A las puertas del universo derrotado

Alexis De Greiff A.

Colección **OBRA SELECTA**

UNIVERSIDAD NACIONAL DE COLOMBIA

VICERRECTORÍA ACADÉMICA

EDITORIAL
A las puertas
del universo derrotado
A las puertas del universo derrotado

Alexis De Greiff A.
A mi mamá y a mi papá,
ancla y puerto

A Matilde,
vela y viento
Contenido

Agradecimientos 11
Prólogo 15
Introducción 23

Episodio I
Un eclipse que abrió las puertas a Einstein pero no a la teoría de la relatividad 49

- La predicción de Einstein versus la ley de gravitación universal de Newton 51
- La expedición del eclipse 53
- El anuncio 57
- La prensa 58
- El mito de la incomprensibilidad y la ausencia de una tecnología teórica 61
- La reacción del público 63
- Se abren las puertas a la figura pública 70
- El establecimiento de la teoría de la relatividad general 72
- Conclusión 75

Episodio II
Las puertas de la creación 77

- El universo estacionario: abrir puertas con las llaves equivocadas 79
- “The terrible three”: teóricos versus astrónomos, parte I 83
- Veinte años forcejeando las puertas de la astronomía 86
- ¿Nada personal? Teóricos versus astrónomos, parte II 88
- Conclusión 105

Episodio III
El caso Tausk: orfandad y suicidio científico de un disidente 107

- Antecedentes científicos 108
- Tausk en Trieste 110
- Los ataques de Longer y Rosenfeld 113
- La defensa de Bohm, Jauch y la marginación explícita 115
- Tausk en el contexto de la disputa Wigner-Rosenfeld, y los esfuerzos por vetarlo 117
- El trabajo de Tausk: marginación tácita 119
- De vuelta a Brasil 121
- Conclusión 122
Episodio IV
Las revoluciones de noviembre: oportunismo en contexto y marginación tácita 125

Las resoluciones de la Unesco: la “Revolución diplomática de noviembre” 128
El boicot de los programas del ICTP 134
La anatomía del boicot 136
La “Revolución novembrina de las altas energías” y la exclusión de la alternativa de Salam 141
Conclusión 149

Coda
Puertas, redes y marginación 153

Bibliografía 159

Índice temático 171

Índice onomástico 177
Agradecimientos

Como todos los libros, este también tiene deudas a las que el texto no les hace justicia. Todas aquellas personas que, de una u otra forma, fueron compinches en el proceso de investigación y escritura no son cómplices del resultado final.

Versiones preliminares de los primeros dos episodios las escribí durante mis años de estudio en el Centre for the History of Science, Technology and Medicine del Imperial College de Londres. Mi tutor, el profesor Andy Warwick, me enseñó la importancia de esforzarse por ser lo más preciso posible cuando se escribe historia de la física; espero que haya aprendido algo de sus pacientes lecciones. El profesor Hasok Chang fue una persistente voz de aliento e inspiración intelectual, y solo lamento que la barrera del idioma le impida criticar este trabajo con la misma claridad con que leyó mi tesis de maestría. El profesor Eduardo L. Ortiz me ayudó con discusiones en las que desplegó su profunda lucidez y generosidad durante mis años en Imperial y después de ellos. Mi buen amigo David Edgerton es siempre un sparring duro y por eso un gran maestro; un inestimable colega cuya crítica trato de anticipar cuando estoy escribiendo (aunque siempre es capaz de encontrar flancos débiles). Él y su formidable familia me han acogido en su casa en Camden Town como a un sobrino; sea el momento de decir que su cariño de “tíos” les es correspondido.

Me honra que la doctora Hebe Vessuri haya aceptado prologar este libro, porque sus escritos fueron los que me acercaron a los estudios de la ciencia, antes de empezar mi formación o, mejor, metamorfosis profesional. Espero que este trabajo sea fiel a su enseñanza de que desde América Latina no solo podemos sino que debemos tener y exponer un pensamiento crítico y original.
Mis condiscípulos y hoy colegas me ayudaron siempre con sugerencias de textos y autores, pero sobre todo con el entusiasmo de creer que la historia de la ciencia es importante para la acción política: Sam Alberti, Ernesto Catena, Karl Galle, Mike Hawkins, Georgia Petrou y John Waller.

Seguramente dejaré de mencionar a alguien, pero ese es el problema de las listas; sin embargo, hay que intentar hacerlas. Han sido generosos con su valioso tiempo y esfuerzo leyendo y comentando versiones de estas historias y, sobre todo, inspirándome en el oficio de historiador: William Duica, Paul Forman, Peter Galison, Yuri J. Gómez, John Heilbron, Rob Iliffe, David Kaiser, Alexei Kojevnikov, John Krige, Santiago Montenegro, Mauricio Nieto, Diana Obregón, Elizabeth Paris, Olga Restrepo, Abha Sur, Fernando Viviescas y Spencer Weart. Mis colegas Olival Freire y Osvaldo Pessoa Jr. son coautores de una versión del Episodio III (publicada en Physics in Perspective) que adapté para este libro; les agradezco permitirme usar ese artículo in extenso. Mis estudiantes en la Universidad Nacional de Colombia han discutido ideas que alimentan este trabajo; espero que este libro les sea útil.

Una de las ventajas (o desventajas, dirán algunos) de escribir historia contemporánea es poder contar con testimonios de primera mano. De las entrevistas y conversaciones surgen sfumature difíciles de percibir a través de otras fuentes, pero también abren cajas de Pandora inesperadas. El Episodio IV estaba completamente enterrado, posiblemente porque muchos querían olvidar ese trago amargo de la agresión a Unesco. Fue gracias a las conversaciones con dos “informantes” en Trieste que se volvieron amigos y ejemplo con su honestidad e idealismo: Licia Chersovani y Faheem Hussein (q.e.p.d). Algunos de los actores o, mejor, protagonistas de los episodios me dieron el privilegio de escucharlos y me abrieron sus archivos; agradezco a los profesores Chris Isham, Tom Kibble y John Ziman.

Sin archivos los historiadores estamos perdidos. Gracias al personal de las siguientes instituciones: National Cataloguing Unit for the Archives of Contemporary Scientists (en ese entonces en la Universidad de Bath, Gran Bretaña); Archives of the Imperial College, Londres; Ford Foundation Archives en Nueva York; Library and Archives of the “Abdus Salam” International Centre for Theoretical Physics en Trieste; Archivio di Edoardo Amaldi en el Departamento de Física de la Università di Roma, La Sapienza; los archivos de la International Atomic Energy Agency en Viena; los archivos de Unesco en París; y, muy especialmente, quiero dar las gracias al American Institute of Physics, en College Park, que me otorgó dos becas para trabajar en su maravillosa Niels Bohr Library.

Dos instituciones me permitieron realizar estas investigaciones y dedicar tiempo a estudiar estos episodios: la Universidad Nacional de Colombia y el Instituto Colombiano de Ciencia y Tecnología “Francisco José de Caldas” (hoy Departamento Administrativo de Ciencia, Tecnología e Innovación) - Colciencias. De forma especial, quiero agradecer al personal de la Editorial de la Universidad Nacional de Colombia, así como a los dos árbitros anónimos, por sus sugerencias para mejorar el texto.
Los amigos que han estado cerca en estos años también fueron parte de esta historia. Albatros, Sara Araújo, Bianca Basso, Alejandro y Claudia Castillejo, Kike Chaux, Leonardo De Maria, Angélica Rettberg, Natalia Ruiz R., Alberto Sarcina, Sergio Torres y Margarita Plaza y Paolo Vignolo hacen el mundo más navegable. Juan Carlos Anduckia sabe lo importante que ha sido su amistad, pero además ha tenido la paciencia de traducir los episodios I, II y IV. Amira de Greiff P. me hizo el honor de traducir el episodio III lo que le agradezco. Mi padre hizo un trabajo de revisión minuciosa para las versiones rústicas y electrónica que ayudó a corregir varios errores: nadie mejor que él para encontrar gazapos invisibles para el más experimentado corrector.

Tengo muchas deudas con Stefania Gallini; ella ha leído cuidadosamente casi todo lo que he escrito y siempre me quedo con dudas si no lo hace.

La familia es el núcleo que nos sostiene. Ellos se alegran con nuestros triunfos y nos consuelan en las derrotas. Quiero compartir la satisfacción de este libro con aquellos a los que me debo. Mis hermanos Kristian y Andrea, siempre están allí cuando los necesito, y eso es impagable. Hjalmar y Marta, a quienes les dedico este libro, hicieron posible mi universo.

Alexandra, junto con los príncipes Lorenzo y Federico, han hecho que la vida tenga el color de la esperanza y la felicidad. Sin ella y ellos este libro no tendría el sentido al que aspira.

Durante el periodo de redacción del libro pensé que quería regalárse-lo a mi hija Matilde y eso me animó a no parar; ingenuamente quería que ella pudiera defenderse cuando le dijeran que la naturaleza y la cultura son mundos separados. Pero, claro, ella ya lo sabía, y me lo enseñó un día corrigiéndome cuando seguíamos a Ulises con el dedo: “No papá, el Atlas no es un libro de mapas, sino sobre personas”. Sin Matilde no habría viaje posible; ella es quien me abre nuevas e insospechadas puertas a la comprensión del universo. Este libro es por y para ella.
Este libro reúne cuatro trabajos dedicados a la física teórica del siglo xx, ilustrativos de las contingencias que alimentan las controversias por las cuales nuevas teorías se aceptan o no como legítimas. A través de las mismas Alexis De Greiff nos invita a interesarnos por la relación entre ciencia, tecnología, naturaleza y sociedad. Los trabajos incluidos se refieren a distintos momentos de la historia de la disciplina en el siglo xx, y comparten en mayor o menor medida una relativa falta de familiaridad con los mismos, incluso de parte del público amplio, pero también varios rasgos distintivos que con ingenio y vivacidad De Greiff nos presenta de manera muy accesible. Las cualidades que los cuatro casos comparten se revelan también como aspectos esenciales, si bien inesperados de la sensibilidad intelectual y personal del autor. Para empezar, los temas difieren radicalmente de la fórmula metodológica por lo común asociada con estos estudios biográficos o institucionales, es decir, una narrativa del contexto social, cultural y político del momento histórico, y una acuciosa y ordenada relación de la evolución teórica de las ideas que subyacen al tema en cuestión, como el piso que sustenta la reconstrucción del logro teórico que le interesa describir.

En efecto, ya desde la primera de las historias referida a la expedición organizada por Arthur Eddington durante un eclipse de sol en 1919, el cual fue observado en dos lugares distintos para corroborar las mediciones experimentales, con la finalidad de medir la deflexión de los rayos de luz en las cercanías del Sol, vemos que el autor no se interesa tanto ni por Eddington ni por Albert Einstein, cuya teoría general de la relatividad Eddington quería probar, sino por la paradoja de que si bien Einstein logró gran reconocimiento internacional, su teoría permaneció incomprendida y sin un verdadero amarre empírico, hasta varias décadas más tarde por ausencia de conocimientos suficientes de parte de los científicos experimentales para poder entenderla y extender
así su horizonte empírico. La segunda narrativa se refiere a Fred Hoyle y su teoría del estado estacionario, pero De Greiff no se concentra en la controversia de Hoyle con los astrónomos experimentales tanto como en mostrar la manera como se dio el proceso de refutación de su teoría por medio de la no búsqueda activa de parte de los astrónomos experimentales de los objetos que predecía el modelo de Hoyle, una no acción que logró el efecto de marginar la teoría con tremenda eficacia.

El tercer caso examinado es otro de marginación “tácita”. Aquí el autor nos muestra a un joven científico de origen europeo pero proveniente de un país en desarrollo, Klaus Stefan Tausk, carente de los “padrinos” científicos adecuados que le allanaran el camino para la demostración de sus condiciones, con una historia académica heterodoxa, en un centro internacional ligado al mundo en desarrollo y que se vio arrastrado en una lucha de la diplomacia científica internacional. Este investigador fue borrado de la historia antes inclusive de empezar a escribirla. Sus ideas, si bien fueron conocidas en algunos círculos relevantes, fueron olímpicamente ignoradas a la hora de hacer el registro histórico de los hechos, y así quedó fuera de juego al inicio mismo de su carrera.

La última historia que nos ofrece De Greiff es un caso de marginación “extrema”. Así como la primera se refiere a un premio Nobel, Einstein, la última cierra con otro Nobel, Abdus Salam, con lo cual nos dice que lo que está en discusión no es algo que puede pasarme solo a los novatos, sino que es una parte consustancial de la práctica de investigación. En este estudio, el autor muestra brillantemente cómo, a pesar de ser un científico de primera línea en el frente internacional, Salam no logró vencer el boicot político al que se vio sometida la institución que él dirigía, el Centro Internacional para Física Teórica en Trieste,
ligado a la Unesco, y cómo, en relación con este científico pakistání, se dio la “marginación tácita” a través de mecanismos sutiles como los de los artículos de revisión y balance del campo temático.

Estos ensayos son acerca de procesos de exclusión e inclusión de nuevas interpretaciones del mundo físico, como normales en la vida de la ciencia, y que De Greiff analiza con una analogía sugerente de puertas y cerrojos. El lenguaje lleno de imágenes de guerra trasmite bien el clima emocional buscado por el autor. De Greiff habla de “entrar en guerra”, “campos de batalla”, “estrategias”, “rivales”, “estatus de beligerancia”, “enemigo”... Y ligado a este mundo de luchas, están las nociones de “fronteras”, “barreras”, “puertas” y “cerrojos”. Es en esta imaginación que propone De Greiff que la ciencia aparece con puertas que permiten o no la entrada a un mundo particular a los iniciados de la ciencia. Las fronteras, puertas y cerraduras —los mecanismos de acceso o exclusión de las ciencias— son, después de todo, una imagen poderosa de una cuestión clave en la legitimación del estudio social de la ciencia como un campo autónomo de investigación.

En esta empresa, De Greiff sigue los pasos de generaciones anteriores, que establecieron los fundamentos de la moderna disciplina dedicada a la naturaleza, significación e historia de la institucionalidad científica y del conocimiento científico-técnico, y lo hace empleando varias herramientas analíticas distintivas. Conspicuos entre los sociólogos, historiadores y filósofos de la ciencia con quienes se enrola están Bruno Latour, Pierre Bourdieu, Michel Foucault, Andrew Pickering y David Bloor; la forma en que De Greiff enfoca varios de esos problemas y muchas de sus observaciones dependen de las intuiciones originales de estos autores. Así, De Greiff sigue a Latour, quien hace ya unas tres décadas propuso una visión de la lucha sin cuartel entre rivales científicos por el predominio teórico, quien a su vez seguía a Bourdieu con
la imagen de un campo de lucha, de confrontación de ideas y personalidades. La imagen de las puertas ayuda a destacar cómo funcionan ciertos mecanismos de apertura y cierre, de admisión o exclusión de la comunidad de elegidos. También se reencuentran en el texto nociones como las de simetría, inclusión y exclusión, fronteras y oportunismo en contexto, pero críticamente examinadas a través de propuestas teóricas novedosas como “marginación táctica” y el “principio de supersimetría”.

Un rico elemento de su propuesta es que a pesar de que la mayor parte de la historia de la ciencia es sobre casos exitosos, De Greiff nos habla más bien de casos que “por las dificultades de insertarse y cruzar las puertas de la ciencia, no lograron cuajar en mayor o menor medida”; en este sentido es una historia del “universo derrotado”. Y no solo eso. Una cualidad muy apreciable de la narrativa de este autor es que nos da una visión de la ciencia cercana a la realidad de nuestro mundo, de la periferia, del Tercer Mundo, del Sur. Esto queda especialmente claro en el tercer “episodio”, referido a un brillante y prometedor joven científico suramericano, carente de los apoyos adecuados que le evitaran cometer errores por ignorar o menospreciar los no siempre sutiles códigos sociales de conducta de la comunidad científica internacional. De forma complementaria, también queda claro en su análisis la difícil y manipulada historia de la Unesco y, para el período particular que considera, de uno de sus institutos asociados, el Centro Internacional de Física Teórica de Trieste. Este libro explora la persistente dificultad de que en círculos de la llamada corriente principal de la ciencia se acepte que en el mundo no hay pensamiento científico autónomo, crítico. Este análisis es muy útil en contextos de países con poca tradición científica, porque permite que las jóvenes generaciones de científicos tengan una visión menos remota o enrarecida de la actividad y conozcan mejor muchas de las dificultades que se han dado en el tiempo y
que todavía rigen en términos de jerarquías y que de esa forma puedan diseñar nuevas estrategias de legitimación. En este sentido, el nudo temático del libro es central para científicos sociales y naturales, pues se trata nada más ni nada menos que de las reglas, a menudo tácitas, por las cuales son aceptados o no dentro de las filas de la profesión.

Otro denominador común de los ensayos es que todos se refieren a una misma cuestión central. En este trabajo hay una intención decidida de enfrentar una de las tareas fundamentales que confrontation al historiador de la ciencia: cómo darle sentido a la historia atribuyéndole una estructura, un significado y un sentido político. Lo que muestra De Greiff es que la ciencia es también historia político. La forma como se abordan los problemas, como se organiza la investigación y como se seleccionan los grupos de ideas y personas que pueden contribuir legítimamente pasa por los mismos filtros sociales que otros tipos de actividad, filtros que son esencialmente políticos.

Preguntas eminentemente políticas, referidas a controladores, administradores, personas con poder, autoridad, capacidad de veto, son las siguientes que se formula el autor:

¿Cómo se establecen esas identidades que se velan tan celosamente detrás de las puertas? ¿Quién entra? ¿Quién sale? ¿Quién controla, abre y cierra las puertas? ¿Cómo se establecen esos límites? ¿Cómo se desplazan cambiando la configuración de los campos? ¿Es posible abatir esas puertas?

La imagen de “las puertas” es la de un mecanismo para administrar el acceso a espacios que se considera que deben protegérse de “extraños”, “otros”, “indeseables”. En esto discrepo ligeramente del autor. No necesariamente por ser “nuevos” o “recién llegados” se rechaza el acceso al espacio de la ciencia. Propongo que las jóvenes generaciones de
discípulos que aceptan el statu quo, o que encajan en la construcción ulterior de la teoría o paradigma existente son perfectamente aceptables; lo mismo sucede con los recién llegados del mundo exterior (de las periferias, esa *terra incognita* del mundo en desarrollo) que aceptan las reglas del juego establecido; ellos no tienen problemas en ser integrados a puertas abiertas. Las puertas se cierran, en cambio, frente a esos “otros”, “ajenos”, que amenazan con cambiar el orden aceptado de las cosas y del mundo. De ahí la paradoja señalada por otros autores, de una actividad eminentemente conservadora que puede renovarse de manera tan notable como lo ha hecho la ciencia a lo largo de su trayectoria histórica.

Un punto de particular relevancia con respecto al propio desarrollo de De Greiff surge parcialmente de la circunstancia de que los ensayos fueron originalmente concebidos y publicados para una audiencia académica, pero en esta oportunidad están elaborados pensando en un público no especializado, general, hecho que ciertamente condiciona tanto su contenido (temas amplios de interés general) como su forma (relativamente breves y de tono informal, aunque están sustentados en una literatura profesional rigurosa). Sin embargo, también resulta claro que la elección de los temas y la forma peculiar de su tratamiento se vieron afectadas por una preocupación intelectual particular: los problemas del acceso a, y la exclusión de, la comunidad científica.

Uno de los aspectos que considero más interesantes de este estudio son las sugerencias que hace De Greiff respecto de lo que llama las limitaciones eurocéntricas de Latour y Pickering, en lo que sería su visión de lugares ‘naturales’ de la producción científica, que les impediría percibir lo que sucede en el mundo que preferimos llamar no OECD, para
no usar términos que pueden parecer muy ligados a otros momentos, y que De Greiff llama “no europeos”: subdesarrollados, en desarrollo, neocoloniales, sur o periferias. De Greiff sostiene que

La topología del poder dentro de la comunidad vuelve a cerrarse: ello se hace evidente al notar que variables como origen étnico, localización geopolítica o género no aparecen en parte alguna de sus estudios...

He aquí una invitación a desarrollar una agenda de investigación para los estudios sociales de la ciencia desde nuestra parte del mundo, desde la marginalidad, pero parte integral de la misma aventura humana.

La contribución de De Greiff en este libro está en haber reunido una cantidad de observaciones más o menos aisladas, haberlas reformulado en su propia narrativa e integrado en un argumento coherente. El resultado es una visión comprehensiva que abarca y focaliza momentos importantes del desarrollo de la física teórica en el siglo XX. Por supuesto, otros pensadores contemporáneos comparten su referencia a las fuerzas económicas y sociales como factores que propician el cambio histórico. Pero resulta sintomático que la manera particular como este autor percibe la relevancia contemporánea de la marginación acabe con una observación respecto a la existencia de lo que llama una fase “prepolémica” decisiva. Una multiplicidad de factores afectan el acceso a las polémicas. La marginación se puede dar por vías que van desde las mayores sutilezas hasta la eliminación brutal del contrincante. La marginación es un tema de alto interés en los contextos periféricos, precisamente marginales. Como bien señala De Greiff:
La marginación en la ciencia y en la historia de la ciencia suele ser muy común cuando las voces alternativas provienen desde afuera de Europa, Estados Unidos y, recientemente, China e India. Desde la “periferia” es difícil demostrar la primacía de “descubrimientos”, pero además sus redes suelen ignorarse. El nortecentrismo cultural hace permanente uso de la marginación tácita.

