la masa corporal, reducción de grasa corporal y mayor gasto energético en reposo (Onakpoya, Posadzki, & Ernst, 2013; Yazaki et al., 2010). Esto debido a que se considera al cromo el ingrediente activo en varias moléculas, siendo estas moléculas potenciadoras de la insulina (Lukaski, 2019; Yazaki et al., 2010). Otra razón que se describe es la supresión del apetito, produciendo una consecuente reducción en la grasa corporal (Yazaki et al., 2010).

Aunque en los estudios que se presenta un efecto con el picolinato de cromo, este es reducido para pérdida de grasa corporal (Lukaski, 2019; Onakpoya et al., 2013).

En la tabla 25 se describen algunos estudios en los que se usó suplementación de picolinato de cromo.

Tabla 25: Estudios sobre los efectos del consumo de picolinato de cromo.

<table>
<thead>
<tr>
<th>Objetivo</th>
<th>Participantes , grupos, repeticiones y/o estudios.</th>
<th>Tratamiento</th>
<th>Medición</th>
<th>Resultado</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto picolinato de cromo en la composición corporal de nadadoras.</td>
<td>20 nadadoras de 19,5±1,5 años. Dos grupos divididos en 10 y 10.</td>
<td>26 semanas. Un grupo (10) 400 μg/día picolinato de cromo. Otro grupo placebo. Dos tratamientos experimentales</td>
<td>Masa corporal total, masa sin grasa, masa grasa y porcentaje de masa corporal</td>
<td>Disminuyo la masa grasa y el porcentaje de masa corporal en el grupo con picolinato de cromo</td>
<td>(Lukaski, 2019)</td>
</tr>
<tr>
<td>Efecto picolinato de cromo en adultos</td>
<td>80 participantes. Dos grupos 40 hombres y 40 mujeres.</td>
<td>1000 μg/día de picolinato de cromo aleatorizado en 40 participantes y placebo en los otros 40.</td>
<td>Índice masa corporal</td>
<td>No hubo diferencias en los dos grupos.</td>
<td>(Yazaki et al., 2010)</td>
</tr>
</tbody>
</table>
4.2.9 HMB (β-hidroximetilburitarato de calcio)

El HMB es un metabolito de la leucina y de α-cetoisocaproato (KIC), que se relaciona con un efecto anti catabólico y mejora en el metabolismo de las proteínas (Heros Ribeiro Ferreira, Pamela Gill, José Fernandes Filho, 2015; Krzysztof Durkalec-Michalski, Jan Jeszka, 2017; Zanchi & Gerlinger-romero, 2011). De la leucina consumida, el 5% se convierte en HMB (Heros Ribeiro Ferreira, Pamela Gill, José Fernandes Filho, 2015).

Los efectos en deportistas son aumento en fuerza, reducción grasa corporal, aumento resistencia, reducción de dolor muscular retardado y reducción del daño muscular (Heros Ribeiro Ferreira, Pamela Gill, José Fernandes Filho, 2015; Krzysztof Durkalec-Michalski, Jan Jeszka, 2017; Zanchi & Gerlinger-romero, 2011). También estimula la traducción del ARNm mediante la estimulación del mTOR, incrementando la fosforilación de los sustratos de esta proteína (4EBP-1 y p70S6K1) (Krzysztof Durkalec-Michalski, Jan Jeszka, 2017; Zanchi & Gerlinger-romero, 2011).

Tabla 26: Estudios sobre los efectos del consumo de HMB.

<table>
<thead>
<tr>
<th>Objetivo</th>
<th>Participantes , grupos, repeticiones y/o estudios.</th>
<th>Tratamiento</th>
<th>Medición</th>
<th>Resultado</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto HMB en composición corporal, capacidad aeróbica y anaeróbica</td>
<td>42 atletas de 22.8±6.1 años. Dos grupos divididos en 2 grupos, durante las primeras 12 semanas un grupo placebo y el otro HMB. Durante la segunda fase al revés y la tercera fase igual que la primera</td>
<td>Composición corporal, capacidad aeróbica y anaeróbica</td>
<td>Reducción de la grasa corporal, aumento en la capacidad aeróbica y anaeróbica.</td>
<td>(Krzysztof Durkalec-Michalski, Jan Jeszka, 2017)</td>
<td></td>
</tr>
<tr>
<td>Efecto del HMB más entrenamiento intensos, afecta composición corporal y desempeño deportivo.</td>
<td>20 atletas de 18.7 ± 1.49 años. Dos grupos divididos en 10 y 10. 2 grupos, donde a 10 atletas se les administró 37.5 mg HMB/día y a los otros 10 placebo. 12 semanas de entrenamiento intenso.</td>
<td>12 semanas de entrenamiento intenso. Composición corporal y desempeño deportivo.</td>
<td>Incremento en la masa corporal magra y aumento en el desempeño deportivo.</td>
<td>(Heros Ribeiro Ferreira, Pamela Gill, José Fernandes Filho, 2015)</td>
<td></td>
</tr>
</tbody>
</table>

HMB: β-hidroximetilburitarato de calcio
En la tabla 2 se describen algunos estudios en los que se usó suplementación de HMB.

4.3 Suplementos de carbohidratos en deportistas
La razón de que no se use lípidos como fuente de energía en suplementos, es debido a que dietas con alto contenido de lípidos interfieren en la glucogenólisis y el buen aprovechamiento de la energía (Hawley & Leckey, 2015). Las dietas altas en lípidos solo se recomienda en deportes donde el tiempo es mayor a tres horas, como competencias de ciclismo, ultraman, atletismo de larga distancia, etc.(Hawley & Leckey, 2015).

Los carbohidratos como fuente de energía son de gran importancia para el movimiento muscular, como para el metabolismo de las proteínas. Debido a que se requiere energía para el transporte de aminoácidos, desintoxicación de amoniaco (urea, ácido úrico y síntesis de glutamina), formación de purinas y pirimidinas, reabsorción renal de aminoácidos y excreción de metabolitos nitrogenados (G. Wu, 2016a).

El uso de los carbohidratos para mejorar la capacidad al momento de hacer una actividad física se ha verificado por varios estudios (Burke et al., 2011; Churchward-Venne et al., 2012; A. Jeukendrup, 2014; A. E. Jeukendrup, 2010; A. E. Jeukendrup & Jentjens, 2000; Peinado et al., 2013). Ya que la hipoglicemia, que es una baja de glucosa en sangre, limita la actividad física y su rendimiento (Décombaz et al., 2011; Peinado et al., 2013; Wallis et al., 2008)

El mayor efecto beneficioso del consumo de carbohidratos es la resíntesis del glucógeno después del ejercicio, permitiendo una mayor capacidad de recuperación (Burke et al., 2011; Churchward-Venne et al., 2012; Wallis et al., 2008). Aunque también se debe consumir antes del ejercicio, cuando se realizan actividades físicas moderadas o intensas mayores a 90 minutos, debido a que el cuerpo agota sus reservas de carbohidratos (Burke et al., 2011; Hawley & Burke, 2010; Peinado et al., 2013). También durante el ejercicio, cuando las actividades son mayores a 150 minutos (Burke et al., 2011; Hawley & Burke, 2010). Todo esto para poder resistir la actividad física sin disminuir significativamente la intensidad del ejercicio, evitando también la hipoglicemia (Décombaz et al., 2011; A. Jeukendrup, 2014; Peinado et al., 2013; Wallis et al., 2008).

El consumo adecuado de carbohidratos durante ejercicios de alta intensidad y/o larga duración, ayudan en un mejor desempeño al momento de realizar ejercicio, así como evitar la pérdida de peso y problemas de salud (Potgieter, 2013).

En casos de que el ejercicio es demasiado intenso y se consume glucógeno del músculo y el hígado. Al consumir carbohidratos, se realiza primero la síntesis de glucógeno en el hígado y después en el músculo (Décombaz et al., 2011).
Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

Cuando se conoce que se realizará más de 60 minutos de ejercicio, se recomienda consumir una fuente de carbohidratos de aproximadamente 60 g, cuando la fuente es glucosa en sus diferentes formas (A. E. Jeukendrup, 2010; Potgieter, 2013). Ya que el cuerpo es capaz de oxidar 60 g de carbohidratos por hora (A. Jeukendrup, 2014; Potgieter, 2013) y esto sería lo ideal para rutinas de ejercicio que duran entre 2-2,5 horas. Permitiendo mantener un buen desempeño. También se recomienda un consumo de 0,7 g/kg peso/hora durante el ejercicio (A. Jeukendrup, 2014; Kreider et al., 2010; Potgieter, 2013). Aunque los cambios en la tasa de oxidación de carbohidratos se da principalmente es por las fuentes de carbohidratos, más que por el peso (A. Jeukendrup, 2014; Kreider et al., 2010).

El máximo consumo de 60g/h de glucosa se ve limitado por la absorción intestinal. Ya que la glucosa es transportada por el SGLT1 (Décombaz et al., 2011; A. Jeukendrup, 2014; A. E. Jeukendrup, 2010). Esta proteína de transporte en la membrana del intestino tiene una alta afinidad por glucosa y galactosa (A. E. Jeukendrup, 2010). Este límite en la oxidación de la glucosa se cree que se debe a la saturación de la proteína SGLT1 (Décombaz et al., 2011; A. Jeukendrup, 2014; A. E. Jeukendrup, 2010).

 Esto se demostraría el hecho de que al consumir glucosa + fructosa, se pasó de una tasa de oxidación de 1 g/min a 1,26 g/min o más (A. Jeukendrup, 2014; Kreider et al., 2010; Potgieter, 2013; Wallis et al., 2008), ya que cada carbohidrato tiene un medio de transporte diferente (Décombaz et al., 2011; A. Jeukendrup, 2014; Wallis et al., 2008). La fructosa tiene otro medio de transporte que es sodio-independiente, la proteína GLUT5 (Transportador glucosa 5) (Décombaz et al., 2011; A. E. Jeukendrup, 2010; Wallis et al., 2008). Mientras la glucosa tiene el SGLT1 (Décombaz et al., 2011; A. Jeukendrup, 2014; A. E. Jeukendrup, 2010; Wallis et al., 2008).

Cuando se consume maltodextrina más fructosa durante el ejercicio, permite una menor dependencia del glucógeno en hígado y músculo, durante el ejercicio (Potgieter, 2013). Permitiendo mantener las reservas durante mayor tiempo.

Se considera que el consumo de varios tipos de carbohidratos con diferentes métodos de transporte puede llegar a mejorar en un 75% las tasas de oxidación (A. Jeukendrup, 2014; Kreider et al., 2010; Potgieter, 2013; Wallis et al., 2008). Esto indica que los suplementos de carbohidratos deberían tener diferentes carbohidratos para un mejor desempeño en el deportista.

Si el tiempo de ejercicio no supera los 150 minutos, el consumo de diferentes carbohidratos no presenta un diferencial de desempeño, en vez de consumir una sola fuente (A. Jeukendrup, 2014). Esto sirve como indicador al momento de adquirir y consumir un suplemento.

Cuando es de mayor intensidad o tiempo (150 min), algunos autores recomiendan un consumo de 90 g/h (Burke et al., 2011; A. Jeukendrup, 2014). Para esto se debe consumir un suplemento que contenga varias fuentes de carbohidratos.
El consumo de maltodextrina con isomaltulosa se recomienda cuando se debe consumir más de 60 g/hora de carbohidratos. Ya que la isomaltulosa en un disacárido de glucosa y fructosa. Este carbohidrato se asocia con una baja tasa de digestión, entre 40-50% (Achten, Jentjens, Brouns, & Jeukendrup, 2007; Sawale et al., 2017). Por ende, se considera un consumo previo al superar los 150 minutos de ejercicio.

La maltodextrina tiene un alto índice glicémico, en comparación con la isomaltulosa, y además genera una mayor respuesta insulénica (Periche Santamaría, A.; Heredia Gutiérrez, AB.; Escrich Roberto, MI.; Andrés Grau, AM.; Castelló Gómez, 2015; Sawale et al., 2017; L. Wu & Birch, 2011). Además de tener una menor tasa de oxidación (A. E. Jeukendrup, 2010). Por esta razón, se debe considerar el momento en el que se va a consumir el suplemento durante el ejercicio.

Tabla 27: Tasas de oxidación de carbohidratos exógenos para varias mezclas de carbohidratos, durante ejercicio de intensidad moderada.

<table>
<thead>
<tr>
<th>Tipo de carbohidrato</th>
<th>Consumo (g/min)</th>
<th>Oxidación de los carbohidratos consumidos (g/min)</th>
<th>Eficiencia de oxidación (%)</th>
<th>Mejora tasa de oxidación de mezcla de carbohidratos vs una fuente (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu</td>
<td>1,2</td>
<td>0,83</td>
<td>69</td>
<td>-</td>
</tr>
<tr>
<td>Glu</td>
<td>1,8</td>
<td>0,86</td>
<td>72</td>
<td>-</td>
</tr>
<tr>
<td>Glu:Frc (1:1)</td>
<td>1,8</td>
<td>1,26</td>
<td>70</td>
<td>55</td>
</tr>
<tr>
<td>Glu</td>
<td>1,2</td>
<td>0,9</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td>Glu:Frc (1:1)</td>
<td>2,4</td>
<td>1,2</td>
<td>50</td>
<td>21</td>
</tr>
<tr>
<td>Glu</td>
<td>1,5</td>
<td>0,77</td>
<td>51</td>
<td>-</td>
</tr>
<tr>
<td>Glu:Frc (2:1)</td>
<td>1,5</td>
<td>1,14</td>
<td>76</td>
<td>48</td>
</tr>
<tr>
<td>Glu</td>
<td>1,5</td>
<td>1,24</td>
<td>83</td>
<td>-</td>
</tr>
<tr>
<td>Glu:Frc (2:1)</td>
<td>1,5</td>
<td>1,4</td>
<td>93</td>
<td>13</td>
</tr>
<tr>
<td>Maltodextrina</td>
<td>1,8</td>
<td>1,06</td>
<td>59</td>
<td>-</td>
</tr>
<tr>
<td>Maltodextrina:Frc(1:1)</td>
<td>1,8</td>
<td>1,5</td>
<td>83</td>
<td>42</td>
</tr>
<tr>
<td>Maltodextrina</td>
<td>0,6</td>
<td>0,49</td>
<td>82</td>
<td>-</td>
</tr>
<tr>
<td>Maltodextrina:Frc(2:1)</td>
<td>0,9</td>
<td>0,73</td>
<td>81</td>
<td>-</td>
</tr>
</tbody>
</table>

Además el consumo de maltodextrina y una fuente de fructosa, se asocia con una mejor respuesta en el desempeño al momento de realizar una actividad física y una mayor tasa de oxidación (Décombaz et al., 2011; A. E. Jeukendrup, 2010; KEVIN CURRELL, 2008; Wallis et al., 2008), como muestra la tabla 27.

En el caso de deportistas que tienen sesiones de ejercicio en intervalo menores de 8 horas, se recomienda el consumo abundante de carbohidratos para reponer las reservas de glucógeno (Burke et al., 2011; Décombaz et al., 2011; Potgieter, 2013). Conocer esto por deportistas que entrenan dos o más veces al día es de gran importancia, para poder alcanzar un buen rendimiento (Hawley & Burke, 2010).

El consumo de carbohidratos está fuertemente relacionado con los incrementos de insulina en sangre, esto tiene un efecto benéfico debido a que inhibe la catálisis de la proteína muscular, ayuda en la síntesis muscular y además estimula el almacenamiento de glucógeno en el músculo (Churchward-Venne et al., 2012; Di Camillo et al., 2014; Phillips, 2012b; Timmerman et al., 2010; Wallis et al., 2008). El efecto de la catálisis muscular se inhibe también si se consume suficiente proteína sola (Churchward-Venne et al., 2012), pero no se produce regeneración del glucógeno muscular.

El consumo de carbohidratos acompañado de proteína, aumenta la síntesis de glucógeno en el músculo, que solo consumir carbohidratos (Burke et al., 2011; Street et al., 2011), como muestra la gráfica 5. Esto es de gran importancia para deportistas que buscan una alta tasa de recuperación, debido a la intensidad de su entrenamiento. De esto se hablará más adelante.

Además de consumir carbohidratos para una mejor recuperación o preparación para una sesión de ejercicio, se debe consumir para no generar una pérdida de grasa corporal y posteriormente una reducción de la masa muscular (Phillips, 2012). Cuando ocurre esto, decrece el estado físico del deportista.

Dependiendo del nivel de entrenamiento, se aumenta el consumo de carbohidratos. Cuando se entrena de 2-3 veces al día se considera que se debe consumir mínimo 3-5 g/kg/día de carbohidratos y máximo 8-12 g/kg/día (Burke et al., 2011; Phillips, 2012b). Esto varía según el entrenamiento y la intensidad de este.

Por lo anteriormente descrito, al momento de determinar el consumo de carbohidratos, no se realiza por el porcentaje de energía que brinda en comparación con los otros macronutrientes o gramos día (Burke et al., 2011; Hawley & Burke, 2010). En vez de eso se debe definir la actividad física, intensidad de la actividad física y la duración de esta, para definir el consumo de carbohidratos. Esto se describe en la tabla 28.

El consumo de carbohidratos puede ayudar a mantener la intensidad de una rutina de ejercicios e incluso mejorarla (Burke et al., 2011; A. Jeukendrup, 2014).
82 Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

Gráfico 5: Síntesis de glucógeno en el músculo, cuando se compara el consumo de carbohidratos vs carbohidratos y proteína.

Se recomienda el consumo de carbohidratos con bastante agua, ya que el consumo de carbohidratos en presentación sólida, disminuyen la absorción de los carbohidratos (A. Jeukendrup, 2014).

Cuando se habla de consumo de carbohidratos se debe tener en cuenta VO2\textsubscript{max} (Consumo máximo de oxígeno). Este se correlaciona con la capacidad aeróbica y la cantidad máxima de oxígeno que puede metabolizar el organismo (Quirós, 2012).

Cuando se considera VO2\textsubscript{max} en relación con el consumo de carbohidratos. Se consideraba que, al aumentar la intensidad del ejercicio, aumentaba la cantidad de carbohidratos exógenos oxidados (A. E. Jeukendrup & Jentjens, 2000; Peinado et al., 2013). Donde se ha encontrado que las tasas de oxidación en el caso de la glucosa fueron 0.18, 0.36, 0.46 y 0.49 g/min en 22, 39, 51, y 64\% VO2\textsubscript{max} (A. E. Jeukendrup & Jentjens, 2000). Esto es de gran importancia al momento de consumir suplementos de carbohidratos, ya que, dependiendo del nivel de exigencia de la actividad física, se debe considerar el consumo de carbohidratos durante el ejercicio.

En la mayoría de los deportes manejan intensidades entre 60-70\% VO2\textsubscript{max}, generando que la mayoría de la energía usada sea de los carbohidratos (Peinado et al., 2013).