Así como el libro dedica especial atención a las puertas que se abren o se cierran según las ideas que se presenten sean clasificadas como aceptables o disidentes respecto del saber legítimo en la ciencia, espero que este prólogo sirva como llamativa puerta que invite a la entrada y no como barrera, para que el lector se sienta atraído a recorrer un paisaje vivo, candente y, como tal, lleno de pasiones e intereses.

Hebe Vessuri
Investigadora Emérita del Instituto Venezolano
de Investigaciones Científicas
Introducción

El acceso a los espacios del campo científico

El mundo externo existe independiente de nosotros, no hay duda, pero la forma en que creemos está construido depende de nuestra cultura y, por consiguiente, de las condiciones sociales en que se produce ese conocimiento. Este libro pretende mostrar la manera como esa construcción se da a expensas de la eliminación de interpretaciones alternativas. Son historias de los derrotados, los que no lograron acceder a los campos de batalla donde se definió nuestra imagen del universo.

Les propongo empezar explorando por las vetas de los estudios sociales de la ciencia que —de forma casi siempre explícita, pero también tácita— han nutrido los episodios que siguen y que, creo, son parte fundamental de la historia del siglo xx. Una analogía recurrente y central, tanto aquí como en lo que sigue, es la de los espacios, los campos y, muy especialmente, las puertas, como un acceso privilegiado a aquellos. Mi interés principal en este libro es mostrar el proceso de construcción de polémicas científicas y, en particular, cuándo se considera o no válido a un oponente. En ese sentido, las puertas, como artefactos de acceso o de exclusión que requieren ser operados por humanos, y por consiguiente son extensiones sociales, me parecen buenas herramientas heurísticas. No es más que una analogía, que posiblemente requerirá mayor desarrollo en el futuro, pero pienso que puede servir para ilustrar que para entrar al campo científico es necesario atravesar un umbral simbólico no exento de llaves de difícil obtención y cancerberos implacables.

De otro lado, la aproximación teórica en este trabajo es ecléctica. Encontrarán referencias tanto a Bruno Latour como a Pierre Bourdieu, a pesar de que entre sus respectivas visiones de la ciencia hay puntos irreconciliables. También encontrarán críticas a Popper, pero igualmente a Kuhn. El trabajo de Latour me ha sido muy útil, pero me parece que todavía tiene deslices eurocéntricos, por los silencios frente a la...
Fronteras, campos y puertas en la ciencia

Tenemos una tendencia compulsiva a marcar territorios. Pero cuando lo hacemos construimos, con más cuidado, puentes y puertas para asegurar algún acceso. Este libro es sobre las puertas que comunican algunos de esos territorios en el campo científico. Es un libro pensado para quienes se interesan por la relación entre ciencia, tecnología, naturaleza y sociedad. En una sociedad democrática, compuesta por individuos políticamente activos, todo ciudadano se sentiría aludido, porque entendería que no es posible separar ningún aspecto de su vida del desarrollo científico y tecnológico. Por eso, con cierta cándida ingenuidad, este libro no fue escrito ni pensado para especialistas.

Independiente de su calidad, no soy tan optimista como para pensar que un libro sobre este tema sea leído masivamente, ni en América Latina, ni en parte alguna. La versión de Stephen Hawking de la historia de la ciencia, para citar el caso de un *best seller* mundial, aunque muy discutible desde el punto de vista de los historiadores profesionales, será más popular que esta, al menos mientras no desacralicemos la ciencia, que sigue siendo la religión de la modernidad, tratada con esa reverencia y distancia que engendra el tabú. Aunque se puede pensar que para comprenderlo es necesario saber de física, la disciplina común a los cuatro casos expuestos en los episodios que siguen, el presente libro no está pensado para —ni dirigido a— físicos exclusivamente. No obstante, consideraría un gran éxito si alguno lo leyera.1 Tampoco es un libro pensado para quienes se interesen por la ciencia en sí misma. Más bien es para quienes se interesan en el papel que juega el conocimiento en las relaciones de poder, pues intenta mostrar que el poder y la sociedad están en la ciencia, como la ciencia en el poder y la sociedad.

En la práctica toda la historia se puede ver como el conflicto permanente por establecer fronteras. Todo el tiempo desplegamos nuestro poder de limitar espacios lanzando mojones. Nuestra identidad se finca en las definiciones de “interno” y “externo”. Cuando, por ejemplo, digo que soy “colombiano”, “hombre”, “historiador”, “profesor”, “funcionario

1 El *Manualito de imposturología física* (Vallejo, 2005) es un libro provocador y uno de los pocos en español que tuvo un relativo éxito. Pero creo que eso se debe más a la pluma excepcional de Fernando Vallejo, que al interés en el tema de la obra.
público”, “liberal de izquierda”, “hijo” o “padre”, no solo estoy declarando desde dónde escribo, sino que aclaro que lo hago a partir de ciertos criterios de inclusión y exclusión que me permiten establecer relaciones de cercanía o lejanía tanto con ciertas ideas y objetos como con ciertas personas. Como casi todo espacio es susceptible de ser limitado física, visual, psicológica o simbólicamente, una parte considerable de nuestros actos, tanto individuales como colectivos, consiste en dividir para gobernar. Somos el mapa de nuestros propios límites.

La dinámica de ese juego de inclusión y exclusión de personas, ideas, valores, artefactos y objetos de la naturaleza es una de las principales preocupaciones de las ciencias sociales, desde la sociología hasta la filosofía, para no hablar de artes como la arquitectura. Y aunque las preocupaciones nos unen, las disciplinas tienden a separarnos: nos tomamos muy en serio el llamado de Descartes a analizar, pero nos quedamos cortos al momento de sintetizar. Transdisciplinas como los estudios sociales de la ciencia y la tecnología o los estudios postcoloniales y los de género —inspirados en los trabajos de Antonio Gramsci y Michel Foucault, entre otros— nos han mostrado que los sistemas taxonómicos dominantes no son simples clasificaciones naturales, sino sofisticados dispositivos sociales que expresan y consolidan relaciones de poder, resultado de confrontaciones de alta valencia política (Foucault, 1978; Nieto Olarte, 1995). Por ello, el estudio de las instituciones y las organizaciones sociales es, en buena medida, un esfuerzo por comprender y aprender a controlar la construcción de espacios y la forma en que se comunican. El escrutinio cuidadoso de las puertas que comunican esos espacios nos ha convertido en cerrajeros sociales. La tensión permanente entre “dominantes” y “pretendientes” hace de las puertas y sus cerrojos objetos cruciales en la configuración de los campos sociales: “sabemos que en todo campo encontramos una lucha, cuyas formas específicas hay que investigar en cada caso, entre el nuevo ingresado, que trata de hacer saltar los cerrojos de una cuota de ingreso, y el dominante, que trata de defender el monopolio y de excluir la competencia” (Bourdieu, 2000, p. 113). Surgen así preguntas evidentes, aunque sus respuestas estén todavía lejos de ser satisfactorias: ¿cómo se establecen esas identidades que se velan tan celosamente detrás de las puertas?, ¿quién entra?, ¿quién sale?, ¿quién controla, abre y cierra las puertas?, ¿qué grupos participan en la construcción e instalación de esas puertas?, ¿cómo se establecen esos límites y, más importante, cómo se desplazan cambiando la configuración de los campos?, ¿es posible abatir esas puertas?
Como señaló Fernand Braudel (1976), sin el control de las fronteras no concebimos la civilización, pero las membranas sociales son porosas; ninguna frontera es impermeable, infranqueable ni invencible. Cuando cerramos una frontera, nos aseguramos de dejar tendidos puentes que comunican el espacio interior con el exterior, permitiendo el acceso a nuevos miembros y expulsando a otros. Como las células, las organizaciones sociales requieren intercambios para poder sobrevivir. A pesar de los asedios a Viena o Cartagena de Indias en el siglo XVIII y XIX, sabemos que nunca se ha sitiado perfectamente una ciudad, ni siquiera Varsovia bajo la brutalidad nazi (Roland, 1992): toda frontera tiene grietas, puertas para entrar y salir, ventanas para mirar adentro y afuera, muchas de ellas secretas.

Las puertas sirven para administrar el acceso a espacios que se considera deben protegerse de “extraños”, quienes, por definición, son los “nuevos”, los “recién llegados”, los “otros”. Quienes ya están adentro, y particularmente quienes dominan cada campo desde alguna posición de poder, consideran que una de sus funciones es la conservación del statu quo. Por ello, cualquier intento por subvertir la distribución de cuotas de poder —o, siguiendo a Pierre Bourdieu, de “capital simbólico”— es percibido como una amenaza externa, y así se presenta a los demás miembros del campo: la exposición pública de esa amenaza, real o ficticia, es una efectiva defensa contra los intrusos. Los intentos de modificación desde los campos exógenos, incluso cuando se trata de “reformas”, se presentan como “revoluciones absolutas”, es decir, amenazas contra la integridad del sistema. Ello permite a los guardianes del statu quo cerrar filas contra los “alienígenas”. En ocasiones, las estrategias son más sofisticadas, y se permite el ingreso parcial de extraños y sus ideas, siempre y cuando “los nuevos” respeten las reglas del juego y, sobre todo, la jerarquía preestablecida; y si el recién llegado no piensa hacerlo, más le vale no generar sospechas y mostrar cierto dominio de los códigos internos para que pueda subvertir el sistema “desde adentro”.

Para entrar en guerra, por ejemplo, hay que traspasar, a la fuerza o por otros medios, las puertas que dan acceso a los campos de batalla. Dicho de otro modo, para poder luchar en las guerras, físicas o simbólicas, es necesario ser admitido como un rival. El grado de legitimidad depende del nivel de inclusión en el campo correspondiente; la primera batalla es la de ganarse el estatus de beligerancia. Mientras que no se cuente con este, aceptado por todas las partes de la disputa, toda acción será interpretada como delito común y no como una confrontación entre pares. Ahora bien, ser aceptado no exime al “otro” de ser duramente
juzgado, incluso en términos de su honestidad o su competencia. En toda guerra, incluso las regladas y declaradas, el enemigo representa la negación de los valores, por lo que sus actos son presentados como “terroristas”. Durante la Segunda Guerra Mundial, los alemanes veían a los franceses como depravados, y viceversa; en su clásico estudio sobre la comunidad de los astrofísicos durante los años sesenta en Gran Bretaña, Edge y Mulkay (1976) muestran cómo, en las polémicas sobre resultados experimentales en un nuevo campo —la radioastronomía, en este caso—, no es raro que los científicos descalifiquen el trabajo de sus colegas poniendo en duda su ética o su idoneidad profesional.

Como seguramente lo notó el lector, el título de este libro evoca la famosa cita de Aldous Huxley, a su vez inspirada en una cita de William Blake en su memorable *Marriage of Heaven and Hell*, y popularizada en el siglo xx por Jim Morrison y su banda de rock, *The Doors*: “If the doors of perception were cleansed, every thing would appear to man as it is, infinite” (Blake, 1793; Huxley, 1963). No es nuevo señalar la matriz mística de esta idea y sus recreaciones contemporáneas, de modo que surge la pregunta por la relación con la ciencia. Las experiencias místicas (entre ellas la religión), mágicas y científicas son formas de relacionarnos con nuestro entorno natural y social; de observarlo, entenderlo, contemplarlo, dominarlo o venerarlo. Todas son actividades mentales, espirituales y sociales. La dimensión social de la religión y el rol central de los individuos en el desarrollo de la ciencia son evidentes. De hecho, veremos en muchos episodios de este libro que no podemos desear tan fácilmente el tema del carisma en los debates científicos. Con todo, no es mi propósito discutir aspectos de la sociología del arte o la religión, ni de la psicología de la ciencia. En este sentido, no responderé de forma satisfactoria, aunque me gustaría dar pistas para hacerlo, a la así llamada “paradoja de Ravetz”: “¿Cómo es posible que la actividad subjetiva e intensamente personal de la creación científica se convierta en el conocimiento objetivo e impersonal que resulta de aquella?” (Ravetz, citado en Vessuri, 1994, p. 53).

Una “historia social de la ciencia”:
la sociedad en la ciencia y la ciencia en la sociedad

Aspiro a que los casos que presento en este libro sirvan para poner en evidencia, una vez más, el carácter social, no solo de la ciencia como institución, sino del conocimiento como producción intelectual.
Ello no lleva necesariamente a un determinismo social, en el que variables como clase o interés se usen como variables independientes para explicar la producción intelectual. Más bien se trata de entender cómo las ideas y prácticas sociales están íntimamente entrelazadas, es decir, no son independientes: se “coproducen” (Jasanoff, 2006). La mayor parte de la historia de la ciencia es sobre los casos exitosos; en este libro quiero también hablar de aquellos casos que, por las dificultades para insertarse y cruzar las puertas de la ciencia, no lograron cuajar en mayor o menor medida.

La dicotomía entre los aspectos sociales y cognitivos ha sido fuente de polémica constante en la historia de la filosofía. De allí nace la distinción entre “contexto de descubrimiento” y “contexto de justificación”, propuesto por Hans Reichenbach, uno los miembros del Círculo de Viena, donde se forjaría el positivismo lógico, la escuela más influyente de la filosofía en las primeras décadas del siglo xx. Él había hecho una distinción entre los procesos de descubrimiento, en que los factores sociológicos, históricos y psicológicos podrían ser importantes (por ejemplo, mostrando que el descubrimiento de un elemento que Marie Curie llamó “radio” fue fruto de una serie de coincidencias), y los procesos de justificación, en que solo la lógica desempeña un papel importante (por ejemplo, la demostración de que el radio produce radiación debido a procesos cuánticos que suceden en su núcleo). Por “justificación”, entonces, se entiende el proceso por el cual una comunidad establece la coherencia interna de la teoría así como el grado de acuerdo entre esta y sus pruebas experimentales; por lo tanto, tiene que ver con las “correcciones” y los “ajustes” que se hacen tanto al análisis de los datos como a la teoría misma. Así entendido, no hay cabida para un análisis sociológico, más allá del anecdótario asociado a los episodios de descubrimiento. El reino de la justificación es reservado para la lógica en la medida en que, una vez descubierto un fenómeno, su legitimación deja por fuera cualquier intromisión “externa”, y solo opera de puertas para adentro, en el espacio de los postulados, teoremas, protocolos experimentales y otros instrumentos de formalización. En otras palabras, la justificación del conocimiento o la generación de

2 Un grupo que estableció las bases de la reflexión filosófica sobre la ciencia que dominó el siglo xx. Entre sus principales miembros se encuentran Moritz Schlick, Rudolf Carnap y Karl Hempel. Wittgenstein tuvo una cercana relación con el Círculo, pero discrepaba de la mayor parte de sus tesis y más bien fue crítico de sus ideas. Sobre Popper hablaremos más adelante, pero también hay que resaltar su relación crítica con el Círculo (Chalmers, 2000, cap. 4).
verdades científicas son objetivas gracias a los métodos internos, al orden “correcto” de los argumentos y a las evidencias empíricas, mien-
tras que por fuera quedan las creencias y las posibles explicaciones sociales de la aceptación de una teoría. Estas últimas solo explicarían distorsiones en el proceso de justificación, de modo que la sociología del conocimiento no es posible en este marco.

En efecto, aunque los estudios sociales de la ciencia y la tecnología llevan varias décadas desenterrando contraejemplos al positivismo lógico, la imagen de la relación entre ciencia, naturaleza y sociedad es una caricatura moldeada por intereses propios de contextos de polémica. Eso ha hecho que creamos que el principal obstáculo para el “avance” de la ciencia sea técnico: como sí se tratara de una empresa en que todos los involucrados colaboraran solidariamente para abrir las puertas de la naturaleza, y solo ella y nuestras limitaciones cognitivas resistieran nuestro intento por ver el mundo tal cual es.

Vista con mayor atención, notamos que esa idea es un corolario de concebir la historia de la ciencia como historia de las ideas, según la cual los contextos sociales son secundarios o irrelevantes para explicar por qué sabemos lo que sabemos. En esa concepción de la ciencia, los obstáculos para comprender el mundo son de orden cognitivo: nuestro conocimiento del universo, diría esa narrativa, depende únicamente de nuestro grado de desarrollo de las matemáticas, la física o la química, y de los instrumentos de observación. Cuando la ciencia “descubre” algo nuevo, y desecha una teoría vieja, lo hace por el camino del “método científico”. La dimensión social aparece solo para explicar por qué se distorsionó algún resultado que, de haberse dejado al devenir natural de la disciplina, habría conducido a la verdad (Forman, 1984). Eso es lo que se conoce como la “sociología del error”.3

Claro, los científicos y los filósofos de la ciencia no han negado que la interacción social es parte del proceso, pero se restringen a la dimensión del intercambio de ideas basado en los códigos lógicos de cada campo. En su maravilloso texto de despedida a su oficio de físico, Uno y el Universo (1984), Ernesto Sabato critica a la ciencia por, en su opinión, ser fuente de deshumanización. Es interesante notar que la base epistemológica de la crítica de Sabato está en esa imagen social y psicológicamente impoluta de la creación científica propia de la modernidad, tajantemente separada del mundo de los valores:

3 Bloor discute la sociología del error como una de las características del “modelo teleológico”, (1991, cap. 1).
Estrictamente, los juicios de valor no tienen cabida en la ciencia, aunque intervengan en su construcción; el científico es un hombre como cualquiera, y es natural que trabaje con toda la colección de prejuicios y tendencias estéticas, místicas y morales que forman la naturaleza humana. Pero no hay que cometer la falacia de adjudicar estos vicios del modus operandi a la esencia del conocimiento científico (Sabato, 1984, p. 34).

Como en Reichenbach, en Sabato, aunque se reconoce la dimensión profundamente humana de la práctica científica, los productos de esta siempre quedan protegidos de sus “vicios”. Irónicamente, Sabato acepta la versión que antepone la lógica de la investigación científica y la imagen de los genios que “lograron ver el mundo tal cual es” a los intereses y estrategias que permitieron el predominio de una imagen del mundo cuyo poder reside precisamente en su supuesta objetividad —una idea de la ciencia refractaria a los fuegos en los que esta se horneó—. Digo ‘íronicamente’ porque, a lo largo de toda su obra, Sabato se empeña en explicar que lo que lo aleja de la ciencia es precisamente su idea de un mundo desprovisto de moral, sin percatarse que, por su carácter social, es imposible blindar a la ciencia contra la moral, los prejuicios, las tendencias estéticas, místicas y morales. Habrá que recordar que uno de los pioneros de la mecánica cuántica, Erwin Schrödinger, no tenía problema en reconocer, ya en 1932, que

todos somos miembros de nuestro medio cultural. Tan pronto como una cosa desempeña un papel en la orientación de nuestros intereses, el medio, el círculo cultural, el espíritu de la época o como se le quiera llamar, debe ejercer su influjo. Se encontrarán aspectos ideológicos comunes en todas las áreas de una cultura, y mucho más numerosos aspectos estilísticos comunes en la política, en el arte, en la ciencia. Si ocurre que aparece también en las ciencias naturales, se producirá una especie de indicio que demuestra la subjetividad y la dependencia del medio (citado en Forman, 1984, pp. 95-96).

En este libro quiero mostrar que esa influencia en efecto aparece en las ciencias naturales, y más precisamente en las ciencias físicas, tan aparentemente neutras.

Hay que seguir horadando la descripción de la ciencia que se empeña en que los valores dominantes, las relaciones de poder, el sistema de creencias y los contextos sociales y culturales en los que se aposenta la ciencia son irrelevantes. En este sentido, las puertas que limitan
nuestra visión científica no se pueden desligar de su esencia política. De lo contrario, la experiencia científica toma un cariz especial respecto a otras prácticas sociales. Eso genera una paradoja: aunque aceptamos que, a diferencia de la experiencia mística, la ciencia es una actividad colectiva, la eximimos del análisis social al momento de examinar su contenido. Más aún, aunque sabemos que el rasgo distintivo de la ciencia moderna es su carácter institucional, los productos de la ciencia y la tecnología (tales como teorías y artefactos) se presentan como neutrales: solo su uso no lo es. Como si la forma de abordar los problemas y de organizar la investigación, seleccionando los grupos de ideas y personas que pueden contribuir legítimamente, no pasara por los filtros sociales de otros campos, esencialmente políticos. No se trata de incrustar la ciencia en su “contexto social”, porque, como hemos señalado en otra parte recordando a Roy MacLeod (De Greiff y Nieto Olarte, 2005; MacLeod, 1982), el desafío no es estudiar la ciencia en la historia política, sino explicar la ciencia como historia política. No es entonces un problema de poner el “contexto”, como si fuera un telón de fondo, y sobre él contar la historia de las ideas. No se trata de ver cómo el contexto puede “distorsionar” o “contaminar” la ciencia, porque no es posible pensar en la ciencia como una empresa socialmente aséptica. Hace cuarenta años, el físico e historiador Paul Forman, alumno de Kuhn, escribió un erudito y polémico estudio sobre el ambiente político e intelectual que se vivía en Weimar durante los años veinte del siglo pasado, es decir, cuando estaba naciendo la teoría de los cuantos.4 La “tesis de Forman”, según la cual cierta interpretación de la mecánica cuántica prevaleció debido a que los físicos cedieron ante la presión de un “medio ambiente intelectual hostil” hacia el determinismo que se vivía en la República de Weimar, ha tenido múltiples críticos, así como seguidores. Creo que la más interesante objeción es la respuesta de su condiscípulo, M. Norton Wise, quien señala que el “modelo de ruptura súbita” de Forman asume una distinción nítida entre la comunidad científica (lado interno) y el resto de la sociedad (influencia externa). Es decir, los físicos aparecen como si fueran entes sociales aparte. El modelo de acción de Forman (para los físicos) trabaja sobre la base de que la actitud y la ideología no son actos de una cultura, o una subcultura, sino la reacción de una comunidad ante la acción de un factor que le es extraño. Norton Wise asegura que este es un modelo negativo

4 Recientemente, en homenaje a Paul Forman con motivo de sus setenta años, se publicaron varios trabajos relacionados con la “tesis de Forman” ver Carson y Kojevnikov, 2010.
de acción social, e insiste en que la “reacción” puede ser una motiva-
ción, pero no una causa para el cambio de un paradigma. Para evitar
la distinción entre externo e interno, la comunidad científica debe ser
vista como particular, pero integrada a la sociedad, de modo que com-
parte con esa sociedad prácticas, lenguajes y técnicas (espacialmente
sociales) para proponer y solucionar problemas (Norton Wise, s. f.).5 Es
decir, la localización de las narraciones en el espacio-tiempo se hace (al
menos) metodológicamente imperativa para lograr explicar la ciencia
en virtud de la participación activa de los científicos en la sociedad.
Las teorías no se derivan de condiciones sociales o culturales, sino
que se desarrollan dentro de condiciones sociales, políticas y culturales
específicas. No es posible contar la historia de las teorías y modelos
científicos sin ponerlas en conexión con el poder; como no es posible
lo contrario, contar una historia política sin hablar de ciencia. A es-
tas narraciones en las que existen soluciones de continuidad entre los
problemas políticos y los científicos, Bruno Latour las llama “historia
social de la ciencia” .6

Los casos que se discuten en este libro tienen la pretensión de tejer
relaciones, de mostrar la forma en que los campos sociales y políti-
cos se traslanan con la aceptación o rechazo de ideas científicas, sin
que sea posible encontrar costuras entre ambas prácticas, precisamente
porque la construcción del conocimiento depende de la ampliación de
las redes. Con esto no quiero decir que un individuo o grupo bien po-
sicionados en la escalade poder dentro de la estructura de un campo
dado puedan garantizar el éxito o fracaso de cierta teoría; no debemos
reducir la producción científica al determinismo social. De hecho, las

5 Curiosamente, Forman no recordaba esta crítica (conversación del autor con P.
6 La división entre historia social e historia intelectual de la ciencia solidifica la
separación entre un mundo de “hechos” y otro de “valores”, entre lo “interno” y
lo “externo”, en suma, entre lo moderno y lo premoderno. Al estudiar a los cien-
tíficos, y no solo leer sus artículos y sus propias narraciones sobre lo que hacen y
cómo lo hacen, sino en el laboratorio y en los pasillos gubernamentales, sociales
y corporativos, se ve que las costuras, como las llama Latour, entre ideas y políti-
ca son resultado del prejuicio tanto de historiadores sociales como de científicos,
cuando no de sus intereses en mantenerlas artificialmente separadas. La “historia
social de las ciencias” que él propone se basa en construir túneles o, usando mi
alegoría, abrir puertas, entre espacios aparentemente inconexos (Latour, 1989).
Además, la idea latouriana de una sociología simétrica, en la que actores humanos
y no-humanos participen en igualdad de condiciones, sin preeminencia de los
“factores sociales”, marca una separación con el programa fuerte de Edimburgo
que ha enfrentado a Bloor y a Latour.
puertas de la ciencia son permeables (aunque evidencian resistencias sólidas y candados seguros) a innovaciones, y también se registran cambios en las relaciones de poder en el campo científico. Incluso es posible convertirse en una autoridad científica, o en un ícono de su tiempo, sin que la propia teoría haya sido motivo de mayores desarrollos hasta que otros factores lo permitan, como veremos en el caso de Einstein y la relatividad. Con todo, sí creo que no es lo mismo hablar desde cualquier parte: algunos lugares tienen mayor legitimidad que otros a la hora de hablar y ser escuchados, lo que se constituye en un punto ciego para quien mira desde los “centros de cálculo”.7 De hecho, con todo lo útil que nos ha sido para los estudios desde “la periferia”, Latour no distingue las jerarquías que existen entre distintos tipos de centros de producción de conocimiento. Como en los sistemas liberales, pareciera que, en principio, todos podrían participar en la red aunque, en la práctica, las puertas están cerradas para la mayoría de los científicos por fuera del “círculo central”.

El Premio Nobel sigue siendo la realización del genio moderno, y el rezago del “cientificismo romántico”. Hay que recordar que existe el mito de que los premios Nobel respetan, por lo general, una meritocracia más allá de la lógica política, e incluso de la política de la ciencia. Varios estudios muestran otra cosa (ver, por ejemplo, Friedman, 2001): para atravesar la puerta que conduce al Premio Nobel es fundamental saberse insertar “correctamente” en la red social adecuada; en este sentido, hay que saber “trabajarlo”, además o precisamente porque la deliberación de los jurados está marcada por circunstancias políticas. Eso no es nuevo tampoco, y es tan solo una expresión en la historia de los premios científicos (o de cualquier tipo) (Fox, 1974). Ahora bien, no es suficiente saberse mover socialmente para ganar el premio; se requiere acumular un capital simbólico del campo, sea este la literatura o la ciencia. Por ello, la historia social de la ciencia trata de sistemas sociotecnocientíficos: aparatos, objetos naturales, instituciones, ideas, personas, etc., que se mezclan en un gran revoltijo que termina componiendo la práctica científica (Pickering, 1995). El error es pensar —o dejarse convencer de— que la ciencia y la tecnología están fundamen-

dal y exclusivamente compuestas por naturaleza, artefactos, estructuras lógicas y destrezas mentales y manuales. El mito del Premio Nobel, de hecho, ha sido contraproducente para tener una historia social de la ciencia, porque cimienta la creencia en una empresa basada en la

“genialidad” de unos individuos literalmente por encima de sus contemporáneos o, como se suele decir en una frase contradictoria y absurda, “adelantados a su tiempo”.

Las puertas del “Mundo 3” de Popper

Uno de los blancos preferidos sobre los que se ciernen las críticas a la sociología de la ciencia es la obra del filósofo Karl Popper. La fuente de mayor controversia con este, desde el punto de vista sociológico, es su hipótesis de los “mundos 1, 2 y 3” (Popper, 1986, pp. 136-143). El “Mundo 1” es “el mundo de la física”, el “Mundo 2” es “el psicológico” y el “Mundo 3” es el mundo “de los productos de la mente humana”. Y si bien estos últimos incluyen el arte y los valores éticos y las instituciones sociales, Popper limita su análisis “al mundo de las bibliotecas científicas, a los libros, a los problemas científicos, y a las teorías, incluidas las erróneas” (p. 136). En cierto sentido, hay aquí una reminiscencia del mundo platónico de las ideas, pero es más complejo. Lo que me parece interesante de esta propuesta es la aparición de un espacio, o al menos una dimensión, que se considera dominante del campo científico, que es aséptica al punto de vista social y político. El “Mundo 3”, donde se desarrolla el contenido de la ciencia, según Popper, es al menos parcialmente autónomo (parcialidad derivada de las limitaciones que impone el “Mundo 1”, es decir la naturaleza). Ahora bien, Popper nunca explica cuál es el rol de las instituciones, que él mismo menciona como parte de ese “Mundo 3”. De hecho, el mundo de las interacciones sociales no existe en la visión que tiene Popper. Los objetos del “Mundo 3”, como por ejemplo los números primos, “no han sido inventados por nosotros, sino descubiertos o encontrados”; no hay espacio, entonces, para la construcción social, sino para el develamiento de esos objetos. Popper sella así el ideal de “la gran división” sobre la cual se erige la modernidad: un sistema que permite construir un sólido muro entre el mundo de “los hechos” y el mundo de “los valores”, entre el mundo físico y sus teorías y el mundo social y sus interacciones; aquí no hay puertas posibles que permitan la comunicación entre ellos.

Pero el problema que más preocupó a Popper fue el de “demarcación”; a saber, distinguir una teoría científica de otra que no lo es o, en palabras de Popper, de una teoría “pseudocientífica”. Aunque había sido cercano al Círculo de Viena, Popper no aceptó la idea de Rudolf Carnap y sus seguidores de que la verdad científica puede “derivarse de los hechos”. Para Popper, eso era una nueva versión del induccionismo, o la inferencia de las teorías científicas, que era lógicamente inaceptable.
Propone entonces la idea de que una teoría es científica si puede producir predicciones observables empíricamente refutables. La ciencia avanza entonces a través de conjeturas, que llamamos teorías, que pueden ser sometidas a pruebas rigurosas. Cuando Einstein escribió su teoría de la relatividad general, por ejemplo, propuso medir la “curvatura de los rayos de luz” cuando pasan cerca al Sol. Como veremos en el episodio dedicado al eclipse de 1919, para Popper, ese fue el ejemplo canónico de una teoría científica, ya que si esa predicción no se cumplía, se demostraría la falsedad de la teoría de la relatividad, y habría que sustituirla por otra. Su “falsacionismo”, como llamó Popper a su criterio, era una propuesta en todo caso audaz, porque era implacable: si una teoría predecía algo que no se cumplía, debía ser descartada; no había margen alguno de negociación.

Combinados, el “Mundo 3” y el “falsacionismo” han tenido una influencia poderosísima sobre la imagen de la ciencia, especialmente entre los científicos mismos, quienes usan esa idealización para mostrar su “desinterés”, uno de los principios que el sociólogo Robert K. Merton identificó como parte del ethos de la ciencia. Popper —y hasta cierto punto también Merton— construyó una imagen de cómo debería funcionar la ciencia, y asumió que ese modus operandi en efecto se respetaba cuando se estudiaban las teorías científicas. ¿De qué tipo de historia habría entonces Popper cuando se refería a la historia de la ciencia? Así lo explica él mismo: “También supondré que el ‘Mundo 3’ tiene historia: que ciertos problemas, teorías y argumentos fueron descubiertos, o quizá refutados, en determinadas fechas, mientras que otros, en esas mismas fechas, no habían sido descubiertos, o refutados, aún” (1986, p. 137).

Luego, la historia de la ciencia es la historia del “Mundo 3”, y eventualmente de su interacción con los otros dos, y su núcleo está en aquel. No hay cabida para variables sociológicas, y cualquier alusión

8 Esta manera de concebir la ciencia tiene profundas implicaciones en todos los campos, y de hecho Popper extiende su método a la política y a la forma en que se deben afrontar los problemas sociales, a saber, a través de una actitud abierta y permanente hacia la crítica severa, entendiendo que siempre estamos produciendo conjeturas que muy seguramente están erradas. Según el filósofo austriaco, es posible y necesario distinguir entre ideas y valores, y esa gran división la puede producir una sociedad abierta basada en la racionalidad y la ciencia (Popper, 1983).

La influencia de Popper en la ideología liberal ha sido ampliamente reconocida (ver, por ejemplo, Bedeschi, 2004, especialmente pp. 317-327). Menos conocida pero sumamente interesante fue la influencia que tuvo en China, donde permitió abrir una discusión más fresca a los textos marxistas (Shu-li, 1994).
al mundo de los humanos se reduce a temas de la psicología, que es el “mundo subjetivo”, ajeno a la ciencia. Las puertas popperianas de la ciencia son, entonces, metafísicas, sin margen para cualquier consideración sociológica: el problema de demarcación no es social, sino exclusivamente lógico, y su historia es exclusivamente la de las ideas que se desarrollan en aquel “Mundo 3”.

El hecho de que la propuesta de Popper acerca del problema de demarcación coincida con el imaginario de que la ciencia es un cuerpo de teorías separadas del mundo contingente de los asuntos sociopolíticos, excepto cuando estos la “pervierten”, le produjo una amplia aceptación entre legos y expertos, pero particularmente entre la comunidad de los científicos. En cierta medida, Popper se convirtió, al menos en Occidente, en el filósofo de cabecera de los científicos. Las cerraduras de Popper contra la entrada de cualquier consideración sociológica o histórica, combinadas con la idea de que el error hace parte substantiva de la lógica que subyace a la práctica científica —lo que mostraba el carácter incierto pero al mismo tiempo progresivo del conocimiento científico—, le abrieron las puertas a la comunidad de los científicos. Popper le dio un sustento filosófico confortable a los científicos de la posguerra que, al reconocer en el nazismo y el comunismo peligrosas expresiones de la “politización” de la ciencia, buscaron todos los métodos para mostrar que la ciencia requiere espacios políticamente asépticos. La ciencia nazi primero y la Guerra Fría después hicieron que se difundiera en Occidente la idea de que la ciencia solo podría desarrollarse en democracias liberales y, en ese sentido, Popper resultaba instrumental para apuntalar una versión “apolítica” de la ciencia.

Thomas Gieryn, quien ha trabajado el problema de las fronteras en la ciencia, señala que el trabajo de Robert K. Merton, desde la orilla de la sociología de la ciencia, fue también central para este propósito. En los años cuarenta, en plena Segunda Guerra Mundial, Merton enunció una serie de “preguntas constitutivas” de lo que sería un nuevo campo de estudio: la sociología de la ciencia (Gieryn, 1999). Para el sociólogo estadounidense, la institución llamada “ciencia” está caracterizada por una serie de normas que definen su identidad y su estabilidad. Quienes quieran flanquear la puerta de la ciencia, según Merton, deben aceptar que la ciencia es universal y no responde a contingencias locales; que no opera a través de intereses sociales, políticos o económicos, porque está regulada por la lógica y su conexión con las observaciones; que los científicos trabajan produciendo lo que hoy llamARíamos “bienes
introducción

públicos” —que él llamó “comunales”9—, es decir, que su conocimiento es de carácter abierto, y que la ciencia se desarrolla gracias al permanente escrutinio que los científicos hacen a las ideas de sus colegas —“escepticismo organizado”, lo llamó Merton—. Esas serán las normas éticas, si es que cabe, de las instituciones que conforman el “Mundo 3” de Popper, aunque Merton nunca lo puso en esos términos. Si bien los científicos, como actores sociales, pueden desviarse de esas normas, cuando están vinculados a su actividad o práctica están obligados a seguir dicho ethos. El corpus de la ciencia, su contenido, no tiene posibilidad alguna de ser examinado sociológicamente. De esta manera se sellaba la posibilidad de abrir puertas hacia el mundo político de la investigación científica, sus productos y procesos. La ciencia aparece así como un mundo autónomo, que sin embargo es éticamente isomorfo al ideal de las democracias de Occidente. Este deber ser era complementado por la prescripción popperiana de una ciencia que, si bien por su carácter abierto cometía errores, era la mejor aproximación a la verdad, gracias a que su corpus (teorías) no operaba ni en el mundo físico ni en el subjetivo. Así, la relación entre el positivismo lógico y el estructural-funcionalismo de Talcott Parsons y Bernard Barber, consolidada en la sociología de la ciencia por Merton, dejó en claro que la ciencia requería del capitalismo y las democracias occidentales.10

Oportunismos y el principio de supersimetría

A inicios de los años sesenta, aparece La estructura de las revoluciones científicas, del físico e historiador estadounidense Thomas Samuel Kuhn (1971). Es importante notar que sus planteamientos tuvieron enorme acogida, probablemente por el ambiente de cuestionamiento al establishment que caracterizó a la década de los sesenta. No obstante, un poco menos de treinta años antes, el médico polaco Ludwik Fleck (1896-1961) había propuesto algo muy similar, usando el caso de la sífilis para entender “la génesis y el desarrollo de un hecho científico” (Fleck, 1986); Kuhn escasamente lo cita en su texto.

Pero volvamos al problema de la demarcación. El debate llegó a su ápice a través de la polémica entre Popper y Kuhn en el International Colloquium in the Philosophy of Science, celebrado en Londres en 1965

9 Inicialmente llamó a este principio “comunismo”, pero años más tarde, cuando la Guerra Fría emergió, lo cambió por “comunalidad”.
10 Para una buena revisión historiográfica de la filosofía y la sociología de la ciencia, ver Albornoz, 1994.
El estudio de Kuhn sobre la revolución copernicana lo conduce a un panorama muy distinto al que propone Popper. Mientras que para este último la ciencia avanza a través de una suerte de revoluciones permanentes, gracias a la necesidad de cambiar de teoría cada vez que un experimento demuestra la falsedad de una teoría vigente, para el historiador estadounidense las revoluciones son raras y los científicos son mucho más permisivos con los resultados experimentales negativos, pues producen más bien nuevas conjeturas que permiten acomodar los datos nuevos. Los científicos pueden ver el mundo con los anteojos de sus teorías, y no es su costumbre, por consiguiente, hacer experimentos que no estén teóricamente definidos. Esos anteojos, esa forma de ver el mundo, la manera de concebir posibles soluciones a los problemas que pone la naturaleza, el consenso sobre la manera de concebir los fenómenos en el marco de ciertas teorías y no otras, es lo que Kuhn llamó paradigma. Concebir un rayo o la luz como fenómenos electromagnéticos, regidos por la teoría de Maxwell, o entender el mundo biológico en el marco del darwínismo son ejemplos de paradigmas dominantes. La física newtoniana o la teoría de la relatividad son otros ejemplos clásicos.

El estudio histórico de Kuhn marca una ruptura con las imágenes normativas de la ciencia. Más que buscar los criterios de una ciencia correcta, Kuhn busca describir la manera en que proceden los científicos en su afán de explicar el mundo y, sobre todo, de no quedarse en el vacío teórico. Los científicos, según observa Kuhn, son mucho más pragmáticos de lo que espera Popper y, por consiguiente, solo cuando el paradigma no aguanta más ajustes se produce una revolución. Dicha revolución será el producto de un consenso acerca de la no legitimidad de la teoría anterior. El sistema heliocéntrico no solo es percibido como una forma más ajustada a las observaciones. Había consenso entre los astrónomos en que el modelo ptolemaico —que durante siglos tuvo que ser modificado, introduciéndole cada vez nuevos dispositivos, como los epiciclos y los deferentes, para poder ajustar la teoría a las nuevas observaciones— no parecía resistir más artilugios. En el intento por ajustar la teoría a las...

11 Para una comparación entre la obra de Kuhn y Fleck, ver Obregón, 2002.
12 El concepto de “paradigma” tiene muchos significados en la obra de Kuhn, como lo ha señalado un artículo ya clásico que se presentó justamente en el Coloquio de 1965 (Masterman, 1995). Años después, Kuhn tratará de precisar el término acuñado de “matriz disciplinaria”, pero paradigma ya había sido ampliamente adoptada. Un concepto muy similar, el de “estilos de pensamiento”, había sido propuesto ya por Fleck en el libro antes mencionado.
observaciones, dirá Copérnico, se ha terminado por crear un_monstruo_. Su propuesta es, entonces, regresar a los principios de unidad, simplicidad y belleza, para lo que hay que intercambiar la posición del Sol y la Tierra. Es, en cierto sentido, una revolución basada en principios antiguos, y por eso Copérnico es considerado como el último de los astrónomos ptolemaicos, antes que el primero de los modernos. Más aún, las revoluciones son episodios muy raros en la historia de la ciencia. Incluso sociólogos postkuhnianos ponen en duda que dichas revoluciones se hayan dado efectivamente (Shapin, 2000).

He insistido en las palabras _consenso_ y _percepción_, porque es muy importante entender que el concepto de paradigma no es puramente epistemológico o lógico. Para Kuhn “tanto en el desarrollo político como en el científico _el sentido_ de disfunción que conduce a una crisis es un prerrequisito para una revolución” (1971, p. 92, cursivas mías). No es casual que Kuhn, en una de sus muchas definiciones, hable del paradigma como una _promesa_ y como un artefacto que sirve para resolver problemas, incluso en ausencia de una teoría bien estructurada sobre la realidad que se está estudiando. La “originalidad”13 de las puertas de la ciencia kuhnianas radica en su dimensión sociológica: “visto sociológicamente (en contraste con la visión filosófica) un paradigma es un conjunto de hábitos científicos” (Masterman, 1995, p. 66, traducción mía). Ahora bien, la verdadera originalidad está en la obra de Fleck, quien para referirse a la comunidad que interviene en la construcción del “hecho” no se restringió a la “de expertos”, o “científica”, como lo hace Kuhn. Para el polaco, un “colectivo de pensamiento”, como lo llamaría, es el grupo de personas que debaten e intercambian ideas sobre un objeto particular, no importa si se trata de científicos o no. Pueden ser comerciantes, políticos, deportistas, etc. Este es un antecedente importante, entonces, también para la idea de “campo” planteada por Bourdieu, que la usa para analizar desde la ciencia hasta la alta costura.