Cabe aclarar que el mayor nivel de oxidación de los carbohidratos no significa una mayor síntesis de glucógeno en el músculo, ya que parte de lo consumido se usa primero en la síntesis de glucógeno en el hígado (Décombaz et al., 2011; Wallis et al., 2008).

Cuando se realiza levantamiento de curl de bíceps de 8-10 repeticiones con el 80\% del máximo peso para una sola serie, se reduce el glucógeno en músculo 35\% (Phillips, 2012a). Esto demuestra la alta importancia de un buen consumo de carbohidratos por el deportista.
Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

Tabla 28: Consumo de carbohidratos (g/kg), según el nivel de actividad y el momento del día.

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Situación</th>
<th>Consumo carbohidratos</th>
<th>Razón</th>
</tr>
</thead>
<tbody>
<tr>
<td>Necesidades diarias de energía y recuperación en deportistas según la intensidad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bajo</td>
<td>Ejercicio de baja intensidad</td>
<td>3-5 g/kg por día</td>
<td>Antes, durante y después del ejercicio se debería consumir carbohidratos. Si a esto se le suma el consumo de proteína, se puede alcanzar más fácilmente los objetivos.</td>
</tr>
<tr>
<td>Medio</td>
<td>Ejercicio de media intensidad</td>
<td>5-7 g/kg por día</td>
<td></td>
</tr>
<tr>
<td>Alto</td>
<td>Ejercicio de alta intensidad</td>
<td>6-10 g/kg por día</td>
<td></td>
</tr>
<tr>
<td>Muy alto</td>
<td>Ejercicio de muy alta intensidad</td>
<td>8-12 g/kg por día</td>
<td></td>
</tr>
</tbody>
</table>

Estrategias de preparación para diferentes modos de ejercicio

Alimentación general (AG)	Sesión menor a 90 minutos	7-12 g/kg, 24 horas antes de la competencia	Consumo de carbohidratos regularmente mediante suplementos, snacks, y bebidas energéticas, puede generar una mayor recuperación y un mejor desempeño durante el ejercicio. El momento del consumo debe ser establecido según el tipo de actividad que se va a realizar, para lograr un mejor desempeño. Consumir mezclas de glucosa y fructosa, debido a que tienen diferentes métodos de transporte y esto permite mayores tasas de oxidación durante el ejercicio.
Almacenamiento óptimo de carbohidratos	Sesión mayor a 90 minutos	10-12 g/kg, 24 horas antes de la competencia	
Recuperación rápida	Menos de 8 horas entre dos sesiones de ejercicio	1-1.2 g/kg primeras cuatro horas, cuatro horas siguientes (7-12 g/kg)	
Consumo pre-sesión	Consumo 60 minutos antes de la sesión	1-4 g/kg (1-4 horas antes del ejercicio)	
Breve ejercicio	Antes de 45 minutos iniciada la sesión	No es necesario	
Durante un sostenido ejercicio de alta intensidad	45-75 minutos de ejercicio	Pequeñas cantidades ofrecidas por bebidas energéticas	
Durante ejercicio de alta resistencia (intervalos)	1-2.5 horas de ejercicio	30-60 g por hora	
Durante ejercicios de ultra alta resistencia	Mayor a 2.5 horas	Más de 90 g por hora	

84 Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

Tabla 29: Consumo de carbohidratos durante el ejercicio y post ejercicio.

<table>
<thead>
<tr>
<th>Nivel de actividad física</th>
<th>g carbohidratos/kg peso corporal/día</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durante el ejercicio</td>
<td></td>
</tr>
<tr>
<td>Ejercicio menor a 45 minutos</td>
<td>No es necesario el consumo</td>
</tr>
<tr>
<td>Ejercicio intenso de 45-75 minutos</td>
<td>Menos de 30g/hora</td>
</tr>
<tr>
<td>Ejercicio de resistencia entre 1-2.5 horas</td>
<td>30-60g/hora</td>
</tr>
<tr>
<td>Ejercicio de resistencia mayor a 2.5 horas</td>
<td>Más de 90g/hora</td>
</tr>
<tr>
<td>Post evento o durante el entrenamiento</td>
<td></td>
</tr>
<tr>
<td>ACSM</td>
<td>1-1.5g/kg peso corporal en los primeros 30 minutos y repetir 3 veces más, cada 2 horas. Con adecuada hidratación.</td>
</tr>
<tr>
<td>ISSN</td>
<td>0.6-1.5g/kg peso corporal en los primeros 30 minutos y repetir 3 veces más, cada 2 horas. Con adecuada hidratación.</td>
</tr>
<tr>
<td>IOC</td>
<td>1-1.2g/kg peso corporal/hora, en las primeras 4 horas, consumiendo fuentes ricas y pequeñas de carbohidratos. Posteriormente consumir la energía diaria recomendada para cada deportista.</td>
</tr>
</tbody>
</table>

El consumo de los carbohidratos en soluciones es mejor que la infusión directa de glucosa al sistema circulatorio (Burke et al., 2011; A. Jeukendrup, 2014). Ya que encontraron que, al ser consumidas en soluciones, los deportistas mejoraban su rendimiento durante el ejercicio, en cambio la infusión no desmejoraba o mejoraba el rendimiento (A. Jeukendrup, 2014).

En el gráfico 6 y 7 se muestra las proporciones de energía usada, según la duración del ejercicio y su intensidad. Donde azul claro es glucosa, gris es ácidos grasos libres en plasma, azul oscuro es triglicéridos en musculo y violeta es glucógeno.

En la tabla 30 se describen algunos estudios en los que se usó suplementación de carbohidratos.
Gráfico 6: Efecto de la intensidad y duración del ejercicio (no mayor a 30 minutos), en el uso de sustratos metabólicos.

Gráfico 7: Efecto de la intensidad y duración del ejercicio (90-120 minutos), en el uso de sustratos metabólicos.

Tabla 30: Estudios sobre los efectos del consumo de carbohidratos.

<table>
<thead>
<tr>
<th>Objetivo</th>
<th>Participantes, grupos, repeticiones y/o estudios.</th>
<th>Tratamiento</th>
<th>Medición</th>
<th>Resultado</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto consumir G + F vs G, en relación con la síntesis de glucógeno post ejercicio</td>
<td>6 deportistas hombres de resistencia (26±2 años). Dos repeticiones experimentales (G=90 g y G=60 g-F=30 g).</td>
<td>Realización exhaustiva de ejercicio hasta agotar glucógeno. Después consumir cada 30 min el suplemento.</td>
<td>Biopsia en la hora 0, 1 y 4 hora después del ejercicio.</td>
<td>No se presentaron diferencias entre tratamientos.</td>
<td>(Wallis et al., 2008)</td>
</tr>
<tr>
<td>Comparar el efecto de diferentes bebidas de Mal (con G o Ga o F), que contienen en total 69 g, en la síntesis de glucógeno en hígado post ejercicio</td>
<td>10 deportistas hombres de resistencia (29±1 años). Tres repeticiones (Mal+G, Mal+Ga y Mal+F).</td>
<td>Protocolo de ejercicio hasta agotamiento. Consumir en relación 2:1 Mal con otro CHO.</td>
<td>Espectroscopía de resonancia magnética nuclear post ejercicio.</td>
<td>Bebidas de Mal con Ga o F fueron el doble de efectivas en restaurar el glucógeno del hígado en comparación Mal+G, post ejercicio.</td>
<td>(Décombaz et al., 2011)</td>
</tr>
<tr>
<td>Efecto del bajo o alto consumo de CHO en deportistas de crossfit.</td>
<td>11 mujeres (22,9±2,8 años) y 7 hombres (26,1±10,2 años) deportistas de crossfit (29±1 años). Dividido en dos grupos.</td>
<td>Un grupo (9) consume CHO (6-8 g/kg pc/día) y el otro grupo (9) es el control (<6 g/kg pc/día).</td>
<td>Tres días separados (12 min crossfit). Consumo de oxígeno (VO₂), lactato en sangre e intercambio respiratorio.</td>
<td>Hubo un aumento en las repeticiones en el grupo suplementado con respecto al control. Lo demás no hubo diferencias.</td>
<td>(Escobar, 2016)</td>
</tr>
</tbody>
</table>
Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

Continuación tabla 30.

<table>
<thead>
<tr>
<th>Efecto de consumo de carbohidratos</th>
<th>Consumo antes, durante y después del ejercicio. Durante 9 días de ejercicio intenso. Alto (128 g:total) y moderado (32 g:total).</th>
<th>Tiempo sueño, estado de ánimo y VO_2max</th>
<th>Aumento del tiempo de sueño y alteración del estado de ánimo, se presentó en el grupo moderado. El VO_2max cayó en igual medida.</th>
<th>(Killer et al., 2015)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto del consumo de carbohidratos en el desempeño deportivo cognitivo. 7 mujeres y 10 hombres deportistas de fuerza (19,1±1 años). Dos repeticiones experimentales.</td>
<td>Consumo 60 y 30 min antes del ejercicio 250 mL (7% CHO (F y Mal) o 250 mL placebo.</td>
<td>Ejercicio de fuerza. Antes y después del ejercicio, tiempo de reacción (cognitivo).</td>
<td>El consumo antes de CHO antes del ejercicio aumenta la fuerza y mejora el tiempo de reacción vs el placebo</td>
<td>(Davranche, 2016)</td>
</tr>
<tr>
<td>Efecto del consumo de CHO y L-c en la composición corporal 7 mujeres deportistas de resistencia (19-22 años). Tres repeticiones experimentales.</td>
<td>Un grupo consume 2 g L-c más 10 g CHO y otro grupo solo 2 g L-c. Consumo dos veces por día.</td>
<td>Corredoras habituales. Composición corporal, esfuerzo percibido y tiempo fatiga.</td>
<td>No se encontraron diferencias entre tratamientos.</td>
<td>(Stack & Stack, 2017)</td>
</tr>
</tbody>
</table>

Se considera este efecto a los receptores de la lengua, que perciben el potencial alimento que se está consumiendo (A. Jeukendrup, 2014). Esto indica que el consumo de carbohidratos durante el ejercicio puede mejorar el rendimiento. Esto no ocurre para los edulcorantes (A. Jeukendrup, 2014).

Finalmente, en la fase lútea de mujeres deportistas, estas son capaces de aumentar la síntesis de glucógeno (Peinado *et al.*, 2013). Esto implica que al momento de consumir carbohidratos las mujeres, se debe tener en cuenta el ciclo menstrual (Peinado *et al.*, 2013).
4.3.1 AAKG (L-arginina – α-cetoglutarato)

El consumo de L-arginina se da principalmente en deportistas de alta intensidad, ya que se cree que tiene un beneficio en aumento de fuerza, energía y recuperación de una rutina de alta intensidad (Wax, Kavazis, Webb, & Brown, 2012; Wax et al., 2013; Yavuz, Turnagol, & Demirel, 2014). Estos suplementos se creen que estimulan la producción del óxido nítrico (NO), esto debido a que al haber mayor cantidad de arginina en el cuerpo, aumenta la síntesis de óxido nítrico mediante la enzima óxido nítrico sintasa (Wax et al., 2012, 2013). Otros posibles efectos del consumo, son aumentar la síntesis de creatina y hormona de crecimiento (Imanipour, Naderi, & Researcher, 2016; Wax et al., 2013).

Al aumentar el óxido nítrico, se aumenta el flujo de sangre, beneficiando a los deportistas por un mayor flujo de nutrientes y remoción de productos de desecho del músculo (Imanipour et al., 2016; Wax et al., 2012, 2013; Yavuz et al., 2014). Un producto que se cree que remueve es el lactato, este está asociado con la fatiga del músculo (Wax et al., 2013; Yavuz et al., 2014).

Tabla 31: Estudios sobre los efectos del consumo de AAKG.

<table>
<thead>
<tr>
<th>Objetivo</th>
<th>Participantes, grupos, repeticiones y/o estudios.</th>
<th>Tratamiento</th>
<th>Medición</th>
<th>Resultado</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto ergogénico de AAKG, en fuerza 1 RPM y volumen total de ejercicio.</td>
<td>16 participantes. 8 han realizado ejercicio (19.8±1.9 años). 8 no han realizado (21.8±2.4 años). Dos repeticiones</td>
<td>Aleatorizado s participantes, un grupo consume 3000 mg AAKG y otro grupo placebo.</td>
<td>1 RPM flexión de pecho y sentadilla. Posteriornamente repetición a fallo con 60% RPM.</td>
<td>No hubo ningún efecto en el consumo de AAKG con respecto al placebo.</td>
<td>(Wax et al., 2012)</td>
</tr>
<tr>
<td>Efecto ergogénico de AAKG en fuerza máximo 1 RPM y resistencia muscular.</td>
<td>19 cadetes ROTC (19,42±1,26 años). Dos grupos. Dos repeticiones.</td>
<td>Aleatorizado un grupo consume 3 g de AAKG y otro grupo consume placebo.</td>
<td>1 RPM flexión de pecho y sentadilla. Posteriornamente repetición a fallo con 60% RPM.</td>
<td>No hubo ningún efecto en el consumo de AAKG con respecto al placebo.</td>
<td>(Wax et al., 2013)</td>
</tr>
</tbody>
</table>

RPM: Repetición con peso máximo. AAKG: L-arginina α cetoglutarato.
En cuanto al α-cetoglutarato, se cree que combinarlo con la l-arginina, puede generar un mejor desempeño en los deportistas. Ya que estimularía la producción de adenosina trifosfato (Wax et al., 2012). El α-cetoglutarato es un metabolito producido por la descarboxilación oxidativa de isocitrato, un proceso que ocurre en el ciclo de Krebs (Wax et al., 2012).

Como muestra la tabla 31, el AAKG no produjo ningún efecto diferente al placebo. Los efectos que se cree produce el AAKG, como son aumento en fuerza y generar mayor resistencia realmente, no ocurren (Wax et al., 2012, 2013). Aunque la literatura hable sobre estos. En cambio cuando se consume excesivamente, puede producir diarrea, náusea y hemorragias nasales (Imanipour et al., 2016).

4.3.2 Cafeína

La cafeína ejerce efectos en los tejidos como músculo, tejido adiposo y sistema nervioso central (Zanchi, Gerlinger-romero, & Duncan, 2015). Además la cafeína tiene un efecto ergogénico en el desempeño deportivo, que deriva en mayor resistencia y fuerza (Astorino & Marcos, 2014; Zanchi et al., 2015). Donde también se ha descrito una percepción de menor esfuerzo al ejercicio y menor dolor durante las repeticiones, cuando se consume cafeína (Zanchi et al., 2015).

Tabla 32: Estudios sobre los efectos del consumo de cafeína.

<table>
<thead>
<tr>
<th>Objetivo</th>
<th>Participantes, grupos, repeticiones y/o estudios.</th>
<th>Tratamiento</th>
<th>Medición</th>
<th>Resultado</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto de cafeína en fallo flexión de pecho y Sentadilla al 80% 1 RPM.</td>
<td>14 personas entrenando mínimo un año. Entre 20.9 ± 0.36 años. Dos grupos divididos en 7 y 7.</td>
<td>Un grupo (7) 5mg cafeína por kg de peso y el otro grupo (7) placebo.</td>
<td>3 series de flexiones de pecho y 3 series de sentadillas</td>
<td>Aumento en el número de repeticiones a fallo comparado a placebo.</td>
<td>(Zanchi et al., 2015)</td>
</tr>
<tr>
<td>Efecto cafeína en deportistas de fuerza, que a su vez consumen diariamente cafeína.</td>
<td>14 deportistas de fuerza con 7.5 ± 1.2 años entrenando. Dos grupos divididos en 7 y 7. Dos repeticiones.</td>
<td>Un grupo (7) 6mg cafeína por kg de peso y el otro grupo (7) placebo.</td>
<td>4 series de flexiones de pecho, 4 series de sentadillas, 4 series de remo y 4 series de flexión de hombros. Al 80% 1 RPM</td>
<td>Sentadilla aumento de fuerza y resistencia en el grupo de cafeína, con respecto al placebo. En los otros ejercicios no.</td>
<td>(Astorino & Marcos, 2014)</td>
</tr>
</tbody>
</table>

RPM: Repetición con peso máximo.
90 Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

Estos efectos se presentan en personas que consumen de manera moderada cafeína, ya que aquellos que consumen más de 300 mg de cafeína por día, no perciben ningún efecto positivo en su desempeño deportivo (Zanchi et al., 2015), como muestra la tabla 32.

El consumo de cafeína para que llegue a ser letal es de 5-10 g de cafeína en el día o 3g de cafeína en pocas horas (Augusto & Henry, 2013).

4.4 Suplementos de carbohidrato-proteína en deportistas

El consumo de proteína más carbohidratos, promueve un aumento en la síntesis de proteína en el músculo, la reducción de catálisis en la proteína muscular y síntesis de glucógeno muscular, generando un balance neto positivo mayor, en comparación con solo consumir proteína o carbohidratos. (Breen et al., 2011; Glynn et al., 2019; Howarth, Moreau, Phillips, & Gibala, 2009; Naclerio et al., 2015; Potgieter, 2013; Staples et al., 2011).

Cuando el consumo de proteína post ejercicio es elevado (mayor a 25 g), el consumo de carbohidratos no genera beneficio en la síntesis de proteína muscular (Staples et al., 2011). Aunque la recuperación de glucógeno muscular se ve afectada por el no consumo de carbohidratos (Howarth et al., 2009).

El solo consumo de proteína genera un balance positivo en el músculo, pero no recupera el glucógeno muscular para una nueva sesión de ejercicio. Cuando se consume menos de la cantidad recomendada de carbohidratos (menor a 1.2 g/kg/h) durante el reposo, no se logrará recuperar de manera satisfactoria el glucógeno muscular (Howarth et al., 2009). Pero aunque el consumo de carbohidratos sea subóptimo, al adicionarle proteína se puede generar un aumento en la síntesis de glucógeno, como si se consumiera la cantidad suficiente de carbohidratos (Howarth et al., 2009). Aunque al consumir 1.2 g/kg/h o más de carbohidratos en reposo, el adicionar proteína no genera un efecto mayor en la síntesis de glucógeno (Howarth et al., 2009).

Cuando solo se consume carbohidratos post ejercicio, se produce una reducción de la catálisis muscular pero no genera un efecto en la síntesis de proteína muscular, generando un balance negativo (Glynn et al., 2019; Howarth et al., 2009; Staples et al., 2011). Por esta razón se debe consumir proteína y carbohidratos post ejercicio, generando un mayor efecto anabólico y un balance positivo en el músculo. Para una reducción total de la catálisis muscular, se recomienda el consumo de 100 g de carbohidratos post ejercicio (Glynn et al., 2019).