Pierre Bourdieu desarrolló el concepto de _campo_ para describir distintas realidades sociales, incluida la producción científica, y quiero hacer un interludio al respecto. Ese concepto proviene de una analogía con la física, en la cual se usa para describir la dinámica de sistemas de distribución espacial de “objetos” que interactúan a través de fuerzas que dependen de sus respectivas “cargas”. Para Bourdieu, en el campo social, las cargas corresponden al “capitalismo simbólico” de

13 Insisto, Kuhn sistemáticamente desestimó su deuda con Fleck, hasta 1979, cuando prologó la traducción al inglés del texto de este.
cuya distribución dependen las “relaciones de fuerza” entre los “pro-
tagonistas de la lucha, agentes o instituciones”. El caso más sencillo
de campo en física es el electromagnético (donde los objetos o “pro-
tagonistas” son electrones y protones; las cargas o capital simbólico,
la eléctrica y la magnética; las fuerzas, la eléctrica y la magnética).
Encuentro útil esta analogía para visualizar las relaciones de fuerza, y
aunque prefiero no usar todo el arsenal de economía política de cam-
pos que despliega Bourdieu, creo que los problemas que este señala
en la entrada de los recién llegados que tratan de disputar ese capital
simbólico se ajusta mucho al problema de los espacios ‘prepolémicos’.
Ahora bien, el tema de la autonomía de los campos, que se usa como
una de las principales objeciones para evitar a Bourdieu en las aproxi-
maciones constructivistas, no debería ser un punto de partida, sino un
problema que debe ponerse a prueba empírica. Los casos que presenta
este libro también examinan esta pregunta en el caso de un campo
que, en principio, debería tener una alta autonomía por su grado de
madurez: la física.14

En varias partes de los estudios que componen este libro, verán
que históricamente la tesis de Popper es altamente idealizada, y la
ciencia es mucho más susceptible de ser reescrita o corregida, según
las circunstancias (es decir las teorías y datos a disposición en ese
momento), que Andrew Pickering ha dado en calificar como “oportun-
tunismo en contexto” (1984). Los campos científicos, incluso en el
caso de la física, no son completamente autónomos. En el caso de
la “revolución de noviembre” de la física de partículas del siglo
xx, que estudio para mostrar la manera en que se le cerraron las puertas
da Abdus Salam y a su colaborador, Jogesh Pati, para participar en
esa “revolución”, enfáticamente insisto sobre el que, en mi opinión, el
mismo Pickering es poco claro: que el “oportunismo en contexto”,
precisamente por su tácito pero innegable parentesco con el concepto
de “paradigma”, tiene una dimensión sociológica que no se restringe
al uso de conceptos e instrumentos, sino que tiene que ver también
con la accesibilidad a espacios de debate. Al igual que para Latour,
para Pickering tácticamente parecería haber lugares “naturales” de

14 De otro lado, prefiero no entrar en la polémica que tiene Bourdieu con el con-
structivismo, y con Latour en particular. Las objeciones que habrían en combinar
el constructivismo con la teoría de campos van en dos direcciones: a) que le da
autonomía a los campos, y b) que concibe una configuración estable de la socie-
dad, separada de la ciencia. Quiero agradecer, en particular, a Olga Restrepo por
las discusiones alrededor de este último punto.
la producción científica, así que ni siquiera plantea el problema de qué sucede en otros “centros” o “periferias” —como los países no europeos—, y la topología del poder dentro de la comunidad vuelve a cerrarse: eso se hace evidente al notar que variables como origen étnico, localización geopolítica o género no aparecen en parte alguna de sus estudios.

Un caso más llamativo es el de John Law, otro de los exponentes estrella de la teoría del actor-red (TAR). En un libro relativamente reciente, que lleva el sugestivo título de After Method, Law (2004) insiste en criticar lo que denomina la epistemología “eurocéntrica” para contraponérla a las que proponen los estudios sociales de la ciencia y, particularmente, la TAR. Primero habría que decir que tales estudios también son de matriz eurocéntrica. Pero lo interesante es examinar la práctica de Law a la luz de su preocupación discursiva por el eurocentrismo, especialmente porque su trabajo es muy seguido en estudios de ciencia en América Latina. En un trabajo ampliamente citado sobre la superioridad naval de los portugueses en el siglo XVII, Law dice que las prácticas astronómicas, los instrumentos científicos, las tablas y “el avance en la construcción de barcos y la navegación de los ciento cincuenta años anteriores” hacían a los portugueses “superiores” a los “musulmanes” en el océano Índico (Law, 1987, p. 120). Su trabajo se basa en la idea de Michel Callon del “principio de simetría generalizado”, según el cual los actores humanos (como los marineros) son tan importantes como los no humanos (como los vientos). Sin embargo, Law da su “explicación” centrándola en las técnicas portuguesas, sin jamás compararlas con las “musulmanas”; es decir, excluye la mitad de la historia. Su argumento es claramente teleológico, porque la evidencia de esa superioridad es que tomaron control de esos mares. Sin duda los europeos vencieron, pero como Law no mira mínimamente la “ingeniería heterogénea” de los “musulmanes” (como si no la tuvieran) no podemos decir mucho sobre el papel de la tecnología en esas batallas. Además de ser metodológicamente dudoso, el trabajo cae en el mismo eurocentrismo o, mejor, en un “orientalismo” (Said, 1979) que desaparece lo “no Occidental” y lo convierte en una caja negra con la inscripción “musulmanes”. Mientras que yo creo que el principio de simetría generalizado de Callon (y Latour y Law) es metodológicamente útil —aunque epistemológicamente discutable— propongo expandir la mirada de estas redes de “actantes” a la mitad que suelen ignorar los “padres” y las “madres” de la TAR: la de los “perdedores”, los “derrotados”; las redes de los que quedan por fuera de las puertas de la.
Para seguir con las metáforas de la física, que tanto atraen a los sociólogos que la estudian, llamo a esta inclusión el *principio de supersimetría*, en el cual las redes que estudiemos no se detengan en los nodos que ayudan a explicar los programas exitosos, sino que se extiendan al *universo derrotado*.

Todo estudio histórico riguroso sobre el desarrollo de teorías científicas ha mostrado que el modelo popperiano, si bien puede ser una prescripción metodológica, difícilmente se ajusta a lo que hacen los científicos en sus laboratorios y por fuera de ellos. Las puertas de la ciencia son de carácter social porque las ideas se expresan en ese mundo, no en uno ideal. Al concebir la ciencia como una práctica social, emparentada con otras formas culturales, este libro se inscribe en una tradición constructivista y se aleja del esencialismo que caracterizó a la filosofía de la ciencia del siglo XX. Eso no significa que defienda las tesis más radicales de ciertas corrientes posmodernas, encapsuladas en el *everything goes* de Paul Feyerabend.16 Lo importante es entender por qué algunas cosas funcionan y otras no, por qué aceptamos unos hechos como verdades objetivas y otros como creencias subjetivas. Este libro se para, pues, sobre una larga serie de esfuerzos de más de cuatro décadas por mostrar, con estudios de caso elocuentes, que es posible y necesaria una sociología del conocimiento científico, si queremos entender cómo construimos la imagen del mundo, de los objetos y de la sociedad. Pero para eso tenemos que seguir a los científicos a través de la sociedad, y no contentarnos con que nos digan cómo trabajan en sus laboratorios. También habría que seguir a los sociólogos e historiadores de la ciencia y la tecnología en sus prácticas, para encontrar sus puntos ciegos y explorar por el principio de supersimetría.

16 En un libro ampliamente citado como paradigmático en los estudios de ciencia, Feyerabend sostenía que los hechos científicos no son fruto del razonamiento riguroso y la observación desinteresada, sino que, por el contrario, son resultado de una gran capacidad retórica y de factores de poder (*everything goes*), no necesariamente sustentados por datos “objetivos”. Es decir, con un buen aparato retórico y una posición de poder sería posible construir una teoría por completo en contra de los hechos observables. Este libro, y su autor, han sido utilizados para caricaturizar los estudios sociales de ciencia, insinuando que es “típico” de este campo. No lo es y, aunque inspirador hace treinta años, pocos lo citan como fuente teórica en sus estudios (Feyerabend, 1992).
Movilización, transformación y política: de los “hechos” a las “interpretaciones”

Una de las características de la ciencia como práctica es que su movilización implica siempre transformaciones. Ningún objeto, material (artefacto) o abstracto (teoría), es modular. Ello se debe a que los receptores son activos al momento de interactuar con esos objetos. Muchísimos casos de la historia de la ciencia y de la tecnología han ilustrado este punto, inspirados en los estudios de Wittgenstein, cuyo núcleo se puede resumir en la siguiente sentencia: “Dar un nuevo concepto puede solo significar introducir un nuevo empleo de ese concepto, una nueva práctica” (1967, citado en Warwick, 1992, traducción mía). Particularmente importantes fueron los estudios sobre experimentos y laboratorios, en los que se revaloró el papel activo de los experimentadores como productores de conocimientos, y no simplemente como “verificadores” o “falseadores” de teorías. Los estudios sociales de la tecnología también han sido claves para mostrar que los artefactos son reinterpretados de manera permanente y, por consiguiente, requieren siempre de una red de actores que se comportan como hermeneutas y como diseñadores y creadores de realidades distintas. Creo que películas como Los dioses deben estar locos muestran, a su modo, el hecho de “que grupos sociales diferentes tienen interpretaciones radicalmente diferentes de un mismo artefacto tecnológico” (Bijker, 2008, p. 41): una botella de Coca-Cola es una cosa en Nueva York o Bogotá (la misma, gracias a los procesos de estandarización y globalización), y otra muy distinta en una comunidad nómada sin contacto con el mundo occidental.

Andrew Warwick estudió la “recepción” de la teoría de especial de la relatividad en Cambridge, inmediatamente después de publicado el (¡posteriormente!) famoso artículo de Einstein On the Electrodynamics of Moving Bodies (1905). A diferencia de quienes habían estudiado la historia de la ciencia como módulos terminados que se movían de forma “inmutable”, de modo que los nuevos contextos solo podían “responder” acertada o erradamente, Warwick está interesado en mostrar por qué algunos científicos aceptan una teoría y cómo la usan. Así, los comentarios y desarrollos que se hacen en Cambridge, entre 1905 y 1911, del

artículo de Einstein dependen del tipo de investigación y de las “tecnolo-
gías teóricas” de los físicos, que seguían una tradición enmarcada en los
problemas de la teoría electromagnética. De manera muy convincente,
Warwick nos muestra cómo diferentes grupos, dentro del mismo labo-
ratorio, hacen comentarios “como reinterpretaciones activas del texto,
más que como respuestas a una teoría de la relatividad comúnmente
entendida por todos” (1992, traducción mía). De esta manera, la práctica
científica y la tecnológica toman una nueva escala espacial también: ya
no son los “estilos nacionales”, porque la unidad de análisis “nación”
es demasiado grande. Las comunidades de practicantes, como veremos
también en los casos de los que me ocupo en los episodios siguientes, se
configuran en “diferentes redes de colaboración y competencia que no
son ni típicos ni (necesariamente) atados al Estado-nación” (Warwick,
1992). La práctica y la posibilidad de poder participar en polémicas de-
pende de hacer explícito lo tácito, de lograr hacer un acuerdo sobre lo
que no se sabe y lo que sí, pero no se dice. En este sentido Warwick ha
señalado que “un importante punto para notar en este contexto es que
lo que cuenta como ‘tácito’ en un texto puede depender tanto de las
habilidades del lector como de las del autor” (2003, p. 439).

El acceso a esos nuevos significados no depende de las llaves de
las puertas de la ciencia: no son los artefactos o los hechos claves, por
sí solos, los que dirimen polémicas científicas, ni tampoco las definen
los términos en que se producen las imágenes del mundo. Son los seres
humanos que producen esas ideas los que hablan por la naturaleza, y
quien tenga el poder legítimo de ser su intérprete define la distribución
de poder político en cada sociedad. Pueden ser los sacerdotes, o los fi-
lósofos antiguos, o los científicos de los centros imperiales o los de las
periferias coloniales, o el emperador o el rey; pero también pueden ser
parlamentos diversos, donde participen científicos, políticos, empresar-
rios y ciudadanos. Las fuerzas que definen la topología del campo de
Bourdieu, en esa analogía con las ciencias físicas que hizo el sociólogo
francés, dependen del potencial de conocimiento (capital simbólico)
que cada actor almacena, y de su posición relativa. No hay “pruebas
reina” en la corte de la ciencia y la tecnología, sino entramados com-
plejos de objetos (artefactos o teorías), retórica, instrumentos de poder
e instituciones. La naturaleza no “habla” por sí misma, sino por boca de
esas redes de cancerberos de las puertas de la ciencia.

Por supuesto que esta flexibilidad está en la médula de la crítica a
la modernidad y a su doctrina positivista. Como dijo Nietzsche en las
postrimerías del siglo xix, “contra el positivismo que se detiene ante
el fenómeno solo hay hechos, yo diría: no, justamente no hay hechos, solo interpretaciones”. Esa es la esencia de los debates científicos y el carácter constructivista de la ciencia y de la tecnología; por ello el acto de creación y el de circulación son inseparables en la producción de objetos concretos o abstractos. Por ello, lo universal de la ciencia no es su método, ni su privilegiado acceso a un mundo natural supuestamente desnudo y neutro; solo “la mediación interpretativa es universal” (Nietzsche, citado en Gutiérrez, 2004, p. 93), y eso tal vez nos conduce una ciencia postmoderna no positivista.

Este libro, en la medida que quiere contribuir a mostrar que la incertidumbre y la contingencia han sido y son más propias de la práctica científica de lo que, por miedo a perder su estatuto de supremacía, quisieron y quieren aceptar muchos científicos, pretende ser un instrumento de emancipación. Esta no es una historia de la ciencia para quienes quieren divertirse con anécdotas de científicos. Este libro no tiene públicos especializados en mente, pero sí tiene la pretensión de trascender a los amateurs en ciencia y servirle a los “tecnocidanos”, término inventado y circulado por Antonio Lafuente.18 Estoy convencido de que las nuevas formas de producción de conocimiento, en las cuales los procomunes y los riesgos globales y locales que encierra la tecnociencia empiezan a entrar a nuestro imaginario colectivo, darán paso a una nueva forma de ciudadanía. Los tecnocidanos son aquellos que se involucran en los procesos de producción y uso del conocimiento de forma consciente, como parte de su ejercicio democrático: no son pasivos consumidores de libros, sino activistas comprometidos con el futuro. Espero que estas páginas les sean útiles para abrirle a la sociedad las puertas hacia una nueva relación con el conocimiento, más humana, más solidaria y más democrática.

Objetivos y organización del libro
El libro está constituido por cuatro episodios de la física del siglo xx, que ilustran distintos aspectos de la forma en la cual se les otorga estatus de beligerancia a nuevos actores. En otras palabras, lo que quieren mostrar estos estudios no son los términos mismos de las polémicas, sino lo que podríamos llamar los espacios de prepólémica; esto es, la configuración de los campos en disputa y las luchas de los neófitos

18 Para un compendio de artículos de Lafuente relacionados con problemas contemporáneos de la tecnociencia, más allá de sus trabajos ya clásicos sobre la Ilustración española, ver Lafuente, 2007.
por cruzar las puertas que les permiten ser reconocidos como legítimos contenedores científicos. Son estudios de procesos de exclusión o inclusión de teorías y nuevas interpretaciones del mundo físico, y de cómo las condiciones políticas y sociales permearon las luchas en la ciencia del siglo xx.

Todos los casos que abordo en este libro son relativos a la historia de la física teórica. Uno de los grandes aportes de los estudios sociales de la ciencia desde los años ochenta fue la investigación de los “estudios de laboratorio” (por ejemplo: Latour y Woolgar, 1979; Pinch, 1986; Hacking, 1983; Collins, 1992). Se trataba de una reacción a los programas de corte filosófico, particularmente al positivismo lógico, que estudiaban en exclusiva a las teorías, y, en cierto sentido, se limitó a una “historia de las ideas”. En los últimos años, sin embargo, ha revivido el interés por la historia de las teorías (Warwick, 2003; Kaiser, 2005; Galison, 2005; De Greiff y Kaiser, 2002). En este libro quiero mostrar que la teoría es también un campo rico en matices que permiten entender cómo funciona la ciencia, sin tener que caer en modelos de filosofía analítica pura o historia internalista.

El libro contiene cuatro episodios que he juzgado como cruciales en la construcción de la imagen contemporánea del universo: la teoría de la relatividad, el modelo de la cosmología moderna (Big Bang), la teoría cuántica y la física de altas energías o de partículas. Los he organizado siguiendo un orden cronológico. Este orden es arbitrario, pero también puede ser útil, porque algunos episodios hacen referencia a antecedentes tratados en otros.

El primer episodio presenta una de las observaciones astronómicas más importantes en la historia de la física. Se trata de la medición de la deflexión de los rayos de luz en las vecindades del Sol, durante un eclipse que tuvo lugar en 1919. Esa investigación y el anuncio espectacular de sus resultados en una sesión conjunta de la Royal Society y la Royal Astronomical Society fueron el acta de bautismo de la teoría de la relatividad general. Me interesa mostrar que, aunque se consideró que los datos daban la razón a Einstein, tal precisión nunca se volvió a alcanzar posteriormente, lo que nos obliga a preguntarnos cuán sesgadas fueron las interpretaciones de las placas tomadas. Además, la teoría, aunque se consideró un gran logro intelectual, no logró colarse en la práctica de la investigación en física, y tuvo que esperar varias décadas antes de ser desarrollada como parte del corpus científico. No sucedió así con Einstein, quien entró por la puerta grande, convirtiéndose en el ícono de la ciencia del siglo xx.
El segundo episodio presenta un caso estrechamente relacionado con la teoría de la relatividad. Se trata de los primeros modelos cosmológicos, que se propusieron pocos años después de terminada la Segunda Guerra Mundial, cuando la teoría de la relatividad había recibido otra confirmación empírica: las bombas nucleares sobre Japón. Un grupo de físicos en Cambridge, liderados por el joven Fred Hoyle, presentaron un modelo en el que la expansión del universo observada por Edwin Hubble no implicaba que aquel tuviera un origen en un punto con infinita densidad (modelo del *Big Bang*). El “modelo del estado estacionario”, como lo llamaron, nos permite ver lo que le sucede a una teoría si, desde sus comienzos, es sometida a permanentes *tests severos* (tipo Popper), sin mayores márgenes de negociación en cuanto a interpretaciones alternativas. El destino de la teoría estuvo marcado por la ausencia de los objetos que predecía el modelo. Más que no encontrarse, los objetos no fueron buscados por los astrónomos, con quienes Hoyle forjó una enemistad que desembocó en una abierta confrontación que segregaría al grupo de teóricos de Cambridge. Esa profundización de fronteras disciplinarias entre teóricos y experimentalistas le impidió a Hoyle atar su red teórica y de nuevos objetos a la de los astrónomos, lo que aislaría su teoría por falta de aliados (humanos y no-humanos). Prevalecería entonces como “modelo estándar de la cosmología” su rival: la teoría del *Big Bang*.

En el tercer episodio nos ocupamos del caso de otro joven físico, Klaus Tausk, quien desarrolló un trabajo sobre un problema crítico de la mecánica cuántica: la teoría de la medida, es decir, las consecuencias que tenía el principio de incertidumbre de Heisenberg sobre las observaciones y mediciones del mundo físico. A partir de los años setenta, este problema sería parte fundamental de la física teórica. La propuesta de Tausk era una crítica a un artículo de tres físicos italianos, cuyo aporte había sido altamente valorado por varios de los miembros del colegio invisible de la física. La forma en que Tausk expuso su argumento, los aliados a los que recurrió cuando su retórica había insultado a varias de las autoridades en el campo, la débil posición del lugar desde el cual escribía (un centro de física para científicos del Tercer Mundo) y su juventud hicieron que su trabajo fuera, más que criticado, ignorado, a pesar de haber sido conocido. Es más, algunos de los que después escribirían sobre el tema con argumentos no del todo distintos a los de Tausk, no hicieron mención de esa contribución, aunque tenemos evidencia de que la leyeron y discutieron en privado. Ese silencio público sobre el trabajo de Tausk nos lleva a una forma de exclusión...
que llamaré *marginación tácita*, en la que los trabajos de los “recién llegados” son eliminados sin siquiera entrar como parte de la polémica; son trabajos sistemáticamente ignorados por virtud de la posición de aparente debilidad que tiene el autor, sea por su juventud, su localización institucional o ambas.

Otro caso de *marginación tácita* se da con el episodio con el que se cierra el libro. El “modelo estándar de la física de partículas” —es decir, el modelo que explica cuáles son, cómo están ordenados y cómo interactúan los constituyentes básicos de la materia— obtendría su ciudadanía científica tras el anuncio y las interpretaciones de experimentos en dos aceleradores de partículas, uno en Stanford y el otro en el MIT: a este episodio se lo conoce como “la revolución de noviembre”. A partir de este nace el quark “encanto”, cuya promulgación se convierte en la interpretación ampliamente ortodoxa de los fenómenos observados aquel noviembre de 1974. Exactamente ese mismo mes, la Unesco y sus institutos asociados serán sometidos a un boicot político sin precedentes. Uno de ellos, el International Centre for Theoretical Physics (ICTP), era dirigido por el físico Abdus Salam. Él y su colega Jogesh Pati habían propuesto interpretaciones distintas a las del quark “encanto”. Sin embargo, el boicot les impidió invitar a los protagonistas del episodio al ICTP y, después, su acceso a nuevos espacios de discusión sería muy limitado como para que se tomara en serio su propuesta. Este episodio nos permite ver cómo opera la *marginación tácita*, en la que los artículos de revisión y balance del tema (*review papers*) juegan un papel fundamental como artefactos de construcción y no solo como medios de descripción del campo. También nos sirve para revisar el concepto de “oportunismo en contexto” propuesto por Andrew Pickering. La alternativa de Salam y Pati sería relegada a notas al pie de página y, como en el caso de Tausk, a conversaciones privadas, por lo que el contexto social le cerraría las puertas al marco de interpretación científico.