Se recomienda consumir proteína más carbohidratos dentro de los 30 minutos post ejercicio (Potgieter, 2013). Ya que después de 30-60 minutos post ejercicio, el músculo esquelético toma de la sangre con mayor eficiencia aminoácidos, glucosa y ácidos grasos (Phillips et al., 2009; G. Wu, 2016a). De este modo se recomienda el consumo de fuentes de proteína y carbohidratos de alta biodisponibilidad inmediato después ejercicio, para generar el mayor efecto anabólico. El efecto anabólico es alto a las tres horas post ejercicio, pero es mayor inmediatamente se termina el ejercicio.
Tabla 33: Estudios sobre los efectos del consumo de carbohidrato-proteína.

<table>
<thead>
<tr>
<th>Objetivo</th>
<th>Participantes, grupos, repeticiones y/o estudios.</th>
<th>Tratamiento</th>
<th>Medición</th>
<th>Resultado</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto del consumo de suplementos CHO+PRO en el balance de energía y la composición corporal.</td>
<td>67 usuarios habituales gimnasio. Dos grupos divididos en 27 y 40.</td>
<td>Un grupo (27) consumen el suplemento a voluntad y el otro grupo (40) no consumen suplemento.</td>
<td>Balance de energía y composición corporal.</td>
<td>Mayor balance de energía y aumento de masa corporal (grasa) en el grupo con suplemento.</td>
<td>(Saidi, Ayed, Benzarti, Duché, & Serairi, 2018)</td>
</tr>
<tr>
<td>Efecto del consumo de PRO+CHO y PRO vs placebo en GH, IGF-1, insulina y creatina quinasa.</td>
<td>12 deportistas de fuerza con 25.8 ± 4.7 años. Dos grupos divididos en 6 y 6.</td>
<td>Un grupo (6) consumen PRO+CHO (0.5g/kg pc) post ejercicio y antes de dormir 0.3g/kg pc de proteína. Otro grupo (6) agua.</td>
<td>GH, IGF-1, insulina y creatina quinasa.</td>
<td>GH e IGF-1 aumentaron en el grupo con suplemento. Creatina quinasa e insulina no fueron diferentes.</td>
<td>(Wilk, Michalczyk, Gołaś, Krzysztofik, & Zając, 2018)</td>
</tr>
<tr>
<td>Efecto consumo bebida baja en CHO+PRO vs bebida CHO. En ejercicio resistencia.</td>
<td>8 hombre y 7 mujeres deportistas de resistencia. 20-40 años. Dividido nivel resistencia. Dos grupos, bajo(b) y alto (a). Dos repeticiones</td>
<td>Consumo de CHO+PRO (3g+1.2g) cada 20 min y consumo de CHO (6g) cada 20 min.</td>
<td>Ejercicio resistencia de 3 horas. Tiempo de agotamiento y umbral ventilatorio.</td>
<td>No hubo diferencias entre tratamiento, aunque mejoro resistencia del grupo b con PRO+CHO vs CHO.</td>
<td>(Ferguson-Stegall, Lisa; McCleave, Erin L; Ding, Zhenping; Kammer, Lynne M; Wang, Bei; Doerner, Phillip G; Liu, Yang; Ivy, 2010)</td>
</tr>
</tbody>
</table>
Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

Continuación tabla 33.

<table>
<thead>
<tr>
<th>Efecto del consumo de PRO+CHO en síntesis miofibrilar y mitocondrial</th>
<th>10 deportistas de resistencia de 29 ± 6 años. Dos repeticiones.</th>
<th>Primera repetición consume post ejercicio y 30 min después 25g CHO en la segunda repetición. 25g CHO más 10g PRO.</th>
<th>90 min ejercicio resistencia. Biopsia músculo, medición síntesis miofibrilar y mitocondrial. Aminoácidos y urea en sangre. Insulina. Fosforilación proteínas (mTOR).</th>
<th>Aumento de aminoácidos y urea en sangre, insulina, síntesis miofibrilar y fosforilación proteínas mayor en PRO+CHO.</th>
<th>(Breen et al., 2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto consumo PRO+CHO vs CHO en la síntesis muscular, balance neto de proteína en el cuerpo y síntesis glucogénico.</td>
<td>6 hombres de 22 ± 1 años. Tres grupos. Tres repeticiones.</td>
<td>Consumo post ejercicio de PRO+CHO (0.4g/kg pc + 1.2g/kg pc) o bajo CHO (1.2g/kg pc) o alto CHO (1.6g/kg pc).</td>
<td>Dos horas de ejercicio resistencia. Biopsia, síntesis muscular, balance neto de proteína en el cuerpo y síntesis glucogénico.</td>
<td>Aumento en la síntesis muscular y balance neto de proteína en el cuerpo con PRO+CHO. Síntesis glucogénico igual en tratamientos.</td>
<td>(Howarth et al., 2009)</td>
</tr>
<tr>
<td>Efecto consumo PRO+CHO en la síntesis de proteína muscular y catálisis muscular.</td>
<td>9 hombres de 23 ± 1.9 años. Dos grupos. Dos repeticiones.</td>
<td>Consumo post ejercicio de PRO+CHO (25g+50g Mal) o PRO (25g).</td>
<td>Extensión de piernas 4 series a fallo. Biopsia, síntesis de proteína muscular, catálisis muscular, glucosa, insulina y fosforilación akt.</td>
<td>Glucosa, insulina y fosforilación acto mayor en grupo PRO+CHO. Síntesis de proteína muscular y catálisis muscular iguales en los dos grupos.</td>
<td>(Staples et al., 2011)</td>
</tr>
</tbody>
</table>
Continuación tabla 33.

<table>
<thead>
<tr>
<th>Metaanálisis</th>
<th>11 estudios.</th>
<th>Algunos isocalóricos, control vs proteína e iso carbohidratos</th>
<th>Desempeño deportivo</th>
<th>Aumento del desempeño deportivo del 9% cuando se adiciona proteína a una bebida de carbohidratos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto consumo PRO+CHO durante ejercicio</td>
<td>3 pruebas contrarreloj y 8 tiempo de agotamiento.</td>
<td></td>
<td></td>
<td>(Rebecca L. Stearns, Holly Emmanuel, Jeff S. Volek, 2010)</td>
</tr>
</tbody>
</table>

En un estudio se encontró que el consumo de una buena fuente de proteína y carbohidratos a las 3 horas post ejercicio aumento la síntesis proteica en 112%, a las 24 horas 65% y a las 48 horas 34% (G. Wu, 2016a). Esto, más lo anteriormente descrito demuestra nuevamente que la ventana anabólica tiene su mayor expresión en las primeras tres horas post ejercicio (Cermak et al., 2012; G. Wu, 2016a).

Durante el ejercicio el consumo de carbohidratos mejora el desempeño al realizar el ejercicio, aunque cuando se consume carbohidratos más proteína, se logra un aumento en el desempeño que al solo consumir carbohidratos (aumento del 9%) (Rebecca L. Stearns, Holly Emmanuel, Jeff S. Volek, 2010). Esto debido a que la proteína funciona como otra fuente de energía para el músculo, como lo son los BCAA, además de que el consumo de proteína evita la catálisis muscular en sesiones largas de ejercicio (Rebecca L. Stearns, Holly Emmanuel, Jeff S. Volek, 2010).

En la tabla 33 se describen algunos estudios en los que se usó suplementación de carbohidratos más proteína.

4.5 Efectos negativos del consumo de proteína y/o carbohidratos

4.5.1 Proteína

El consumo promedio de proteína en personas que realizan fisicoculturismo o deportes de fuerza es de 2,5 g/kg/día a 3,5 g/kg/día (Phillips, 2012b). En cambio los deportista de resistencia consumen en promedio de 1,2 a 1,6 g/kg/día (Phillips, 2012a).

Con este consumo (2,5 g/kg/día a 3,5 g/kg/día proteína) las trazas de urea no aumentan, si se reparten de una manera adecuada durante el día. En cambio, si se consume más de 30g de proteína post ejercicio, en personas de 86-91 kg de peso, esta puede hacer que aumenten la trazas de urea (Hemant H Gangurde, Mayur A Chordiya, Pooja S Patil, 2017; Phillips, 2012b). Debido a la alta digestibilidad de los suplementos, que sobrecarga el hígado (Dideriksen et al., 2013; Hemant H Gangurde, Mayur A Chordiya, Pooja S Patil, 2017).
Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

Los deportistas tienen una alta actividad capacidad de oxidar los aminoácidos de la dieta, generando metabolitos como amonio, NO, homocisteína y sulfato, además de poder excretar de forma correcta la urea en orina (G. Wu, 2016a). Esto cuando las cantidades no superan de 3,5 g/kg/día (Phillips, 2012b; G. Wu, 2016a).

En algunos casos se tiene a fisicoculturistas y/o deportistas de fuerza que consumen más de 3,5g/kg/día de proteína (Phillips, 2012b; G. Wu, 2016a). Generando efectos nocivos como incomodidad intestinal, hiperaminoacidemia, hiperamonemia, hiperinsulinemia, deshidratación, irritación, náuseas, diarrea, lesiones hepáticas y renales, fatiga, dolor de cabeza, convulsiones, aumento en riesgo de enfermedades cardiovasculares y la muerte (Phillips, 2012b; G. Wu, 2016a).

La hiperaminoacidemia es la alta cantidad de aminoácidos en sangre, que se da por la alta ingesta de estos, y la hiperinsulinemia es el alto contenido de insulina en sangre, que se produce por el alta ingesta de carbohidratos de alto índice glicémico (González, Ruz, Ruiz, Sánchez, & Márquez, 2016; R. Hernández, 2003).

Al estimular la hiperaminoacidemia y la hiperinsulinemia post ejercicio, mediante el consumo de suplementos. Puede conllevar a un aumento en la síntesis muscular, reducción en el catabolismo muscular, aumento en la hipertrofia y fuerza (González et al., 2016; Volpi, Mittendorfer, Rasmussen, & Wolfe, 2000).

Aunque en un estudio reciente se considera que la alta concentración de aminoácidos en plasma, puede aumentar cuatro veces el riesgo de padecer diabetes tipo 2 (Thomas J. Wang, Martin G. Larson, Ramachandran S. Vasan, Eugene P. Rhee, Elizabeth McCabe, Gregory D. Lewis, Paul F. Jacques, Céline Fernandez, Christopher J. O’Donnell, Vamsi K. Mootha, Jose C. Florez, Amanda Souza1, Olle Melander1, & Clish, 2011). Esto debido a que los aminoácidos de cadena ramificada, son moduladores en la secreción de insulina, produciendo un agotamiento de las células α del páncreas (Thomas J. Wang, Martin G. Larson, Ramachandran S. Vasan et al., 2011).

La hiperamonemia es el aumento de amonio en suero, que se debe al mal funcionamiento del cuerpo para eliminar nitrógeno del cuerpo. Esto se puede dar con defectos congénitos en las enzimas, problemas en los ciclos de la urea, acidemias orgánicas, etc. (Auron & Brophy, 2011). El alto consumo de proteína puede generar que se aumenten los niveles de amonio en sangre, si el consumidor sufre algún problema metabólico. Además al realizar ejercicio se produce amonio por la desaminación de adenosín monofosfato y el catabolismo de los aminoácidos (Auron & Brophy, 2011).

La hiperamonemia puede producir hipotonía, convulsiones, vómito y cambios neurológicos anormales, cuando alcanza valores mayores de 300 mmol/L (Auron & Brophy, 2011). los niveles normales de amonio son menores a 300 mmol/L (Auron & Brophy, 2011).

También puede producir la hiperamonemia un efecto diabetógeno, ya que al inducir en animales esto, los niveles de glucosa fueron mayores que en animales sanos (Auron & Brophy, 2011). Esto indicaría que el consumo de altas dosis de proteína, acompañadas con
carbohidratos, puede generar incluso un efecto diabetógeno en personas con problemas metabólicos para eliminar nitrógeno.

El consumo alto en proteína con bajo consumo de carbohidratos es común en deportistas antes de las competencias, esto para disminuir el porcentaje de grasa corporal. Ya sea para lograr un cuerpo más definido o para poder entrar en una categoría de peso menor, generando ventajas en la competencia (Helms, Eric R, Argon, Alan A., Fitschen, 2014; Phillips, 2012b). Este tipo de dieta se ha asociado a un mayor riesgo de enfermedades cardiovasculares (Lagiou et al., 2012). También el alto consumo de proteína y bajo consumo de carbohidratos, produce una carga en riñón e hígado para producir glucosa a partir de los aminoácidos (G. Wu, 2016a). Además de que estos deben eliminar el exceso de urea y amoníaco (Antonio et al., 2016; G. Wu, 2016a). Esto además produce una disminución en el rendimiento deportivo, ya que no se consume suficiente energía para reemplazar la gastada (Phillips, 2012b).

En el caso del fisicoculturismo se decide bajar la cantidad de calorías consumidas para lograr mayor definición, y que los jueces puedan evaluar aparte de su tamaño, el grado de tonificación. En el caso de deportistas de fuerza se debe más a las categorías de peso del participante a las que puede entrar. Ya que, al tener menos porcentaje de grasa corporal, pero conservando la masa muscular, se puede entrar en una categoría de menor peso.

El alto consumo de proteína produce problemas intestinales debido a la alta síntesis de NO por las células mucosas (G. Wu, 2016b). Otro problema que se asocia al consumo elevado de proteína es con cáncer (colon), pero como tal no se considera la causa, sino una correlaciona (G. Wu, 2016b). En el caso del excesivo consumo proteína animal como la carne. También puede producir hipertensión (G. Wu, 2016b).

El alto consumo de proteína puede conllevar a disminución en la densidad ósea por calciuria, generando osteopenia, osteoporosis y posibles fracturas, además de daño en la función renal (Phillips, 2012a; G. Wu, 2016a). Se cree que la descalcificación es por una mayor excreción de calcio vía orina, que es el resultado de un mayor consumo de proteína (Kim, Lee, & Choue, 2011; G. Wu, 2016a). Debido a que el alto consumo de proteína genera una acidosis metabólica, generando que vía orina se expulse fósforo y calcio, esto con el fin de que el cuerpo mantenga una homeostasis (Kim et al., 2011)

Aunque otros consideran lo contrario, considerando que el mayor consumo de proteína aumenta los niveles de masa ósea, mediado por la IGF-1 (Phillips, 2012b; G. Wu, 2016a). Phillips, 2012a; Wu, 2016 concluyen que el aumento de proteína es benéfico para la densidad ósea, aunque existen estudios que demuestren lo contrario.

Se considera que el consumo de proteína no debe ser más del 35% de la energía en la dieta (Phillips, 2012b). Esto recomendado por AMDR (Acceptable Macronutrients Distribution Range), que significa rango aceptable de distribución de macronutrientes.
Todo esto puede ocurrir cuando se consume suplementos con una alta cantidad de proteína por dosis (tabla 9 y 11), siendo mayores a 30 g. También cuando se consume varias dosis durante el día, sin considerar el peso del deportista, y su relación con la cantidad de gramos de proteína por kg de peso. Incluso puede ocurrir con el adecuado consumo de suplementos de proteína, pero que viene acompañado con una dieta baja en carbohidratos.

Tabla 34: Estudio sobre el efecto del consumo alto de proteína.

<table>
<thead>
<tr>
<th>Objetivo</th>
<th>Participantes, grupos, repeticiones y/o estudios.</th>
<th>Tratamiento</th>
<th>Medición</th>
<th>Resultado</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respuesta metabólica al alto consumo de proteína en fisicoculturistas</td>
<td>8 fisicoculturistas hombres de 21,5 ± 2,6 años.</td>
<td>Consumo proteína de 4,3 ± 1,2 g/kg pc/día.</td>
<td>Excreción de urea, creatina y calcio en orina.</td>
<td>Aumento de la excreción de urea y creatina. La de calcio aumento, pero se mantuvo en rangos normales.</td>
<td>(Kim et al., 2011)</td>
</tr>
</tbody>
</table>

| Consumo alto de proteína durante 1 año en deportistas. Dos meses dieta normal y 4 meses dieta alta en proteína. | 14 deportistas de fuerza hombres de 26,3 ± 3,9 años. | Consumo de proteína (2,51-3,32 g/kg pc/día). | Composición corporal, lípidos en sangre y funcionamiento de riñones e hígado | No aumento grasa corporal, lípidos en sangre no variaron mucho y el funcionamiento de riñón e hígado fue el mismo | (Antonio et al., 2016) |

Pc: peso corporal

4.5.2 Carbohidrato

El sobre consumo de suplementos a base de carbohidratos puede generar problemas de obesidad (Austin, Ogden, & Hill, 2011) y puede generar diabetes tipo 2 (Evert et al., 2013; Feinman et al., 2015; Lagerpusch et al., 2013). Además de que la obesidad se relaciona con la diabetes tipo 2 (Feinman et al., 2015; Sylvia H. Ley, PhD, RDa, Osama Hamdy, MD, PhDb, V. Mohan, MD et al., 2016).
En personas que no realizan deporte, se ha encontrado diabetes tipo 2 cuando el consumo de energía derivado de carbohidratos alcanza o supera el 45% (Evert et al., 2013). En personas que realizan deporte, puede reducir la aparición de diabetes tipo 2 a altos consumos de carbohidratos (Sylvia H. Ley, PhD, RDa, Osama Hamdy, MD, PhDb, V. Mohan, MD et al., 2016), pero cuando existe sobre consumo, se puede presentar diabetes tipo 2 (Austin et al., 2011; Feinman et al., 2015).

Aunque aquellas personas que consumen dietas altas en proteína y sufren diabetes tipo 2, evidencian una baja en la glucosa (Di Camillo et al., 2014).

En cuanto a la hiperinsulinemia o resistencia a la insulina, el ejercicio regular puede prevenir la aparición de este, debido a que los deportistas tienen mayor sensibilidad a la insulina en el músculo esquelético (Hasegawa-tanaka & Machida, 2016). Permitiendo que la glucosa que circula en la sangre sea tomada más fácilmente.

Pero en casos de deportistas de fuerza y/o fisicoculturistas que desean aumentar de peso y recuperarse de una manera más rápida consumiendo más carbohidratos. Se podría presentar hiperinsulinemia, por el alto consumo de carbohidratos y lípidos, debido al exceso de carbohidratos consumidos (Hasegawa-tanaka & Machida, 2016; Lagerpusch et al., 2013), como muestra la tabla 35.

La hiperinsulinemia puede desencadenar enfermedades del corazón (coronaria) en personas no diabéticas, hipertitigliceridemia y esteatosis hepática (Hasegawa-tanaka & Machida, 2016; Lagerpusch et al., 2013).

Esto se puede presentar cuando el consumo de carbohidratos es alto, debido al consumo irresponsable de suplementos (tabla 10), consumiendo más de lo necesario. También se puede dar por el consumo de suplementos que brindan altas cantidades por dosis (tabla 11), que pueden ser cantidades muy grandes, así sea el consumo después del ejercicio.
Tabla 35: Estudios sobre el efecto del consumo alto de carbohidratos.