El libro se cierra con una corta *coda*, en la que presenta algunas de las lecciones que podemos extraer de los episodios discutidos. En particular, enfatizo la importancia que tienen las negociaciones sociales en la constitución de nuestra representación del mundo, sin que ello implique eliminar nuestras interacciones con objetos materiales del mundo natural. También es la oportunidad para explicar un poco más en detalle la noción de “*marginación tácita*”, que espero sea útil para entenderla como un dispositivo para cerrar puertas a los disidentes.
Episodio I

Un eclipse que abrió las puertas a Einstein pero no a la teoría de la relatividad

Auguste Comte, figura pionera del positivismo, afirmó que el estudio de las estrellas era un tema que permanecería para siempre por fuera de los dominios de la ciencia. Así escribió en 1840:

En cuanto a las innumerables estrellas dispersas en el cielo, escasamente tienen interés para la astronomía a no ser como marcadores de nuestras observaciones; nunca, por ningún medio, podremos investigar su composición química o su estructura mineralógica (citado en Kragh, 1996, p. 4, traducción mía).

Tan solo unos pocos decenios después, entre 1870 y 1890, la espectroscopia —primero usada en laboratorios— abrió las puertas a una nueva área de investigación en la astronomía: el estudio de la estructura, formación y evolución de los objetos celestes.

De modo semejante, aunque la cosmología había sido una parte esencial del conocimiento humano, su introducción en lo que llamamos hoy “la ciencia” ha ocurrido solo en los últimos setenta años. Antes de eso, todos los modelos cosmológicos eran considerados meras especulaciones. Su carácter holístico y la falta de predicciones comprobables los condenaban a ser meras hipótesis metafísicas antes que teorías científicas (Kerszberg, 1990).

En 1915, Albert Einstein propuso una generalización de su teoría de la relatividad de 1905. Esta teoría incluía una explicación acerca de la naturaleza de los campos gravitacionales. Por una parte, explicaba un fenómeno conocido como la precesión del perihelio de Mercurio,1

1 El eje de la órbita elíptica del planeta no permanece fijo, como el de los demás planetas, sino que rota.
efecto que había permanecido como un oscuro misterio para la ley newtoniana de la gravitación universal; y por otra, predecía la deflexión de la luz al pasar cerca de un objeto masivo, así como el corrimiento al rojo de la longitud de onda de la luz emitida por una estrella muy masiva. Los dos efectos, en principio, eran medibles. Usando la terminología de Karl Popper, la nueva teoría era falseable, ya que si no se observaban estos efectos se mostraría falsa.

En 1916, Einstein sugirió que su nueva teoría también era capaz de describir efectos distintos a “efectos locales” como los mencionados anteriormente. Según él, la teoría de la relatividad general tenía consecuencias cosmológicas, es decir “globales” (Einstein, 1917). No solo era una teoría metafísica sobre la evolución del universo, sino una descripción matemática sobre cómo era nuestro universo y cómo obtuvo su apariencia actual. En consecuencia, “la originalidad de Einstein fue incluir a la cosmología en la mira de una ley universal para que se convirtiera en parte integral de la física” (Kerszberg, 1990). Sin embargo, la teoría de la relatividad general no fue recibida con el entusiasmo que se esperaría si se tienen en cuenta sus pretensiones cosmológicas. De hecho, aparte de Einstein, solo unos pocos trataron de construir modelos cosmológicos. Hasta 1920, en efecto, solo existían dos de estos modelos basados en la relatividad general: el modelo estático (de Einstein) y el modelo en expansión (desarrollado por Willem De Sitter). Antes de 1919 no se había publicado ni un solo artículo sobre la teoría de la relatividad general en revistas científicas británicas (Earman y Glymour, 1980).

De otro lado, después de una expedición británica para observar un eclipse en 1919 y hacer mediciones de la deflexión, todo el mundo supo que había algo llamado “teoría de la relatividad”; la prensa se interesó en la opinión de los científicos sobre la nueva teoría y muchos de los más importantes filósofos de la época escribieron acerca de ella. Solo para dar un ejemplo, de acuerdo con el Catálogo Internacional de Literatura Científica, en 1921 hubo 650 obras sobre relatividad. Para 1925, el número se acercaba a los 3000 títulos (Crelinsten, 1980b).

Desde el annus mirabilis de 1919, “relatividad” se convirtió en una palabra usada por todo el mundo, especialmente en el medio intelectual; en la visión del hombre común, la ciencia se convirtió en una empresa reservada solo para las mentes privilegiadas. Einstein no dejó de aparecer en los periódicos de todo el mundo, incluso hasta nuestros días; tal vez nadie había entendido su teoría, y sin embargo todos querían escucharlo, verlo, y de ser posible tomarse una foto con él para esgrimirla como arma en batallas locales.
En este episodio veremos la importancia que tuvo el año de 1919 y por qué fue considerado como un año crucial en la historia de la ciencia. El propósito es mostrar cómo la figura de Arthur Eddington, la publicidad que se le dio a la expedición de 1919 y el papel de la prensa de la época fueron elementos que catapultaron la fama de Einstein hasta el punto de que su nombre se convirtió en sinónimo de genio. Quiero mostrar hasta qué punto y en qué medida ese ambiente fue esencial para el establecimiento de la teoría de la relatividad general, así como para la gran reputación que Einstein adquirió a partir de 1920. Este es un caso en el cual, gracias a los elementos mencionados, un científico ingresa por la puerta grande, hasta el punto de que su teoría se convierte en uno de los símbolos y mitos del siglo XX, aunque de manera estricta no haya sido desarrollada hasta mucho tiempo después.

La predicción de Einstein versus la ley de gravitación universal de Newton

Einstein predijo por primera vez la deflexión de la luz alrededor de un cuerpo masivo en 1911. Hasta ese entonces había desarrollado solamente su teoría de la relatividad especial. Su argumentación es muy interesante pues, en palabras del propio Einstein, “el principio de la constancia de la velocidad de la luz no es válido en esta teoría tal y como se establece en la teoría de la relatividad especial” (1911). El físico alemán, entonces, desarrolló el argumento sobre la base de la violación de un postulado de su propia teoría. Con este proceder, que invocaba básicamente el “principio de equivalencia” y el principio de Huygens, el ángulo predicho para la deflexión en el borde del disco solar era de 0,83”.

En 1916, Einstein propuso un nuevo argumento, esta vez basado en su teoría general. Una vez más, el argumento es algo oscuro pues no es consistente con la constancia de la velocidad de la luz. El nuevo valor predicho para el ángulo de deflexión era 1,7” (esto es, cercano al doble de la primera predicción, figura 1).

2 Para una discusión detallada de la derivación de Einstein y Eddington, ver Earman y Glymour, 1980.

3 Una nota técnica, prescindible para seguir el argumento general, pero de utilidad para los físicos. Usando la condición de intervalos como de luz, esto es, \(ds^2 = 0 \), elige un sistema de referencia especial en el cual el cociente de intervalos de coordenadas coincide con la velocidad de la luz. Esto se presta a confusión puesto que, como han notado Earman y Glymour, “las cantidades con significado físico de la teoría son independientes de las coordenadas escogidas” (1980, p. 55).
Dado que la predicción de 1911 no implicaba nada nuevo más allá de la teoría electromagnética y el “principio de equivalencia”, fue considerada como una explicación clásica. Se la conoció entonces como la predicción newtoniana, a pesar de que trascendía la física clásica de Newton: la introducción del principio de equivalencia era algo que estaba completamente por fuera de la teoría newtoniana. En efecto, de acuerdo con este principio, “no se puede hablar más de la aceleración absoluta del sistema de referencia, así como tampoco se puede hablar de la velocidad absoluta del sistema en la teoría ordinaria de la relatividad” (Einstein, 1911, p. 380, cursivas en el original). Por lo tanto, el concepto clásico de inercia ya no era válido. A decir verdad, para los años diez la teoría de la relatividad especial no era considerada una teoría revolucionaria. Más bien era vista como una mejora a la teoría electromagnética, y no como un tema que obligara a los investigadores a modificar la estructura del espacio y del tiempo (Warwick, 1992). En este sentido podemos entender las palabras de Arthur Eddington, uno de los más versados estudiosos de la relatividad en Inglaterra:
El inesperado factor de 2 sugiere que la deflexión en la teoría de Einstein será el doble que la que resultaría de la *teoría electromagnética ordinaria* [...] la medición experimental de la deflexión proporcionará entonces un test crucial (1918, pp. 55-56, cursivas mías).

De esta cita podemos derivar la importante conclusión de que incluso para Eddington, cuya compenetración con la teoría de la relatividad está fuera de toda duda, la teoría especial no era una contribución revolucionaria a la teoría electromagnética. Por el contrario, la teoría de la relatividad general sí era considerada como una nueva teoría: todo un desafío a ley de gravitación de Newton, uno de los baluartes de la ciencia británica.

La expedición del eclipse

Antes de la expedición británica encargada de medir la predicción de Einstein, hubo otros intentos de hacer lo mismo. En otras palabras, “las expediciones británicas del eclipse no fueron novedosas en sus objetivos sino en sus resultados” (Earman y Glymour, 1980).

Los primeros esfuerzos fueron realizados por Edwin Freundlich, un discípulo del matemático alemán Félix Klein. Consistieron en el examen de placas fotográficas de estrellas, tomadas para otros fines, con el objeto de determinar si había alguna evidencia que soportara la conclusión de que la luz había sido desviada por el campo gravitacional del sol. Todos sus esfuerzos fueron en vano. Fue entonces cuando Freundlich hizo una solicitud al Observatorio de Argentina para organizar una expedición al Brasil y realizar allí las mediciones durante el eclipse de 1912. La empresa fracasó a causa del mal tiempo. La siguiente oportunidad se presentó con el eclipse del 21 de agosto de 1914. Nuevamente, Freundlich organizó una expedición, esta vez al sur de Rusia, pero en esta ocasión la guerra impidió su llegada al lugar de la medición (Earman y Glymour, 1980).

El 8 de junio de 1918 hubo otro eclipse, observable en el estado de Washington (Estados Unidos). Esta vez los astrónomos eran dos estadounidenses del Lick Observatory: William W. Campbell, quien había guiado la expedición a Rusia, y Heber D. Curtis, la persona más interesada en las predicciones de Einstein en dicho observatorio. Aunque el estado del tiempo no fue el mejor durante el eclipse, se tomaron varias placas. Sin embargo, los resultados nunca se publicaron por razones más bien oscuras. Al parecer, según los investigadores —en especial
Campbell—, los datos no eran concluyentes. En conclusión, todas las tentativas anteriores por medir la deflexión de la luz fueron ignoradas por los mismos astrónomos encargados de realizar las observaciones.

Dyson fue el primero en proponer la expedición (1917), tal vez influenciado por la pasión de Eddington por la teoría de la relatividad general. Para ese entonces, este último puede ser considerado como el portavoz oficial de la teoría en Gran Bretaña. En varias oportunidades escribió sobre ella, exponiendo las ideas básicas y tratando de hacerla comprensible a los físicos y al público en general. En 1918, entregó a la Physical Society de Londres el Report on the Relativity Theory of Gravitation, una exposición detallada de la teoría einsteiniana. Podemos entonces asegurar que la nueva teoría tenía en Eddington a un devoto admirador. Un recuento hecho por Paul A. M. Dirac, el famoso físico teórico británico, lo demuestra:

Estudiábamos ingeniería, y todo nuestro trabajo se basaba en Newton. Teníamos una fe absoluta en Newton, y ahora aprendíamos que Newton estaba equivocado, de una manera misteriosa [...]. Nuestros profesores no podían ayudarnos porque nadie en realidad tenía la información precisa necesaria para explicar las cosas con propiedad, excepto un hombre: Arthur Eddington (1982).

Ahora que sabemos algo acerca de quiénes eran Dyson y Eddington, volvamos atrás, a la preparación de la expedición británica. La fecha del eclipse fue calculada por Dyson en 1917: sería el 29 de mayo de 1919 y su sombra se proyectaría sobre el norte del Brasil y la costa oeste de África. Era, además, la oportunidad para realizar mediciones, puesto que la posición del Sol coincidía con un campo de estrellas muy brillantes y por consiguiente bien conocidas —las Hiadas—. Solo había
un problema: en 1918, cuando Dyson y Eddington se encontraban preparando las expediciones, Inglaterra aún estaba en guerra y el fin de la misma no parecía cercano.

Algunas de las circunstancias que gravitaron alrededor de la decisión de enviar a Eddington como jefe de una de las expediciones son interesantes. Eddington, devoto cuáquero, era objetor de conciencia y se negaba a participar o apoyar la guerra, aunque algunos de sus amigos, sir Joseph Larmor y el profesor H. P. Newall entre ellos, le sugirieron prudencia en sus declaraciones públicas. Sin embargo, Eddington puso en claro ante la Oficina del Interior (Home Office de Gran Bretaña, el equivalente al Ministerio del Interior) que nunca iría a la guerra. Por otra parte, luego de la muerte de Henry Moseley en la batalla de Gallipoli (1915), la comunidad científica no estaba dispuesta a perder a otro científico brillante. Según recuerda Chandrasekhar, el más famoso de los estudiantes de Eddington:

En cualquier caso, quizás debido a la intervención de Dyson —quien como Astrónomo Real tenía vínculos cercanos con el Almirantazgo—, Eddington fue dispensado con la estipulación expresa de que si la guerra acababa para mayo de 1919, entonces los dos astrónomos podría liderar la expedición con el propósito de verificar la predicción de Einstein (Chandrasekhar, 1983, p. 25).

Así fue, la guerra terminó en noviembre de 1918 y, en marzo de 1919, dos equipos se alistaron para tomar las placas y confirmar la predicción de Einstein. Andrew Crommelin y Charles Davidson se desplazaron a Sobral (Brasil). Eddington y Edwin Cottingham fueron a Príncipe, una isla en la costa oeste de África.

Hemos dicho que los equipos dejaron Inglaterra para confirmar la predicción de Einstein. No se trata de una licencia literaria ni de una interpretación alejada de lo que los investigadores, o al menos Eddington, perseguían. Chandrasekhar describió las expectativas de este en la siguiente anécdota:

Recuerdo a Dyson explicando todo esto a mi compañero Cottingham, quien aferró la idea principal: entre mayor el resultado, mucho más excitante. “¿Qué significaría si no obtenemos una deflexión doble?”. “En ese caso”, dijo Dyson, “Eddington enloquecerá, y Ud. tendrá que regresar solo a casa” (1983, p. 27).
Ante la evidente preferencia de Eddington por un resultado positivo hacia la predicción de Einstein se hace indispensable tratar de explicar las intenciones del astrónomo inglés. ¿Acaso Eddington siguió las reglas del método científico, que se defiende como fuente de neutralidad de la ciencia? O, desde una perspectiva menos idealista, ¿estaba convencido a priori, o por “prejuicios filosóficos”, de la teoría del espacio-tiempo de Einstein, y estaba decidido a hacer lo que fuera por probarla?

Lo que sabemos es que los datos de las observaciones fueron más bien dudosos. Mientras que los resultados de Sobral dieron 0,86”, es decir más cercano a la predicción “newtoniana”, los de Príncipe llegaron a un promedio de 1,98, por encima pero cercano a Einstein. Eddington decidió entonces considerar los datos de Sobral como sesgados, y los eliminó, aduciendo un error sistemático en el instrumento. El problema es que descartó que los datos de Príncipe pudieran adolecen del mismo problema. Uno podría preguntarse, con toda autoridad, ¿por qué no considerar los de Príncipe como sesgados? Más aún, para asegurar técnicamente que el efecto fuera producido por la gravitación solar y no por el instrumento mismo, se requería medir al menos seis estrellas; Eddington solo tenía cinco en sus placas.

No es de extrañar que los datos presentaran problemas. Para empezar, las placas de referencia, es decir, las que usarían para ver si en efecto había algún efecto de desplazamiento, habían sido tomadas en otra época del año y en otra latitud. Este es un asunto importante porque los cambios de temperatura pueden causar grandes distorsiones en los telescopios. Para este caso, lo ideal habría sido que el telescopio hubiese tomado las placas de prueba y las del eclipse en idénticas condiciones. De hecho, los instrumentos habían sido movidos a grandes distancias, lo que sumado a lo anterior aumentaba las probabilidades de que se hubiese desajustado. Más aún, los equipos no fueron cargados completos, sino que a Brasil y África se llevaron versiones mínimas, por asunto de espacio y peso. A eso debemos agregar que el efecto que se esperaba medir, cerca de un segundo de arco, equivale a observar y medir una moneda de cincuenta pesos a una distancia de dos kilómetros.

Como ya dijimos, Eddington era un gran defensor de la teoría de Einstein antes de zarpar hacia Príncipe. Pero había razones aún más poderosas para buscar una confirmación de su colega alemán. La motivación de la expedición era política, según lo ha mostrado el historiador Matthew Stanley, inspirada y modelada en sus raíces cuáqueras. La comunidad cuáquera es pacifista y se basa en un profundo sentimiento
internacionalista y, como ya se mencionó, antibelicista. Durante la Primera Guerra Mundial, numerosos “aventureros”, como se les llamó a los cuáqueros que se embarcaron en misiones de solidaridad, viajaron desde Gran Bretaña para ayudar a los damnificados alemanes. Sobra decir que dichas manifestaciones eran vistas con enorme antipatía y sospecha por parte de sus compatriotas. Eddington no viajó en estas “aventuras”, pero apoyó y fue cercano a las campañas. Más aún, la expedición de 1919 se puede ver bajo exactamente la misma lente: fue un esfuerzo por cerrar la brecha entre científicos aliados y alemanes. El viaje de un científico británico (pacifista) al otro lado del globo para comprobar la teoría de un científico alemán (también pacifista) sería un acto con un alto contenido simbólico para el futuro del internacionalismo científico, al menos así lo creyó Eddington (Stanley, 2003).

El anuncio

Es interesante notar que el anuncio se hizo en una reunión conjunta de las dos sociedades científicas más prestigiosas de Inglaterra. Fue pronunciado por el Astrónomo Real (Dyson) en una reunión conjunta de la Royal Astronomical Society y de la Royal Society, celebrada en Londres el 6 de noviembre de 1919. Especulando sobre ello, no resulta difícil imaginar los fuertes vínculos que subsistían entre los principales exponentes de las dos sociedades: Larmor, J. J. Thomson, Dyson y Eddington. Larmor era Major Professor en Cambridge en esa época, y junto con el profesor H. F. Newall jugaron un papel crucial al lograr una primera postergación cuando Eddington fue llamado por la Oficina del Interior a prestar servicio militar (Chandrasekhar, 1983, p. 25). Thomson también se hallaba en Cambridge y era presidente de la Royal Society. Aunque no era astrónomo, estaba familiarizado con las ideas de Einstein sobre mecánica cuántica y con la teoría de la relatividad especial. Por lo tanto, es justo suponer que estaba dispuesto a aprobar una confirmación de la teoría de Einstein. Si sabía o no acerca de sus implicaciones revolucionarias, poco importa, lo substancial es que estaba esperando el escenario ideal para anunciar, en sus propias palabras, “el más destacado evento científico desde el descubrimiento del planeta Neptuno” (en The Times, noviembre 7 de 1919, citado en Pais, 1994, p. 145). Las figuras de Dyson y Eddington ya han sido mencionadas antes, y no es necesario repetir aquí que ambos depositaban entera confianza en la teoría de Einstein.
Hay dos aspectos destacados relacionados con el anuncio, que considero esenciales para comprender la reacción del público. En primer lugar, Dyson mantuvo contacto con los dos equipos a través de telegramas y podía así informar a los miembros de la Royal Astronomical Society, prácticamente en tiempo real, sobre lo que sucedía en Sobral y en Príncipe. En otras palabras, cuando Dyson anunció los resultados de las expediciones, parte del público, los especialistas (astrónomos), ya había sido preparado para escuchar que ambas expediciones habían confirmado la predicción de Einstein, lo que se estaba haciendo era proclamando el triunfo de Einstein y Eddington. Era un acto “performativo”.

En segundo lugar, Dyson presentó el problema mostrando que solo había tres resultados posibles en las observaciones: no deflexión, deflexión newtoniana, o deflexión de Einstein. Esta “cuantización” de los posibles resultados convirtió a las observaciones en un verdadero “test crucial”. Además, toda esa retórica pretendía prohibir cualquier alternativa interpretativa o teórica para explicar el fenómeno. En realidad, Dyson no podía prevenir otras interpretaciones, como mostraremos más adelante. Sin embargo, el recurso retórico de restringir los resultados a tres era suficientemente poderoso para evitar que alguno pudiera abrir las puertas a otras lecturas de los datos. En la presentación de Dyson no había, en realidad, más que dos teorías posibles: los datos eran obligados a encajar en uno de sus valores esperados. Cualquier resultado a mitad de camino entre “Newton” y “Einstein”, o por fuera de estos, estaba prohibido.

Con estos antecedentes no pretendo sugerir que Dyson fuera capaz de presentar datos falsos. Lo que argumento es que estas circunstancias previas al anuncio sugerían que la reunión había sido preparada para poder reclamar un gran triunfo. Tal como lo describe Alfred North Whitehead:

Toda esa atmósfera de tenso interés era exactamente la del drama de los griegos […] La cualidad dramática estaba en la escena —la ceremonia tradicional—, y en el trasfondo —la imagen de Newton recordándonos que la mayor de las generalizaciones científicas estaba por sufrir su primera modificación, luego de más de dos siglos— (citado en Frank, 1953, p. 173).