<table>
<thead>
<tr>
<th>Objetivo</th>
<th>Participantes, grupos, repeticiones y/o estudios.</th>
<th>Tratamiento</th>
<th>Medición</th>
<th>Resultado</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambios en glucosa y metabolitos de lípidos, después de una dieta alta en CHO.</td>
<td>10 deportistas de fuerza.</td>
<td>Día anterior comida (PRO:44,8 g, GRA:43,4 g, CHO: 179,5 g). Medición sangre en la mañana siguiente día. Toma de 75 g CHO y medición post 30, 60 y 120 min</td>
<td>Muestra sangre. Glucosa, insulina, ácidos grasos libres y triglicéridos.</td>
<td>Aumento de insulina (resistencia insulina) y posible hiperlipidemia por aumento en triglicéridos.</td>
<td>(Hasegawa-tanaka & Machida, 2016).</td>
</tr>
<tr>
<td>Efecto de alto consumo de CHO para ganar peso</td>
<td>32 hombres saludables de 25,5±6 3,9. Cuatro grupos. Dos con alto IG y dos con bajo IG</td>
<td>Reducción peso en 3 semanas, y posterior aumento peso en 2 semanas. Dos grupos alto CHO (50- 65%) e IG, otro grupo alto CHO (50-65%) y bajo IG.</td>
<td>Muestra sangre. Glucosa, insulina y triglicéridos. Grasa hígado por MRI</td>
<td>Aumento de glucosa, resistencia insulina, triglicéridos y grasa en el hígado, en dieta 65% CHO.</td>
<td>(Lagerpusch et al., 2013).</td>
</tr>
</tbody>
</table>

CHO: carbohidrato, PRO: proteína, GRA: grasa, g:gramo, post: después, min: minuto, IG: índice glicémico, MRI: Magnetom Avanto 1.5-T Siemens.
4.5.3 Excesos vitaminas A, niacina y zinc
Algunos suplementos de ganancia de masa, que brindan carbohidratos y proteína, presentan cantidades de minerales y vitaminas mayores al 50% diario, para una dieta de 2000 calorías.

En el suplemento SERIOUS MASS la vitamina A está en una dosis del 50% (1500 µg/día) UL (3000 µg/día) y mayor del 167% (50 mg/día) para niacina en UL (35 mg/día) (Ministerio de la Salud y Protección Social, 2016). Esto para una sola dosis del producto.

En cuanto a la cantidad de dosis sugerida por el producto, el GAIN FAST y SERIOUS MASS sobrepasan el 50% de UL en Vitamina A 4350 µg/día (145%) y 3000 µg/día (100%) respectivamente, niacina 57 mg/día (163%) y 100 mg/día (286%) respectivamente y zinc 30mg (75%) siendo el UL (40 mg/día) en el suplemento SERIOUS MASS. Esta cantidad sin considerar lo que proviene de los alimentos que consume el deportista y de otros suplementos, como multivitaminícos.

El exceso de vitamina A produce trastornos en la piel, náusea, vómitos, dolor óseo, teratogenicidad, fontanela abultada, hepatotoxicidad, aumento de triglicéridos en sangre y colesterol en sangre (Blomhoff, Beckman-sundh, Brot, Bygade, & Søborg, 2003; Food & Authority, 2006; Penniston & Tanumihardjo, 2006). La teratogenicidad se refiere a deformidades craneofaciales, del sistema nervioso central y del sistema cardiovascular, todo esto en fetos (Food & Authority, 2006).

El exceso de niacina produce náusea, vómito, letargo, irritación de la piel y ataxia leve (Dunbar & Gelfand, 2010; Food & Authority, 2006). La ataxia se refiere a la falta de control muscular o coordinación de los movimientos voluntarios.

Con respecto al zinc, el exceso de consumo de zinc produce náuseas, vómitos, dolor epigástrico, calambres abdominales, diarrea, letargo, aturdimiento y disminución de cobre plasmático, como de las enzimas que contienen cobre (Food & Authority, 2006; Plum, Rink, & Haase, 2010).

En cuanto al colesterol, el consumo recomendado diario no debe ser más de 300mg/día (FDA, n.d.; Soliman, 2018). En los suplementos MASS TECH EXTREME 2000 y MASSTECH, cada dosis brinda 196mg y 200mg de colesterol respectivamente. Aunque sólo recomiendan consumir una dosis al día y no supera el máximo que se debe consumir al día de colesterol, puede existir la posibilidad de que se sobrepase la cantidad de colesterol que debe consumir al día. Debido a la suma del colesterol de los otros alimentos consumidos durante el día y la del suplemento.

El colesterol se asocia principalmente con enfermedades cardiovasculares (Soliman, 2018). Aunque también su alta acumulación, puede generar una predisposición a Alzheimer, debido a la acumulación de proteína β-amiloide (Ab) en regiones del cerebro (Nina E. Shepardson, Ganesh M. Shankar, 2011; Puglielli, Tanzi, & Kovacs, 2003).
100 Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza
5 Recomendación para formulación de suplementos y mejor estimulo del mTOR

5.1 Formulación de suplementos según el momento de consumo y nivel de actividad física

Para fisicoculturistas y/o deportistas de fuerza que tienen un peso metabólico entre 85-90kg se recomienda un consumo de proteína postejercicio y entre comidas de 25g por dosis de suplemento, acompañado de 100g de proteína, como muestra la figura 11. Esto para generar un aumento de fuerza, resistencia, aumento síntesis proteica, reducción total de la catálisis muscular y resíntesis de glucógeno gastado. Cuando se tiene un peso metabólico mayor, esta dosis puede aumentar proporcionalmente.

De los 25g de proteína, esta debe contener mínimo 3g de leucina para generar una mayor estimulación del mTOR, siendo la mejor fuente de proteína el suero de leche. En cuanto a los 100g de carbohidratos, estos deben contener glucosa y fructosa, como por ejemplo la isomaltulosa que es un disacárido de estos.

Como muestra la figura 11, la representación de color naranja muestra el posible suplemento para deportistas. Aquellos aditivos que tienen un asterisco (*) antes de su nombre, son aquellos que tienen un efecto según los estudios científicos, pero que debería tener aún más ensayos clínicos para su total seguridad en su efecto ergogénico, por ende, se deja a criterio personal su consumo. En cuanto a los que tienen dos asteriscos (**), son aquellos que viene en la matriz de la proteína, como es los BCAA y la glutamina.

En cuanto al consumo antes y durante el ejercicio, se recomienda el consumo de carbohidratos según sea su nivel de actividad física y su tiempo. Por ende, se recomienda dos tipos de suplementos antes y/o durante.

Antes de la actividad física se recomienda el consumo de fuentes de carbohidratos de solo glucosa como maltodextrina o isomaltulosa, cuando la actividad no sobre pasa los 90 minutos, ya sea moderada o de alta intensidad, siendo la dosis 60g/hora. Pero si esta sobrepasa los 90 minutos y es de alta intensidad, se debe consumir carbohidratos que contengan glucosa y fructosa como la isomaltulosa, para una mayor oxidación de carbohidratos por el cuerpo, siendo la dosis 90g/hora. Generando un mejor balance en la energía durante el ejercicio, evitando la reducción del rendimiento deportivo. Aparte se recomienda un consumo de cafeína antes para mejorar el rendimiento deportivo durante la actividad física.
Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

En cuanto al consumo durante, se recomienda en los casos que la actividad física es mayor de 90 minutos. Siendo el suplemento recomendado cuando no supera los 150 minutos, glucosa 60g por dosis/hora, en presentación maltodextrina o isomaltosa. Cuando la actividad física es mayor a 150 minutos se recomienda el consumo de suplementos de 90g de carbohidratos, siendo fuente de glucosa y fructosa como la isomaltulosa. Para mantener un adecuado nivel de oxidación de los carbohidratos.

Figura 11: Dosis recomendada de suplemento antes, durante y después del ejercicio.

En cuanto al consumo de proteína durante el ejercicio, se deriva principalmente por la reducción del daño muscular y en ciertos casos la transformación de los aminoácidos en fuente de energía. Pero siendo principalmente la conservación del musculo.

Con esta formulación para suplementos, se genera el mayor efecto ergogénico en el deportista, sin deteriorar la salud de este.

Aparte se describe en la tabla 36 el consumo promedio de proteína aconsejado y máximo para deportistas fuerza y/o fisicoculturistas, como el consumo de carbohidratos según su nivel de actividad física, siendo esta moderada o intensa. Esta cantidad de macronutrientes se debe consumir durante el día, no en una sola dosis.
5.2 Como estimular el mTOR para un aumento en la síntesis proteica

En cuanto a la estimulación de mTOR, como muestra la figura 12. Se recomienda el consumo de carbohidratos, BCAA (especialmente leucina), HMB y el ejercicio moderado con resistencia (que estimula el aumento de testosterona y hormona de crecimiento). Esto con el efecto de aumentar la fosforilación de mTOR con respecto p70S6K1 y 4E-BP1, que estimula la transcripción y traducción del ARNm, que deriva en un aumento de la síntesis de proteína. Generando aumento de fuerza, aumento de resistencia, mejora en el rendimiento físico y aumento de masa muscular.

Figura 12: Esquema de la estimulación de mTOR por ejercicio, proteína, carbohidratos, insulina, testosterona y hormona de crecimiento
Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza
6 Conclusiones

Los fisicoculturistas y/o deportistas de fuerza manejan dietas con un mayor contenido de proteína y/o carbohidratos, que deportistas de resistencia y personas que no son deportistas. Esto debido a su intensidad de entrenamiento, peso metabólico, necesidades nutricionales para recuperación (glucógeno) y síntesis muscular.