La prensa

Hay un elemento adicional que apoya la conclusión de que la reunión fue pensada como un evento crucial: la reacción de la prensa. En la historia de la ciencia, nunca la prensa prestó tanta atención a una
conquista científica como en 1919. Tal vez el descubrimiento de los rayos X sea una excepción; sin embargo, en este último caso se trataba más de una nueva tecnología desarrollada por un científico que de un descubrimiento de la “ciencia pura”. En qué medida la prensa ingresó a la escena como una táctica desplegada por Dyson y Eddington para proclamar que una revolución estaba teniendo lugar en la ciencia, no es fácil de determinar. Sin embargo, alguien tuvo que alertar a los periodistas de que algo realmente importante iba a ocurrir. De otro modo, el hombre común (como lo es un periodista en asuntos científicos) no hubiera caído en cuenta de que estaba ocurriendo una “Revolución en la Ciencia”, como lo anunció el diario The Times en sus titulares del 7 de noviembre.

Solo para dar algunos ejemplos, reproduzcamos algunos de los titulares de The Times, de Londres, y de The New York Times:
REVOLUCIÓN EN LA CIENCIA
Una nueva teoría sobre el Universo
Derrocadas las ideas newtonianas
(The Times, noviembre 7 de 1919)

REVOLUCIÓN EN LA CIENCIA
Einstein versus Newton
Opiniones de físicos eminentes
(The Times, noviembre 8 de 1919)

ECLIPSE MOSTRÓ VARIACIONES EN LA GRAVEDAD
Desviación de la luz afecta a los principios de Newton

EL COMIENZO DE UNA ÉPOCA CUMBRE
Científico británico llama al descubrimiento “una de las más grandes conquistas de la humanidad”
(The New York Times, noviembre 9 de 1919)

LUCES CURVAS EN LOS CIELOS
Los hombres de ciencia están más o menos de acuerdo con los resultados de las observaciones del eclipse

TRIUNFA LA TEORÍA DE EINSTEIN
Las estrellas no están donde parecía o donde se calculaba que deberían estar, pero que nadie se preocupe

UN LIBRO SOLO PARA DOCE HOMBRES SABIOS
Nada más que doce podrán comprenderlo, dijo Einstein cuando sus osados editores se lo aceptaron
(The New York Times, noviembre 10 de 1919)

A partir de estos titulares es posible desentrañar lo que los periodistas transmitían al público. En primer lugar, había un conflicto entre dos teorías diferentes sobre el universo: la vieja y bien establecida teoría newtoniana, y la nueva y revolucionaria teoría de la relatividad, propuesta por un físico “germano-suizo” llamado Albert Einstein. En segundo lugar, las observaciones del eclipse de 1919 confirmaban la teoría de Einstein, aunque The Times reconocía que aún había lugar para el debate entre los científicos. En tercer lugar, la nueva teoría y, particularmente, su creador parecían haberse ganado el derecho de atravesar las puertas de la ciencia. El *performance* había sido demasiado espectacular para dejarlos afuera. Esas puertas, de hecho, las estaba abriendo la ortodoxia más prestigiosa de un país enemigo; no hacía falta más. Pero, ¿podría una teoría incomprensible entrar al cuerpo de la ciencia?, ¿cuál actor había entrado, Einstein o su teoría? Esa es la pregunta de fondo de esta historia.

El mito de la incomprensibilidad y la ausencia de una tecnología teórica

La dificultad de entender la teoría del genio alemán es interesante, no solo por el mito de la incomprensibilidad en sí mismo sino porque puede decírnos cosas acerca de lo que los científicos pensaban sobre la nueva teoría y, ante todo, sobre su potencial. Echando un vistazo superficial, uno estaría tentado a decir que el mito fue creado por el sensacionalismo desplegado por los periodistas. Por el contrario, el mito de la incomprensibilidad fue generado por la reacción de algunos de los mismos científicos que le dieron la bienvenida a la nueva teoría. Como ha notado Chandrasekhar, “el mito, de hecho, tuvo su origen en ese mismo encuentro [de 1919]” (1983, p. 29).

Al final del informe rendido por Dyson y Eddington, J. J. Thomson, jefe de la reunión conjunta, dijo:

4 Para un análisis detallado de la reacción de la prensa, ver Crelinsten, 1980a y b; también Pais, 1994, pp. 145-150.
Es cierto que la nueva teoría requería habilidades particulares en una rama de la matemática que no había aparecido antes en otros campos de la física. Para personas como Thomson, y debería decir que para la gran mayoría de los científicos presentes en la reunión y quizás alrededor del mundo entero, la teoría de la relatividad general era una completa novedad. Una teoría es siempre incomprendible para aquellos que no están familiarizados con sus principios, métodos y técnicas matemáticas. En el caso de esta nueva teoría, que implicaba una nueva estructura matemática, no había ninguna *tecnología teórica* correspondiente desarrollada por la comunidad científica. En consecuencia, dado que los científicos no deben ser considerados como meros receptores pasivos ante la aparición de una nueva y novedosa teoría, sino como físicos trabajadores que, por alguna razón, identificaban activamente el trabajo de un entonces poco conocido físico como relevante para su trabajo investigativo (Warwick, 1992, p. 629, cursivas en el original),

y dado que la teoría de invariantes y el cálculo de variaciones no eran parte de la *tecnología teórica* de prácticamente ningún físico, la primera reacción fue juzgarla como incomprensible.

Ya dijimos que las derivaciones de la deflexión de la luz calculadas por Einstein, tanto la de 1911 como la de 1916, contradecían un postulado fundamental de la relatividad: la invariancia de la velocidad de la luz. Es interesante notar que este “error” no fue señalado por nadie en la época. Una vez más, la razón era la ausencia de una *tecnología teórica* que permitiera a los físicos caer en cuenta de que la predicción de Einstein no era coherente con su propia teoría. De ahí que el estigma de incomprensibilidad que los periodistas reportaron en sus artículos era consecuencia de la reacción de los científicos ante una teoría que involucraba herramientas que estaban más allá de sus investigaciones.

En 1923, C. A. Chant, de la Universidad de Toronto, escribió a Curtis: “¿quién decidirá, si los doctores están en desacuerdo? Casi a diario me llaman para que explique Einstein, y tengo que mostrar mi ignoran-

5 Andrew Warwick define *tecnología teórica* como aquellas “piezas de trabajo teórico que no constituyen una teoría general, pero que son usadas para resolver problemas particulares y que son asumidas como correctas por los miembros de una comunidad local” (1992, p. 633). Dicho de otro modo, se trata de un tipo de “conocimiento tácito”, como el sugerido años atrás por John Ziman, aunque Warwick lo traduce a una variable histórico-filosófica.
cia sobre la forma en que se obtienen los resultados” (citado en Earman y Glymour, 1980, p. 57). De esta breve afirmación es posible concluir dos cosas importantes: primero, la reacción de la prensa obligó a los físicos a “explicar Einstein”. El punto interesante no es la incapacidad de Chant para explicar la relatividad, sino que él (además de muchos otros físicos) eran llamados “a diario” a hacerlo. Segundo, aunque Chant fue el astrónomo que dirigió la expedición canadiense encargada de medir la deflexión en 1922, era incapaz de dar una explicación de la teoría de Einstein.

La reacción del público
Se supone que el establecimiento de una teoría tiene lugar en el seno de una comunidad de especialistas. Por tanto, el “establecimiento”, en un sentido estándar, quiere decir la estabilización de un programa de investigación cuyo fin es proponer y resolver problemas de la teoría que ha sido “establecida”. Sin embargo, prefiero ampliar el término de tal manera que no se restrinja a un fenómeno social de la comunidad particular de especialistas científicos. Este es el caso de la teoría de la relatividad general: no es posible restringir el significado de su “establecimiento” por dos razones. Primero, no se produjo un establecimiento en el sentido tradicional del término. Segundo, aunque la consecuencia de la expedición británica no era el desarrollo de una nueva teoría por un grupo de físicos especializados interesados en explorar todos los posibles desafíos ofrecidos por aquella, la relatividad se convirtió en un término común después de 1919, y Einstein en una figura pública de considerable importancia; las puertas se habían abierto a la relatividad, pero pocos la invitaron a pasar y ser parte activa de sus investigaciones.

A pesar de que la relatividad no fue apreciada en toda su dimensión, al menos como lo fue más adelante —en los años sesenta—, la palabra entró a formar parte del vocabulario común, y Einstein se convirtió en símbolo del “hombre sabio” que entendía el funcionamiento del universo. En este sentido, es posible decir que, después de 1919, la nueva teoría y la nueva figura se establecieron en el medio intelectual de los mayores centros culturales del mundo. Si se trató de una reinterpretación de las ideas de Einstein o de una incomprensión de las mismas, poco importa. Lo que quiero enfatizar aquí es que, aunque la teoría de la relatividad general no estaba desarrollada desde el punto de vista matemático y físico en los años veinte y treinta, hubo mucha discusión y polémica sobre ella en términos filosóficos, políticos o de
sentido común. En consecuencia, desde 1919 la teoría de la relatividad general, o la interpretación personal que cada quien tenía de ella, entró a formar parte del bagaje cultural del público.

La manera en que estas ideas fueron interpretadas dependía del tipo de audiencia. Para examinar las diferentes interpretaciones dadas a la confirmación de la curvatura de la luz, dividiré al público en tres grandes grupos: los intelectuales, los científicos y los especialistas. Esta clasificación depende de la cultura particular y profesional de cada individuo.

Los intelectuales

Por intelectuales entiendo aquí todos aquellos académicos que no fueron entrenados en física pero que tuvieron contacto con la teoría de Einstein y el descubrimiento de Eddington, a través de fuentes secundarias como periódicos y libros no técnicos. En este grupo encontramos a profesionales de cualquier disciplina diferente a la física: artistas, filósofos, escritores, etc. Dada la heterogeneidad y las fronteras internas borrosas que subsisten dentro de este grupo, no es posible analizar en detalle de qué forma cada uno de los subgrupos interpretó los hechos de 1919, pero sí quiero dar algunos ejemplos sobre la reacción del subgrupo más influyente: los filósofos.\(^6\) Llamaré la atención primero sobre el hecho de que la relatividad se convirtió en un tema de interés para algunos de los más reputados filósofos de la época. Entre los que escribieron sobre ella podemos encontrar a Bertrand Russell, Karl Popper, Alfred N. Whitehead y Henri Bergson.

En su famoso libro *Conjeturas y refutaciones*, obra dedicada a analizar si una teoría puede ser confirmada o refutada, Popper declara abiertamente:

> Todos nosotros –el pequeño círculo de estudiantes al que pertenecí– estuvimos intrigados con el resultado de las observaciones del eclipse realizadas por Eddington, que en 1919 aportaron la primera confirmación importante de la teoría de la gravitación de Einstein. Para nosotros fue una gran experiencia, y en lo personal dejó una influencia perdurable en mi desarrollo intelectual (1969, p. 34).

\(^6\) Los considero como los más influyentes en el sentido de que su autoridad en el medio intelectual los convertía en una especie de traductores del significado real de la relatividad para el público en general.
Whitehead, por su parte, describió en los mismos términos triunfa-les el resultado de 1919:

Fue buena suerte el que estuviera presente en la reunión de la Royal Society de Londres cuando el Astrónomo Real de Inglaterra anunció que las placas fotográficas del famoso eclipse, medidas por sus colegas del Observatorio de Greenwich, habían verificado la predicción de Einstein de que los rayos de luz se torcían al pasar cerca del Sol (citado en Frank, 1953, p. 173).

Bertrand Russell\(^7\) publicó, en 1925, un libro llamado *ABC de la relatividad*. Originalmente, los ensayos aparecieron en las páginas de un periódico británico en respuesta al hecho de que “todo mundo sabe que Einstein hizo algo asombroso, pero pocos saben exactamente qué fue lo que hizo” (Russell, 1971, p. 9). A pesar de que Russell mostró consideración hacia la nueva teoría, fue mucho más discreto que Popper en su apreciación de la verificación de la ley de la gravitación de Einstein. Reconociendo que las observaciones debían interpretarse como una buena razón para aceptar la teoría de Einstein, aseveraba honestamente que los resultados no eran universalmente aceptados:

> Esta [la confirmación de la predicción de Einstein por las expediciones británicas] causó gran excitación en su época. Evidencia a favor fue encontrada en varios eclipses seguidos, y desde entonces la predicción de Einstein es aceptada en general. Sin embargo, hay varias fuentes posibles de error en las observaciones, y algunos astrónomos dudan de que los resultados sean concluyentes (1971, p. 83).

En resumen, aunque este grupo (por definición) no estaba al tan-to de los detalles técnicos de la teoría de la relatividad general, para muchos de sus integrantes la relatividad había sido confirmada por las observaciones de 1919. Al menos para sus lectores esa era la conclusión de sus apreciaciones. Si para estos pensadores la evidencia no era concluyente desde el punto de vista de los especialistas (Russell) o desde un punto de vista epistemológico (Popper), para los lectores ese defecto era invisible. Oficialmente la teoría de la gravitación de Einstein había sido confirmada por Eddington.

\(^7\) Siendo Russell un matemático, debería pertenecer al grupo de los científicos. Lo he considerado aquí como filósofo debido al tipo de exposición que realizó de la relatividad, siempre desde un punto de vista filosófico y no desde una perspectiva científica formal. Por esta razón lo he puesto en el grupo de los “intelectuales”.
Los científicos-legos

A este grupo pertenecen todos aquellos individuos que desarrollan una actividad en ciencias pero que no fueron entrenados en materias de astronomía o de relatividad general. Por lo tanto, representa aquí a la comunidad de físicos que tuvo contacto o dio opiniones públicas sobre la nueva teoría como consecuencia del gran anuncio de 1919. El mejor ejemplo lo constituye J. J. Thomson, y su opinión citada anteriormente se puede considerar típica: aunque la teoría fuera incomprensible, debía entrar al campo científico.

Sir Oliver Lodge, quien se hizo famoso por los fenómenos parapsicológicos, fue un defensor declarado de la teoría del éter. Como tal, esperaba “un resultado igual a la mitad del valor predicho por Einstein” (Crelinsten, 1980b, p. 187). Sin embargo, luego de la sesión, consideró las observaciones de Eddington como un “triunfo espectacular” de la teoría de Einstein (Frank, 1953, p. 174).

No todas las reacciones fueron favorables a la teoría de Einstein. Larmor, en Inglaterra, y Millikan, en los Estados Unidos, opusieron resistencia. En el caso de Larmor, sus razones se basaban mayormente en sus propias opiniones sobre la teoría de la relatividad especial. Como ha mostrado Warwick, Larmor no reconocía el segundo postulado de la relatividad (el principio de la constancia de la velocidad de la luz) y aplicó la teoría de Einstein de una manera conveniente para resolver problemas de su propio campo de investigación (Warwick, 1992). Millikan, por su parte, tenía su propia interpretación de la relatividad. En cualquier caso, parece claro que este, lo mismo que Larmor, no podía distinguir muy bien la diferencia entre la teoría especial y la teoría general de la relatividad. Así que, armados de su propia interpretación de la teoría especial, de las transformaciones de Lorentz y del éter, resultaba difícil que admitieran una teoría generalizada.

En 1923, Norman Campbell publicó en Cambridge un “Suplemento” a la teoría eléctrica moderna. Puesto que el autor, como especialista que era, conocía de la teoría de la relatividad general, debería clasificarlo en el tercer grupo. No lo hago, pues el texto al que quiero hacer referencia tenía como característica importante el estar dirigido al “físico promedio —el hombre de laboratorio, como me aventuro a llamarlo— [que] aún ignora el trabajo de Einstein y no está muy interesado en este” (1923, Prefacio). Parece que, el autor expresaba su simpatía por la teoría de la relatividad en tonos mayores. Pero en el prefacio hay una especie de declaración de neutralidad acerca de la consideración
sobre si la teoría era o no ex suppositione, es decir simplemente una hipótesis sin pretensión de verdad (imposible no recordar el “Prefacio” de Osiander al De revolutionibus de Copérnico):

El dogmatismo es la peor falta que este libro puede cometer, y aunque pido excusas por algunos excesos del pasado, estoy resuelto a no ofender de nuevo. Aquí me ocupo solo de explicar lo que es la teoría de la relatividad, y no de decidir si es o no verdadera (Campbell, 1923, Prefacio).

Por lo tanto, dentro de la comunidad científica no especializada las observaciones del eclipse parecían verificar la nueva teoría. Sin embargo, la confianza no era de la misma magnitud que la de los filósofos; por esto demandaban prudencia al proclamar las ideas de Einstein.

Los especialistas

Estos eran astrónomos profesionales o personas que tenían que ver con la teoría de Einstein incluso antes de 1919. No era un grupo muy numeroso, y lo podemos dividir en dos subgrupos: los relativistas (quienes apoyaban la teoría de la relatividad general) y los antirrelativistas (quienes se oponían a tal teoría).

A la cabeza de los relativistas estaba, por supuesto, Eddington. Obviamente, estaba convencido del nuevo efecto, y más interesante aún es su propia confesión acerca de su objetividad en el momento de analizar las placas:

Los resultados de esta placa daban un desplazamiento definido, en buena concordancia con la teoría de Einstein y en desacuerdo con la predicción newtoniana. Aunque el material era escaso comparado con el que se esperaba, el autor (quien no estaba, hay que admitirlo, libre de sesgos) lo consideró convincente (1973, p. 116).

En efecto, tal vez nadie estaba tan convencido de la verificación de la teoría de Einstein como el propio Eddington y, con seguridad, también Dyson tenía suficiente confianza en aquellas ideas. Sin embargo, este no era el caso de la comunidad profesional de astrónomos, quieres, por un lado, eran conscientes de las dificultades que acarreaba la observación de un eclipse y, por el otro, se mostraban bastante escépticos acerca de la refutación de la sólida teoría de la gravitación de Newton. Su reacción fue proponer interpretaciones alternas introduciendo nuevas hipótesis acerca de lo que ocurriría en las vecindad-
des del Sol, en los lentes de los telescopios o en las placas. Para ser más precisos, estas explicaciones ad hoc eran un perfecto ejemplo de la adición de una cláusula de *ceteris paribus* y ajustes kuhnianos. Surgieron así las siguientes propuestas alternativas: difracción en la atmósfera solar y en la terrestre, distorsión de las emulsiones fotográficas, efectos fotográficos y distorsión introducida por el sistema óptico.

La más importante entre ellas era la hipótesis acerca de la difracción óptica producida en el borde del disco solar. La explicación del efecto fue presentada por H. F. Newall en 1919, aunque previamente había sido presentada por Jonckheere y Lindeman (en 1918) (von Klüber, 1960). La discusión continuó hasta los años treinta, cuando fue reformulada y llamada “efecto Courvoisier” (Courvoisier, citado en von Klüber, 1960). Si bien para la comunidad de antirrelativistas constituía el mejor argumento alternativo, se mostró que dicho efecto era desprestandiable (von Klüber, 1960). Además, el hecho de que hubiera sido propuesto por físicos desconocidos era importante. Era claro que, después de 1919, Einstein no podía ser refutado por un físico desconocido. En todo caso, en la comunidad de especialistas el acuerdo no era unánime (von Klüber, 1960).

Los demás efectos fueron analizados por otros astrónomos. Para dar una idea del peso relativo de estas explicaciones alternativas, mencionemos el número de artículos relacionados con ellos: difracción en la atmósfera solar, 28 artículos (1918-1932); distorsión fotográfica, 4 artículos (1920-1956); efectos fotométricos, 3 artículos (1920); distorsiones ópticas, 1 artículo (1921).8

La discusión sobre la deflexión de la luz continuó a lo largo de todo el siglo. A pesar de haber sido presentada al público como una confirmación de la teoría de la gravitación de Einstein, el escepticismo sobre si estas mediciones constituían una evidencia fuerte para la teoría de la relatividad general aumentó después de 1919. Aunque Dyson y Eddington habían “cuantizado” los posibles resultados de las mediciones y seleccionado cuidadosamente los datos, la concordancia entre la predicción de Einstein y las mediciones astronómicas nunca volvió a

8 Datos tomados de von Klüber, 1960, pp. 49-50. Su artículo es un recuento excelente de las diferentes expediciones encargadas de medir la predicción de Einstein. Aparte de ser una fuente histórica de primera, también explica de una forma muy clara cuáles son las dificultades técnicas más importantes para los astrónomos en este tipo de mediciones.
ajustarse tan bien en observaciones posteriores.\(^9\) Si analizamos los diagramas de las diferentes expediciones encargadas de medir el “efecto Einstein” posteriores a la expedición de 1919 (von Klüber, 1960), encontraremos tres cosas notables: primero, las estrellas consideradas por Eddington fueron pocas; segundo, el acuerdo con la ley hiperbólica de Einstein nunca fue tan claro como en el caso de Eddington (en los otros diagramas el efecto parece más bien aleatorio); tercero, las “placas de control” que tomó Eddington en los días cercanos al evento son pobres, debido a las condiciones climáticas, y en consecuencia no podía tener una buena estimación acerca del problema más grave en este tipo de mediciones: la distorsión de los valores de escala. Todas estas circunstancias arrojaron serias dudas sobre la proclamación de 1919, dado que la confirmación de la predicción de Einstein podía ser fruto más del entusiasmo de Eddington que de un análisis imparcial frente a los datos tomados en Príncipe y Sobral.