Los alimentos que normalmente se consumen en las comidas, producen saciedad rápidamente y requieren más tiempo de digestión. Generando que el consumo de nutrientes de una manera constante se vea reducida en los deportistas. Por esto el consumo de suplementos se ha vuelto popular. Ya que son de buena biodisponibilidad, vienen en alta concentración los nutrientes y su consumo no produce saciedad.

Los suplementos de proteína contienen como materia prima suero de leche, caseína, huevo y/o soya. Pero el que principalmente se usa para suplementos de proteína, es el suero de leche. Debido a su bajo costo por ser un subproducto de la quesería, y por su buen perfil de aminoácidos para deportistas, siendo el más importante la leucina. Además, estos vienen en algunos casos con adición de creatina, carnitina, colágeno, HMB, glutamina y picolinato de cromo.

Al usar suplementos de proteína, se produce un aumento en la síntesis de proteína, disminución catálisis muscular, recuperación muscular y mejoramiento del desempeño. Esto permitiendo un mejor desempeño en fisicoculturistas y/o deportistas de fuerza. El consumo máximo recomendable es de 25 g por porción, ya que consumir más no genera aumento en la síntesis proteica.

La mayoría de las adiciones que tienen algunos suplementos de proteína tienen un efecto ergogénico (creatina, carnitina, colágeno, HMB y glutamina), aunque debe haber más investigación clínica de sus efectos y alcances. Pero en el caso del picolitro de cromo, no se encontró un consenso sobre su efectividad, por ende, se debe reconsiderar el consumo de suplementos que lo contengan.

Cuando existe un alto consumo de proteína, se puede presentar diferentes problemas en el metabolismo. Siendo principalmente cuando se consumen suplementos de alta digestibilidad, en los que la dosis de proteína es mayor a 30g.

Los suplementos de carbohidratos contienen principalmente maltodextrina, fructosa, isomaltosa, dextrosa y menor medida isomaltulosa. Donde lo realmente importante es la combinación de estos. Además, algunos vienen con AKG, glutamina y cafeína.

Al consumir suplementos de carbohidratos, se puede mejorar el desempeño. Esto en rutinas de larga duración, debido a el gasto de glucógeno que se produce, y que el suplemento puede reemplazar esas pérdidas. En cuanto a esto, se recomienda a deportistas que tengan rutinas que no superan los 150 min, deben suplementarse antes y durante. Siendo lo aconsejado el consumo de 60 g de carbohidratos por hora, siendo maltodextrina o isomaltulosa.
Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

Cuando la rutina es de alta intensidad y su duración es de más de 150 min, se recomienda el consumo de 90 g carbohidratos por hora, considerando también el consumo antes y durante. Siendo la fuente recomendada isomaltulosa.

Para la formulación de suplementos de carbohidratos antes de la actividad física, se recomienda dos tipos de suplementos según la actividad física. Siendo para actividad moderada, dosis de 60g maltodextrina o isomaltosa y para actividad alta dosis de 90g de isomaltulosa. Cuando la actividad física moderada es mayor a 150 minutos o la actividad física alta es mayor a 90 minutos, respectivamente.

En cuanto al consumo durante la actividad física, se debe formular suplementos que contengan proteína y carbohidratos. Siendo igual la dosis de carbohidratos como la de pre-entrenos, más la adición de 25g de proteína de suero de leche por dosis, para una reducción en el daño muscular, debido al traumatismo de la actividad física. Siendo por dosis 25g proteína suero de leche, acompañado de 60-90g de carbohidratos según la intensidad.

Después del ejercicio se recomienda el consumo de 100g de carbohidratos en presentación isomaltulosa. Debido a que este consumo reduce totalmente la catálisis muscular y aumenta la síntesis de glucógeno.

Pero como ocurre con el alto consumo de proteína, el alto consumo de carbohidratos también puede desencadenar problemas metabólicos como la diabetes tipo 2, obesidad e hiperglicemia.

Los compuestos adicionados de los suplementos de carbohidratos son AKG, glutamina y cafeína. Donde se encontró en diferentes estudios, que el consumo de AKG no tiene ningún efecto positivo en el desempeño deportivo, al contrario, el consumo excesivo puede producir diarrea, nausea y hemorragias nasales. En cuanto a la glutamina y cafeína, estas si tienen un efecto en mejorar el desempeño deportivo, aunque deben realizarse más investigaciones clínicas para entender sus efectos y alcances.

Cuando se consume suplementos de proteína-carbohidratos, ya sea después del ejercicio y/o en diferentes momentos del día, se producirá un aumento en la síntesis de proteína muscular, reducción en la catálisis muscular, aumento en la síntesis de glucógeno, recuperación más rápida, y por ende un mejor desempeño del deportista. Siendo esto no posible al solo consumir proteína o carbohidratos en abundancia.

Lo recomendado en formulación para suplementos, sería brindar dosis de 25g de proteína de suero de leche y 100g de carbohidratos en presentación isomaltulosa. Consumiendo este después del ejercicio y entre comidas, según las necesidades que deba cubrir.

Ya que el consumo de proteína estimula la síntesis de proteína muscular y reducción de la catálisis muscular. Pero no estimula la síntesis de glucógeno o el desempeño del deportista durante una prueba. En cambio, los carbohidratos estimulan la síntesis de glucógeno o el desempeño del deportista durante una prueba, pero no la síntesis de proteína muscular. Por ende, se recomienda el consumo de ambos para lograr una mejora en el desempeño.
Recomendaciones:

1. Los experimentos deben ser más complejos en sus tratamientos, debido a que en la mayoría se evalúa solo el consumo de algún tipo de suplemento. Cuando en la realidad, las personas que consumen varios suplementos diferentes. Un ejemplo es el consumo de suplementos de proteína que vienen acompañados de creatina, L-carnitina, etc. Ya que este consumo conjunto es el consumo real en deportistas.

2. Evaluar el consumo real de suplementos por parte de deportistas profesionales y amateurs. Debido a que varios llegan a consumir más de lo recomendado para su dieta o lo recomendado por el producto.
108 Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza
7 Bibliografía

Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

INTRODUCTION

Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

https://doi.org/10.3945/jn.111.139485

Ferguson-Stegall, Lisa; McCleave, Erin L; Ding, Zhenping; Kammer, Lynne M; Wang, Bei; Doerner, Phillip G; Liu, Yang; Ivy, J. L. (2010). *The Effect of a Low Carbohydrate Beverage with Added Protein on Cycling Endurance Performance in*
Trained Athletes. 24(10), 2577–2586.

Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

Howatson, G., Hoad, M., Goodall, S., Tallent, J., Bell, P. G., & French, D. N. (2012).
Exercise-induced muscle damage is reduced in resistance-trained males by branched
chain amino acids: a randomized, double-blind, placebo controlled study. 1–7.

Imanipour, V., Naderi, A., & Researcher, S. N. (2016). The Effects of Supplementary L-
Arginine Dietary on Metabolism and Performance in Anaerobic Exercise The Effects
of Supplementary L-Arginine Dietary on Metabolism and. (January 2012).

Supplementation in Novice Trainees During a 12-Week Weight Training Program. 1–
15.

Jagim, A., Oliver, J. M., Sanchez, A., Galvan, E., Fluckey, J., Reichman, S., … Kreider, R.
B. (2012). A buffered form of creatine does not promote greater changes in muscle
creatine content, body composition, or training adaptations in comparison to creatine

James P. White1, Song Gao1, Melissa J. Puppa1, Shuichi Sato1, Stephen L. Welle2, and J.
A. C. (2013). Testosterone regulation of Akt/mTORC1/FoxO3a Signaling in Skeletal

during exercise. Sports Medicine, 44(SUPPL.1). https://doi.org/10.1007/s40279-014-
0148-z

transportable carbohydrates. 0–5. https://doi.org/10.1097/MCO.0b013e328339de9f

Prolonged Exercise Current Thoughts, Guidelines and Directions for Future
Research. 29(6), 407–424.

Jäger, R. (2013). The effects of 8 weeks of whey or rice protein supplementation on
https://doi.org/10.1186/1475-2891-12-86

KEVIN CURRELL, A. E. J. (2008). Superior Endurance Performance with Ingestion of
Multiple Transportable Carbohydrates. 1(21), 275–281.
https://doi.org/10.1249/mss.0b013e31815adf19

BIOMOLECULES: (INTRODUCTION, STRUCTURE & FUNCTION) Carbohydrates.
(May 2014).

Killer, S., Athletics, B., Svendsen, I. S., Olympic, N., Committee, P., Jeukendrup, A., &
avletes during short-term intensified training with and without a high carbohydrate
nutritional intervention. (September). https://doi.org/10.1080/02640414.2015.1085589
Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

Kirby, T. J. (2010). *EFFECT OF LEUCINE SUPPLEMENTATION ON INDICES OF MUSCLE DAMAGE AND RECOVERY FOLLOWING ECCENTRIC-BASED RESISTANCE EXERCISE EFFECT OF LEUCINE SUPPLEMENTATION ON INDICES OF MUSCLE DAMAGE AND RECOVERY FOLLOWING ECCENTRIC-BASED RESISTANCE EXERCISE*. (May).

RIEN.pdf

Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

Thomas J. Wang, Martin G. Larson, Ramachandran S. Vasan, S. C., Eugene P. Rhee,
Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

124 Efectos del consumo de suplementos proteicos y de carbohidratos en fisicoculturistas y/o deportistas de fuerza