Aún astrónomos y físicos que con seguridad pueden considerarse como relativistas, expresaron su prevención acerca de las observaciones sobre la curvatura de la luz. Von Klüber, por ejemplo, luego de hacer un análisis comparativo de las diferentes expediciones, concluye:

> Sin excepción, todas las observaciones indican claramente que la deflexión de la luz del tipo esperado existe obviamente en las cercanías del Sol. Pero las observaciones no son suficientes para mostrar de manera decisiva si la deflexión obedece a la ley hiperbólica predicha por la teoría de la relatividad general (1960, p. 73).

En 1942, Peter Gabriel Bergmann, asistente de Einstein en Princeton y uno de los fervientes seguidores de su teoría, publicó un libro sobre relatividad. Refiriéndose a la deflexión de la luz en estas pruebas, dice: “el acuerdo cuantitativo entre los efectos predichos y los observados no se puede considerar como significativo” (Bergman, 1942, p. 221).

\(^9\) Incluso el acuerdo entre teoría y observación en el reporte de Dyson y Eddington es cuestionable. Los resultados finales fueron 1,98”±0,12” en la expedición de Sobral, y 1,6”±0,30” en la expedición de Príncipe. Earman y Glymour anotan: “La conclusión natural de estos resultados es que en definitiva la gravedad afecta a la luz, y que la deflexión gravitacional en el borde del disco solar está entre un poco menos de 0,87” y un poco más de 2,0”. (Earman y Glymour, 1980, traducción mía).
En consecuencia, más allá de Eddington, Dyson y los viejos relativistas, es difícil encontrar una amplia aceptación de los resultados y de las interpretaciones de la expedición británica. Con el tiempo, más que las explicaciones alternativas, fueron las dificultades técnicas de las mediciones las que obligaron al público de especialistas a expresar sus reservas sobre si el efecto era o no explicado por la teoría de la relatividad general.

¿Acaso Eddington seleccionó las placas eliminando de forma deliberada los resultados que no coincidían con la teoría de Einstein? ¿Pudo su espíritu pacifista, que creía que el eclipse ayudaría a curar las heridas de la guerra, pasar por encima de su objetividad científica? Sobre este tema, la discusión entre historiadores de la ciencia sigue encendida. Mientras von Klüber (1960) y Earman y Glymour (1980) han lanzado un manto de duda sobre la neutralidad de Eddington,10 Stanley insinúa que este siguió el procedimiento que cualquier otro astrónomo habría seguido en ese momento. Ello explicaría, además, la aceptación del resultado sin mayores resistencias.11

Se abren las puertas a la figura pública

He argumentado que, a pesar de que la teoría de la relatividad general no era una teoría establecida en la comunidad científica, la relatividad (incluso la palabra) entró a formar parte del bagaje cultural de los centros intelectuales más importantes. Pero si la teoría de la relatividad no estaba desarrollada, ¿por qué era tan importante para el público? La respuesta hay que buscarla en la figura de Albert Einstein.

Consecuencia inmediata de la extraordinaria publicidad que los periódicos dieron a la “confirmación de la revolucionaria teoría” es el surgimiento de Einstein como figura pública e ícono del científico del siglo XX. En este sentido, como afirma el físico Abraham Pais, “es evidente que Einstein, creador de una parte de la mejor ciencia de todos los tiempos, es él mismo una creación de los medios, en cuanto es y se mantiene como figura pública” (1994, p. 38). Poco importa que antes de 1919 Einstein fuera una persona completamente desconocida. Por el contrario, desde 1911 y con su aparición en los famosos congresos

Solvay, era claro que se trataba de uno de los más brillantes teóricos alemanes, a pesar de que su fama aún se restringía al ámbito de la comunidad de los físicos teóricos, de por sí bastante marginal dentro de los físicos de la primera mitad del siglo, y en especial dentro del contexto científico alemán. En otras palabras, el mito de Albert Einstein comenzó en 1919.

A partir de ese año, Einstein fue invitado alrededor del mundo para hablar sobre todos los temas: sionismo, filosofía, política, ética, libertad intelectual, pacifismo y armas nucleares. Para dar una idea del auge de Einstein como figura de prestigio mundial, hagamos un resumen de sus viajes entre 1921 y 1925.

1921: en compañía de Elsa (su segunda esposa) y de Chaim Weizmann (jefe de la Organización Sionista Mundial), Einstein viajó a los Estados Unidos. Su principal objetivo era “buscar ayuda financiera para la causa sionista” (Pais, 1994, p. 154). En esta visita, Einstein fue invitado a la Casa Blanca por el presidente Harding. El 8 de mayo llegó a Liverpool y de allí tomó rumbo a Manchester. Recibió un grado honorario y un día antes se entrevistó con el primer ministro británico, Lloyd George, y con el arzobispo de Canterbury. La prensa lo siguió a lo largo de toda su visita en los Estados Unidos y en el Reino Unido.

1923: Einstein visita Palestina y luego España (Barcelona, Madrid, Toledo, El Escorial y Zaragoza). En España es recibido por el Rey y por la Reina Madre.

12 Einstein fue candidato al Premio Nobel ese año. Volvió a serlo todos los años siguientes hasta que, en 1922, aquel le fue finalmente concedido.

13 En una carta a Solovine, Einstein describe la situación así: “aquí nuestras vidas se mantienen con los nervios de punta desde el penoso asesinato de Rathenau. Siempre estoy alerta; he cancelado mis conferencias y oficialmente estoy ausente. El antisemitismo es fuerte” (Einstein, 1993, p. 57).

14 Sobre Einstein y España, ver Glick, 2005.
1925: Realiza su viaje más largo a Suramérica. Allí visita Buenos Aires, Montevideo y Río de Janeiro, en donde pasó una semana. Dictó conferencias en francés y preparó un artículo que fue publicado en español.15

Desde 1919 su vida pública nunca se detuvo. Fue consultado por reporteros así como por importantes figuras políticas y organizaciones como la Liga de las Naciones. Firmó varios manifiestos (el primero en 1919, contra las ejecuciones políticas en Hungría), y su nombre fue considerado como garantía de una causa justa y seria. Se convirtió así en vedette. Todos querían demostrar que se habían acercado al genio de Einstein. Todo mundo afirmó haber hablado con él. Si habían entendido o no las palabras de Einstein, era una cuestión sin importancia, lo importante era la pantomima. Como toda vedette, Einstein era un hombre solo rodeado de una multitud que quería una foto con él. Con ironía, afirmó al diario The New York Times: “¿cómo es que nadie me entiende pero todos me quieren?” (citado en Pais, 1994, p. 55).

Así, si se trata de acercarse a las consecuencias reales del gran boom de las expediciones británicas de 1919, la conclusión es que estas convirtieron a Einstein en un oráculo, aunque no ocurrió lo mismo con sus ideas científicas, al menos durante más de cuarenta años. Tal vez el tema menos explorado por su público fue la teoría de la relatividad: el fantasma de la incomprensión evitó que Einstein la explicara sin tener el prejuicio de que iba a ser imposible de entender. Por lo tanto, para el público era mejor que hablara de cualquier otra cosa diferente a sus extrañas teorías sobre el universo. A fin de cuentas, “solo doce hombres eran capaces de entenderlas”.

El establecimiento de la teoría de la relatividad general

Refiriéndose a la teoría de la relatividad general, el astrofísico Subrahmanyan Chandrasekhar, a quien ya mencionamos en relación con Eddington, observó que “muchos de los descubrimientos de los se-senta y de los setenta pudieron haberse dado durante los años veinte y treinta” (Chandrasekhar, 1983, p. 30). Recalca que la razón de que eso no pasara fue el mito de incomprensión que rodeó la teoría en cuestión. Lo que yo argumento es que la dificultad de una teoría no es nunca una razón para frenar su desarrollo. La supuesta dificultad de la teoría de la relatividad general pudo ser evitada si hubiera habido

una escuela capaz de enseñar las nuevas herramientas: el cálculo de variaciones, la geometría riemanniana, etc. Así que una cuestión más crucial es por qué una escuela de este tipo nunca apareció en los años veinte y treinta.

Quienes realizaron trabajos en relatividad luego de 1919, proponiendo por ejemplo nuevos modelos cosmológicos, fueron aquellos que antes ya trabajaban en la materia: De Sitter, Eddington, Georges E. Lemaître y Alexander A. Friedmann. La nueva generación no se unió a este grupo con el entusiasmo que uno esperaría. Ni Chandrasekhar ni Dirac, para poner dos ejemplos, trabajaron seriamente en la teoría. ¿Por qué? ¿Acaso Eddington, la prensa y la fama de Einstein no eran suficientes para generar interés dentro de la comunidad científica?

Hay dos razones para explicar la falta de interés en el desarrollo de la teoría de la relatividad general. Por un lado, el efecto de curvatura de la luz era la primera pero también la última de las predicciones de la teoría de Einstein. En abierto contraste con la espectroscopia y con los resultados de la astrofísica, las observaciones de Eddington no eran una nueva herramienta que pudiera ser usada para probar otras predicciones empíricas. Se trata solo de una única predicción que había sido "confirmada". Por tanto, la teoría no ofrecía nuevos desafíos científicos a los astrónomos y, en consecuencia, era estéril desde el punto de vista de los físicos, para quienes una teoría era relevante solo si, al menos en principio, tenía algún chance de ser contrastada con observaciones. Einstein reconoció esta situación con nostalgia:

Es cierto que la teoría de la relatividad, particularmente la teoría general, ha desempeñado un papel más bien modesto hasta ahora en la correlación de hechos empíricos, y ha contribuido poco a la física atómica y a nuestro entendimiento de los fenómenos cuánticos (Bergmann, 1942).

Este argumento explica por qué incluso los discípulos de Eddington prefirieron trabajar en otros campos distintos a la teoría de la relatividad general: tal vez fuera una bella teoría, pero había poco campo en ella para los experimentos. Una teoría con esa deficiencia está condenada a morir, o a lo sumo a permanecer en un estado de

16 También estaba, es cierto, el efecto de corrimiento al rojo debido a la dilatación del tiempo en un campo gravitacional, pero su medición era considerada, y lo es todavía, muy difícil.
comía hasta que algo ocurra. De nuevo, las puertas estaban abiertas, pero adentro, no había cabos con los cuáles tejer la red necesaria para continuar enlazando aliados (Latour, 1992).

La otra razón tiene que ver con su dificultad matemática intrínseca. El mismo Einstein trató de formular presentaciones accesibles de su teoría. Aunque aún hoy día los estudiantes deben aprender técnicas matemáticas especiales (como la topología) para resolver problemas de relatividad general, pienso que el punto no es la dificultad en sí misma sino la creación de un conjunto de tecnologías teóricas que permita a los estudiantes manipular los aspectos más interesantes de la teoría. Einstein no era un matemático profundo (como sí lo era Marcel Grossman, colaborador de Einstein) y por tanto era poco probable que fuera la persona más indicada para reformular el andamiaje matemático de su teoría.

Además, Einstein nunca tuvo estudiantes a su alrededor. Desde su primera colaboración, en los años diez, prefirió trabajar con físicos profesionales (Pyenson, 1985). Cuando regresó a Berlín luego de su gira mundial, el ambiente era hostil para crear una escuela alrededor suyo; especialmente luego de su simpatía pública por la causa sionista. En 1933, cuando volvió a los Estados Unidos, su tranquilidad estaba marcada por la ausencia de estudiantes. El Instituto de Estudios Avanzados de Princeton, físicamente cercano pero intelectualmente aislado de la Universidad, le ofreció la posibilidad de trabajar solo; un “privilegio” flaco, a la luz de una teoría que entró en letargo por falta de nuevos actores humanos (estudiantes) y no humanos (nuevos objetos de estudio). Después de 1925 —cuando propuso la denominada “condensación de Bose-Einstein”— su trabajo nunca volvió a tener el mismo impacto.

Toda esta situación cambió en los años sesenta, cuando las circunstancias fueron otras: los radioastrónomos detectaron nuevos y extraños objetos en el cielo que requerían de nuevos mecanismos para explicar su comportamiento: los cuásares. En 1965, dos físicos (Robert Wilson y Arno Penzias) reportaron la detección de la radiación isotrópica predicha por Gamow, Alfer y Bethe en 1948. Esta era el sello distintivo de la teoría del Big Bang (Episodio II). Mientras tanto, Roger Penrose y Kip Thorne desarrollaron nuevas maneras de abordar matemáticamente la teoría de la relatividad general. Por tanto, con los nuevos desafíos empíricos y el desarrollo de una tecnología teórica, la teoría de la relatividad general logró salir de su estado de coma. Hasta nuestros días, nuevos desarrollos han tenido lugar. Ciertamente las teorías de Einstein no son fáciles de entender incluso ahora, setenta...
años más tarde, pero ahora existe una escuela que entrena a los físicos en problemas canónicos y les brinda las herramientas necesarias para explorar la teoría.

Conclusión

Luego de la expedición británica de 1919, encargada de medir la deflexión de la luz en el borde del disco solar, la teoría de la relatividad general no se consolidó en el sentido estándar de la palabra. A pesar de esto, gracias a la gran publicidad dada a las reuniones conjuntas de las reales sociedades británicas y al extraordinario cubrimiento de la prensa, desde finales del decenio se produjo un interés creciente en el significado de la teoría, y especialmente en Einstein como figura pública. Este interés no se restringió a los físicos especialistas, sino que se extendió al público en general. En ese sentido, la teoría de la relatividad se estableció en el medio intelectual de la época. Los aspectos técnicos de la teoría, sin embargo, no entraron a formar parte del bagaje científico de los físicos sino hasta los años sesenta.

En la historia de la expedición de 1919, las motivaciones religiosas de su líder, Eddington, son centrales. El viaje a fotografiar el eclipse convierte al astrónomo británico en un “aventurero”, similar a sus correligionarios que pasaron las líneas enemigas para ayudar a las víctimas de las bombas británicas. La cuestión sobre si fue esa una razón para manipular los datos y favorecer la interpretación de Einstein sigue abierta. En todo caso Eddington actuó como pregonero de la teoría, invitando a los físicos a traspasar el umbral relativista.

La falta de una tecnología teórica explica el mito de la incomprendibilidad que caracterizó a la teoría. Ese mito comenzó en la reunión conjunta que planeó las expediciones del eclipse, y fue obra de científicos que no tocaron ningún aspecto matemático o conceptual de la teoría de la relatividad. Los periódicos hicieron eco del clamor de estos científicos, quizás de una manera exagerada. Pero no fueron los periodistas quienes inventaron que la teoría de la relatividad era incomprendible y, por ende, no fueron ellos quienes le cerraron las puertas a su desarrollo.

Hay dos razones que pueden explicar por qué la teoría de la relatividad no se desarrolló en los decenios de los veinte y los treinta, posteriores a la expedición. Por un lado, no existía una tecnología teórica que permitiera entender las nuevas técnicas matemáticas de la teoría; y por el otro, la teoría no ofrecía nuevas predicciones distintas a la curvatura de la luz y al corrimiento al rojo de la luz emitida por un objeto.
masivo, así que la teoría tuvo que esperar hasta los años sesenta para encontrar nuevos desafíos empíricos que llamaran la atención de los físicos y para que se desarrollaran instrumentos de traducción matemática como los provenientes de la física de partículas. Einstein ingresó al imaginario popular de la ciencia en 1919. Pero eso no equivalió al ingreso de su teoría de la relatividad general como parte de las herramientas utilizadas por los físicos. Aunque aceptada, la teoría no entró en uso sino hasta medio siglo después en los currículos de la enseñanza de la física. Durante ese tiempo se mantuvo, donde se enseñaba, como una curiosidad matemática. No es suficiente que una teoría se “acepte” como cierta para que atraviese las puertas de la ciencia: puede que estas estén abiertas, pero, sin una red, tras ellas no se percibe nada interesante.

En este sentido, el imperialismo intelectual de la física de altas energías, que colonizó el campo de la cosmología, fue instrumental para repoblar de actores la historia de la teoría de la relatividad general y volverla a engarzar a la red. De un caso relacionado con esta expansión nos ocuparemos en el siguiente episodio.
Episodio II

Las puertas de la creación

En el episodio anterior vimos que a partir de 1919 la cosmología entró a hacer parte del campo científico, así su desarrollo se demorara varias décadas en cuajar. Más que la teoría misma, a partir de la expedición de Eddington se sembró la idea de que era posible investigar el origen y evolución del universo. En este episodio veremos el forcejeo entre teorías cosmológicas que competían cuando la cosmología empezó a ser practicada.

La idea actual de que el universo tuvo su origen a partir de un punto que se fue expandiendo dando origen a los planetas, las galaxias, los cúmulos y las demás estructuras celestes y terrestres, en suma al espacio, la materia y el tiempo, es más reciente de lo que suele creerse, y no surgió exenta de modelos alternativos. La teoría del Big Bang (en español, la Gran Explosión), como se la conoce popularmente, entró al campo científico en la mitad del siglo XX, tuvo una que le compitió, aunque con relativamente poco éxito y, como veremos en este episodio, desde una posición de permanente desventaja y, por consiguiente, marginalidad: la teoría del estado estacionario habló, desde sus comienzos, con un pie al otro lado de la puerta del mundo científico ortodoxo. Nació, podríamos decir, controversialmente y en abierta confrontación con los guardianes de las puertas del cosmos: los astrónomos.

Curiosamente, en su libro sobre la controversia entre la teoría del estado estacionario y la teoría del Big Bang, Helge Kragh concluye:

1 Este episodio es una versión adaptada de mi tesis de maestría en historia y filosofía de la ciencia, “How to kill a theory: a case study in modern cosmology” (De Greiff, 1997).

2 Con la venia de los filósofos, utilizaré indistintamente los términos modelo y teoría, aunque técnicamente no son lo mismo, pero no creo que su equivalencia cambie el sentido de mis argumentos.
Alrededor de 1970 la comunidad cosmológica decidió que la teoría del estado estacionario era una causa perdida y la relegó a la historia de los errores científicos, a pesar de reconocerle utilidad en su momento. Esta decisión se basó en razones epistémicas, y poco importó que unos cuantos científicos no estuvieran convencidos (1996, p. 394).

De la misma manera, el historiador Stephen Brush (1992) argumentó que el rechazo de la teoría del estado estacionario era el resultado de la “evidencia acumulada” en su contra y que, en consecuencia, no había ninguna influencia sociológica o cultural en la decisión de rechazarla.

Al contrario de las tesis de Brush y Kragh, en este episodio veremos que entre 1955 y 1970, mientras la teoría estuvo viva, los factores sociológicos, fueron decisivos para el desarrollo del modelo del estado estacionario. Mi motivación principal en este episodio es, entonces, mostrar cómo estos factores trascendieron el contexto del descubrimiento para volverse elementos relevantes también en el contexto de la justificación (ver “Introducción”). He elegido este caso para mostrar lo que sucede cuando, luego de poner a prueba “severamente” una teoría que está en sus albores, cualquiera de dichos ajustes es visto como la introducción de hipótesis ad hoc para, “salvar el fenómeno” (Duhem, 1969) y, en consecuencia, produce entre la comunidad una enorme desconfianza en su legitimidad, minando la posibilidad de reclutar potenciales aliados para su asentamiento. Noten que la palabra que uso (desconfianza) es de un orden psicológico; lo hago escudado en la noción de “esperanza”, con la que Thomas Kuhn asocia el término “paradigma”, sobre el cual volveremos más adelante. En efecto, la desconfianza es fruto del hecho de que la teoría no se inserta en ningún paradigma aceptado por la comunidad científica, y por consiguiente las puertas hacia la ortodoxia, o ciencia normal, como la llama Kuhn, se vuelven infranqueables.

Para ilustrar la contrastante recepción de los procesos de ajuste cuando una teoría se impone como un modelo canónico, me enfocaré en cómo estas nuevas hipótesis, en el caso de la teoría de la Gran Explosión, sí fueron aceptadas a pesar de que sus “correcciones” no eran menos radicales o epistemológicamente problemáticas que las introducidas por su competencia, el modelo estacionario.
El universo estacionario: abriendo puertas con las llaves equivocadas

La teoría del estado estacionario, lo mismo que la teoría del *Big Bang*, aparecieron en un momento en que el debate acerca del estatus científico de la cosmología era todavía materia de arduas discusiones (Kragh, 1996). Un punto central en los debates se focalizó en “principios fundamentales” de la física, antes que en interpretaciones particulares de las observaciones astronómicas. Era, para decirlo en palabras de Kuhn, una teoría en estado preparadigmático, donde no se discuten resultados experimentales, sino las bases mismas del programa. No solo eso; sus creadores se presentaron con su teoría de forma desafiante ante los astrónomos que, por lo menos desde el siglo xviii, se habían convertido en el epitome del espíritu científico y su alma empírica.³

En esta primera parte mostraré que, junto a la discusión sobre si la cosmología era o no una ciencia, la teoría del estado estacionario fue un episodio controvertido. Argumentaré entonces que: (a) la creación de materia (requerida por la teoría) implicaba la violación de un principio sólido, a saber, la conservación de la energía; (b) las personalidades involucradas crearon tensiones dentro de la comunidad astronómica; (c) la presentación pública y la reputación de sus creadores generaron aún mayor conflicto en torno a la teoría. La combinación de estas tres circunstancias, entonces, exacerbó el escépticismo sobre la teoría del estado estacionario, y contribuyó, a la postre, a su rechazo.

La teoría del estado estacionario como teoría alternativa: una cuestión de principios

La teoría del estado estacionario fue una creación colectiva de Fred Hoyle, Herman Bondi y Thomas Gold. Apareció en dos versiones separadas: por un lado, Bondi y Gold (1948) le dieron un enfoque primordialmente filosófico; por el otro, la versión de Hoyle (1948) era, por decirlo así, de mayor contenido físico. La primera fue presentada

³ La posición privilegiada de los astrónomos para hablar sobre el mundo físico fue fruto de arduas luchas. En el siglo xv, de hecho, no gozaban del estatuto epistemológico y social necesario para poderse pronunciar sobre la naturaleza del universo, lo que explica la dificultad de Galileo y Copérnico para hacer aseveraciones acerca de los “sistemas del mundo”. (Westman, 1980).
en forma deductiva con base en el principio de Mach,\(^4\) la segunda se basó en desarrollar las ecuaciones de Einstein, que son la base para describir los fenómenos que involucran la relación entre la geometría del espacio, el tiempo y la materia.\(^5\) Ambas teorías, sin embargo, surgieron en respuesta a la cosmología evolutiva, originalmente sugerida en los años veinte y revivida veinte años después por George Gamow, Ralph Alpher y Robert Herman para explicar el origen y la abundancia de los elementos químicos (en particular los más abundantes, como el hidrógeno, el helio, el hierro, etc.).

¿Cuáles eran las principales objeciones a la “cosmología del Big Bang”? La primera objeción a la teoría de Gamow era el “problema de la edad”: el universo era más joven que la Tierra y que el resto del Sistema Solar. Eso se consideraba un problema grave, a pesar de que el cálculo de la edad del universo depende de la denominada constante de Hubble (la edad es proporcional al inverso de la constante), la cual se determina experimentalmente, y cuyo valor tenía en aquellos años un alto grado de incertidumbre debido a la imprecisión de las medidas (por las limitaciones en los instrumentos). Más que un verdadero obstáculo era entendido como una cuestión de precisión en los datos experimentales.

La segunda objeción era más fundamental. La teoría de Gamow postulaba la creación del universo entero en un instante particular. En otras palabras, en un sentido estricto, la teoría no proveía ningún mecanismo físico para la creación de materia en el universo. Era una especie de milagro en “los comienzos del tiempo”.

Finalmente, la teoría de la Gran Explosión distinguía entre pasado y presente, ya que había, entonces, tiempos especiales en la historia del universo: el más destacado era \(t = 0\), cuando todo fue creado. Además, en un universo en evolución las leyes físicas podían cambiar en el tiempo: por esto en \(t = 0\) nuestras leyes no servían dadas las condiciones especiales de ese instante. Este aspecto no violaba ningún principio físico porque ninguna ley física asegura la inmutabilidad y universalidad de las leyes naturales. Sin embargo, si uno acepta que la ciencia está basada en la posibilidad de repetir experimentos en cualquier tiempo y lugar, entonces el modelo evolutivo parecía

\(^4\) El principio enunciado por Ernst Mach en 1893 establece que la inercia de cualquier sistema es el resultado de su interacción con el resto del universo. En otras palabras, cada partícula del universo ejerce una influencia sobre todas las demás partículas.

violar un principio fundamental de carácter metafísico al que los físicos se aferran. Este era el centro de las críticas de Bondi y Gold al Big Bang. Postularon, en contraposición, el “principio cosmológico perfecto”, una extensión del principio cosmológico de Milne, según el cual no existe un lugar especial en el universo y, por lo tanto, un experimento debe poder ser repetido con éxito en cualquier lugar del universo. El “principio cosmológico perfecto” generalizaba este principio cosmológico, llevando la homogeneidad también a la dimensión temporal: no hay ningún momento (tiempo) físicamente distingible de otro en la historia del universo en cuanto a su estructura (siempre se ve igual).

Una consecuencia importante del principio cosmológico perfecto es que el universo debe presentar la misma apariencia, independiente de su edad. Por otra parte, luego de la recalcitrante defensa de Arthur Eddington de la teoría einsteiniana, el universo en expansión se convirtió en la nueva ortodoxia, especialmente después del eclipse de 1919 (ver Episodio I). Hay que notar aquí que en un universo en expansión con materia constante, su densidad decrece con el tiempo (el espacio se expande mientras que la cantidad de materia permanece constante). Por lo tanto, el principio cosmológico perfecto dejaría de ser válido en dicho escenario, puesto que la apariencia del universo cambia con el tiempo.

Para resolver este problema, la teoría del estado estacionario propone un mecanismo que contempla la creación continua de materia, y que Hoyle y compañía llamaron “campo C”: la creación de materia compensaría exactamente la pérdida de la misma debida a la expansión; este campo que actúa como un reservorio de energía y materia. La propuesta era problemática, pues el “campo C” implicaba la violación de otro principio, más fundamental en física: la conservación de la energía. Es cierto que, hacia 1930, algunos físicos, incluyendo a Max Planck y Niels Bohr, consideraron la posibilidad de que este principio no fuera válido, atendiendo a algunos resultados de la física cuántica. Sin embargo, sus ideas no fueron tomadas demasiado en serio, y la ortodoxia optó por otras alternativas que preservaran el sacrosanto principio de conservación de energía. Hoyle y compañía estarían entonces reviviendo fantasmas que nadie quería volver a ver.

En un intento por resolver el problema, en 1951, William McCrea reinterpretó el campo C de Hoyle en la ecuación de Einstein, sugiriendo un mecanismo para crear materia sin violar la conservación de la energía. Sin embargo, la versión de McCrea de la teoría del estado
estacionario no era menos heterodoxa: establecía la introducción de un reservorio de energía negativa que, en promedio, balanceaba exactamente la energía total del universo. Y, ¿dónde estaba almacenada esta energía? En el “campo C”.

Este detalle es importante porque, treinta años después, la “ecuación de McCrea” fue reintroducida. La manera contrastante en que la misma ecuación fue reincorporada por la comunidad de astrofísicos es significativa, si se comparan la cosmológica hacia 1948 y la “astrofísica de altas energías” de los ochenta. La reintroducción de “la exótica ρ = -p” (como la llamó Sciama, 1990, p. 2, refiriéndose a la teoría de McCrea), fue obra de Alan Guth en su teoría “inflacionaria” del universo. En su momento fue considerada por la comunidad astrofísica como una manera ingeniosa de resolver el denominado “problema del horizonte” que acarrea la teoría del Big Bang. A diferencia de los años cincuenta, en esta última ocasión no fue considerada tan “exótica”, y la energía negativa se asoció con el “vacío”. La ecuación pasó a formar parte del “modelo estándar” de la cosmología contemporánea.6 Aunque el concepto del vacío aún es problemático, fue aceptado por los cosmólogos luego de volverse útil para explicar algunos comportamientos de materiales sometidos a temperaturas extremadamente bajas, como el efecto Cassimir; pero más importante aquí es que cuando la ecuación fue reintroducida (años ochenta) en el modelo cosmológico, el Big Bang ya se había establecido. En otras palabras, la confianza en la teoría se había extendido tanto que la introducción de algo tan exótico como esta ecuación pareció aceptable.

Pero volvamos a Hoyle y sus amigos. Las críticas continuaron y la contribución de McCrea no fue considerada como una alternativa viable. En 1952, Bondi tuvo que enfrentar estos ataques porque recurrió a otro principio, el de la simplicidad:

El principio que conlleva la mayor simplicidad no es entonces el principio de conservación de la materia, sino el principio cosmológico perfecto, con sus consecuencias de creación continua. Desde este punto de vista la creación continua es más simple, y por lo tanto la extrapolación más científica a partir de las observaciones (Bondi, citado en Kragh, 1996, pp. 184-185).

Este pasaje es sugerente pues, de nuevo, los argumentos y la controversia giran en torno a los principios y a los fundamentos de la disciplina, sello por excelencia de una escuela preparadigmática. La polémica estaba basada, literalmente, en una cuestión de principios.

“The terrible three”: teóricos versus astrónomos, parte I

Ha dicho el historiador de la ciencia Gerald Geison que el “carisma” y la “reputación investigativa” de los científicos son factores esenciales en la aceptación o rechazo de una teoría propuesta por una escuela de investigación. A propósito de la discusión sobre el papel de los individuos, dice:

Muchos estudios sobre el fracaso de escuelas de investigación asignan, en últimas, mayor responsabilidad y culpa a sus directores [...] La historiografía de moda querría que fuera de otro modo; con todo, repetidas veces me sorprende el papel crucial desempeñado por la empresa individual humana, por la personalidad y liderazgo de algunas escuelas de investigación, de otras instituciones o formas de vida (Geison, 1993, p. 228).

Kragh, por su parte, ha subrayado que “la desconfianza entre Hoyle y la comunidad astronómica es un tema importante de la teoría del estado estacionario” (1996, p. 171). Dicho esto, resulta extraño que Kragh niegue cualquier influencia sociológica en el rechazo de la teoría del estado estacionario (1996, p. 394). Exploremos su argumento a la luz de la posición de Geison, para lo que necesitaremos volver nuestra mirada a la vida y personalidad de Hoyle y sus contradictores.

Hoyle no era astrónomo, sino físico. Su decisión de abandonar la física por la astronomía fue motivada por el físico teórico y Premio Nobel Paul A. M. Dirac. Durante finales de los años veinte y a lo largo de los años treinta los fundamentos de la teoría cuántica habían sido ya establecidos, y Dirac había sido uno de sus mayores protagonistas al introducir una versión relativista de la ecuación de Schrödinger. Hacia el final de los años treinta, Dirac creía que los días gloriosos de la física y sus grandes descubrimientos habían concluido, y así se lo comunicó a su pupilo. Para un ambicioso y brillante científico como Hoyle, las palabras de Dirac querían decir que debía mirar a otro lado, y Hoyle escogió la astronomía (Hoyle, 1997, p. 218). En cierto sentido, se había invertido lo que sucedía en la primera mitad del siglo: el estudio de la mecánica cuántica sería desplazado por otros campos.
La astronomía en ese entonces estaba dominada por los experimentalistas, que a su vez dominaron las ciencias físicas desde el siglo XVII hasta la mitad del XX. Para ellos, la teoría iba asociada a ideas especulativas que no eran ciencia. Por lo tanto, Hoyle, con su formación de físico teórico, era un extraño para la comunidad astronómica.

Pero la tensión entre astrónomos y teóricos tenía más protagonistas. El astrónomo Raymond Lyttleton, con quien Hoyle escribió algunos artículos sobre la formación del sistema solar y sobre los procesos estelares, se sentía ultrajado por el modo en que la comunidad astronómica había recibido sus trabajos teóricos. En 1952, sugirió que alguien debía investigar quién realmente había cometido los fiascos más graves en la ciencia, si los teóricos o los experimentalistas. Bondi se dio a esa tarea. Luego de estudiar algunos casos, concluyó que los peores errores del pasado siempre ocurrieron en la observación, y no en la teoría. Entonces escribió un artículo sobre el tema y lo sometió a consideración de la Royal Astronomical Society. Recibió evaluaciones hostiles de los árbitros, y el comité editorial prefirió no ofender a la comunidad astronómica y rechazar el texto de Bondi (Hoyle, 1997, p. 290).

La presentación pública de la teoría del Estado Estacionario

La teoría del estado estacionario no recibió mucha atención hasta 1950, cuando Fred Hoyle fue invitado por la BBC a dar una serie de conferencias que fueron un éxito y, ese mismo año, se publicó un libro basado en ellas, titulado The Nature of the Universe.

Las conferencias pretendían ilustrar el estado del arte en la astronomía y la cosmología, y Hoyle comenzó refiriéndose a objetos cercanos y a las teorías sobre su constitución y formación: la Tierra, los planetas y el Sol. Luego explicaba el origen y evolución de las estrellas, la Tierra y los planetas. En cuanto a la cosmología, revisaba y comentaba la teoría de Gamow y fue allí donde acuñó el término Big Bang. Irónicamente, Hoyle pretendía usarlo de modo peyorativo.7

Como parte del mismo programa, Hoyle presentó ante un público más amplio la esencia e importancia de la teoría del estado estacionario, dejando en claro su predilección por esta. “Ahora es claro que la teoría de la relatividad no es una herramienta ideal para enfrentar este problema. Espero que la creación continua desempeñe un papel importante en las teorías del futuro” (Hoyle, 1950, p. 112). Por este motivo, desde entonces las ideas de Hoyle fueron reconocidas como alternativas a las de Einstein.

Las charlas y el libro de Hoyle fueron considerados ultrajantes, pero no tanto por su heterodoxa teoría ni por contradecir a Einstein. Fue el último programa el que enojó al público: “El lugar del hombre en un universo en expansión”. Hoyle habló sobre religión, sobre el alma y sobre política. Solo para saborear el estilo de sus aseveraciones, cito el siguiente pasaje: “al parecer, la religión es una tentativa ciega por encontrar un escape a la horrible situación en la que nos hallamos”. Y más adelante: “en su ansiedad cristiana para evitar la noción de que la muerte es el fin completo de nuestra existencia, sugieren lo que me parece una alternativa igualmente horrible. [...] Lo que los cristianos me ofrecen

7 La expresión bang suele usarse de modo vulgar en inglés para referirse al orgasmo...
es una eternidad de frustración”. Rematando sarcásticamente con: “Me sorprende que, curiosamente, los cristianos tengan tan poco que decir sobre cómo se proponen pasar la eternidad” (Hoyle, 1950, pp. 115-117).

Para los astrónomos se trataba de otra demostración de la práctica perversa de la profesión por parte de Hoyle. Tal como lo hizo notar Kragh al citar a un astrónomo de entonces,

había ‘una insatisfacción general entre los astrónomos con respecto a lo dicho por Hoyle’, un sentimiento de que había ido más allá de una presentación decente de la astronomía, y el temor de que su inmodestia y unilateralidad afectaran a la profesión (1996, p. 194).

En suma, la teoría del estado estacionario surgió como una teoría heterodoxa, no solo por el tipo de principios que postulaba sino también por los que violaba. En sus presentaciones públicas, Hoyle se las arreglaba para irritar a todo el mundo: astrónomos, filósofos, creyentes y legos en la materia. Hoyle interpretó su reacción como otra demostración de persecución en contra suya, pero lo que resulta claro es que la actitud de Hoyle y sus presentaciones públicas alimentaron la furia de sus contradictores.

Veinte años forcejeando las puertas de la astronomía

Según Kuhn, las teorías científicas nunca son probadas rigurosamente. La práctica de la “ciencia normal” se reduce a la utilización de una teoría para dar cuenta de un gran número de fenómenos, antes que
un intento por descartar una teoría falsa. Cuando la teoría y la observación no concuerdan, la teoría es ajustada o, en caso de que persista la contradicción, se niega el carácter crucial de la evidencia o esta es flagrantemente ignorada por los científicos (Kuhn, 1962). En contraposición, para Karl Popper la ciencia requiere del diseño y aplicación de “test severos” a sus teorías (Popper, 1965), es decir, pruebas o test cuyo resultado, en principio, pueda contradecir las predicciones de la teoría (ver Introducción).

La teoría del estado estacionario sería un buen caso para poner a prueba el modelo de Popper, dado que los test a que fue sometida buscaban refutarla. Veamos lo que sucede cuando el programa popperiano se pone en acción con una teoría que aún lucha por atravesar el umbral de su infancia.

Radioconteos

Aunque el estudio de algunas fuentes celestes de ondas de radio fue llevado a cabo por Karl Jansky en los años treinta, la Segunda Guerra Mundial se convirtió en “un gran catalizador para el avance de la radioastronomía” (Malphrus, 1996, p. 12). De hecho, fue después de 1945 que un programa de investigación en radioastronomía se puso en marcha en Inglaterra bajo el liderazgo de dos universidades: Manchester, con el Jodrell Bank Observatory, y Cambridge, con el Cavendish Laboratory. El primero tenía como director a Bernard Lovell; el segundo, a Martin Ryle.

En 1949, el grupo de Cambridge comenzó a hacer un sondeo de fuentes de radio que se convertiría en el más famoso catálogo de objetos astronómicos, pero hay que subrayar que no tenía propósitos cosmológicos cuando fue concebido, en el sentido de que no pretendía poner a prueba ninguna teoría cosmológica. En 1955, sin embargo, Ryle se interesó abiertamente en cosmología, e incorporando un método originalmente usado para otros propósitos, argumentó que sus resultados estaban definitivamente en desacuerdo con la teoría del estado estacionario.

El método consistía en graficar un rango establecido de densidades de flujo S (entendido como potencia, es decir energía-tiempo) versus el número de fuentes con una densidad de flujo mayor o igual a un S dado. En escala logarítmica, la relación entre número de fuentes N y S produce una línea recta (por esto fue conocido como test logN-logS), con distintas inclinaciones según el modelo cosmológico. Lo importante es que la teoría del estado estacionario predecía una pendiente de la
curva igual a -1,5: si era distinta, la teoría debía descartarse. Hay que notar que este test no podía ser usado para probar o refutar la teoría de la Gran Explosión, dado que cualquier resultado podía ser explicado en términos de diferentes efectos evolutivos: era, en términos de Popper, un verdadero “test severo”, pero solo para la teoría del estado estacionario.

Pero, ¿cuál fue el origen del programa cosmológico de Ryle? El debate en torno a los conteos de fuentes de radio era definitivo para el rechazo de la teoría del estado estacionario, aunque comparto la opinión de Schweber: “me pregunto si el debate [en torno al cuásar] hubiera sido tan largo y pasional si no hubiera sido el sucesor directo de un debate anterior” (1990, p. 340). Veamos a qué antecedentes nos referimos.

¿Nada personal? Teóricos versus astrónomos, parte II

En un artículo titulado “Steady State Obituary?” (“¿Obituario del estado estacionario?”), publicado en la revista Nature, el autor comentó: “se rumora que un radioobservatorio ha sido comisionado para dedicar todo su esfuerzo científico a la destrucción de la teoría [del estado estacionario]” (Rowan-Robinson, 1972, p. 439). El radioobservatorio al que se refería era el de Ryle, en Cambridge. Adicionalmente, se puede inferir que el rumor había sido difundido por una de las víctimas de este programa: su colega Fred Hoyle. Desde finales de los cincuenta este había dicho una y otra vez:

Desde 1955 en adelante Ryle tuvo la idea de que contando fuentes de radio como una función de los flujos podía refutar la teoría del estado estacionario. Su programa, que llevó a cabo sin tregua a lo largo de los años, parece no haber tenido otra finalidad [...] No era cuestión de establecer la cosmología correcta, sino solo de refutar la visión de un colega de la misma universidad, una situación en la que nunca sentí tener los aplausos del mundo científico que sí tuvo Ryle (Hoyle, 1990, p. 228).

Exploremos esta opinión y examinemos hasta qué punto su teoría persecutoria tenía algún fundamento.

El origen de la disputa entre Hoyle, Bondi y Gold por un lado, y los astrónomos por el otro, empezó en la década de los cuarenta, como ya vimos. A comienzos de la década siguiente, los radioastrónomos entraron a formar parte del segundo grupo y Ryle se convirtió en el más firme oponente de la teoría del estado estacionario. El origen de esta “pelea salvaje”, como la describió el periodista científico Dennis Overbye (1991), se remonta a 1951. Hacia 1950, muchos aceptaban la
existencia de radioestrellas, pero nadie sabía sobre su origen o sobre el mecanismo que producía su energía. Con todo, el problema principal era saber si dichos objetos eran galácticos o extragalácticos. En 1951, en una reunión en el University College de Londres sobre dinámica de medios ionizados, Ryle fue recalcitrante en su opinión de que las fuentes de radio debían ser objetos galácticos. Gold, por su parte, dio una charla en la que defendía la idea contraria. Al final de la presentación de Gold, Ryle comentó: “pienso que los teóricos no han comprendido los datos experimentales” (Gold, 1951, énfasis añadido), y continuó explicando por qué la propuesta de Gold era insostenible de acuerdo con la evidencia. Luego de esto “saltaron chispas” (Sullivan III, 1990, p. 315).

La sentencia de Ryle había sido pronunciada de manera despectiva y percibida y recordada de la misma manera. Hoyle narra así este episodio en su autobiografía:

Si hubiera abierto mi boca cuando Ryle comenzó a hablar, habría sido cerrada de inmediato con una sonora bofetada. Hay toda la diferencia del mundo entre un dictamen crítico como “No estoy de acuerdo con Ud.”, u “Obtengo una respuesta diferente”, y la costumbre de Ryle de denunciar sosamente: “Pienso que los teóricos no han comprendido los datos experimentales”, en la cual la palabra teóricos implica una especie inferior y detestable (1997, p. 270).

Sobre el programa científico de Ryle, Hoyle agrega:

No pienso que sea poco razonable decir que la motivación de Ryle al desarrollar un programa de conteo de fuentes de radio, programa que ocuparía la mayor parte de su grupo en los siguientes diez años, haya sido tomar revancha de su humillación en todo el asunto de las radioestrellas. La forma de llevarla a cabo era noqueando a la nueva forma de cosmología con la que Gold, Bondi y yo estábamos asociados (1997, p. 270).

En efecto, Ryle tuvo que aceptar que Gold estaba en lo correcto, pero una cosa resulta clara: la disputa había trascendido cualquier espacio “puramente científico”, y era un forcejeo entre dos colegas que representaban comunidades escindidas y en competencia —los astrónomos y los teóricos—. Para ilustrar este punto, recordaremos la siguiente anécdota. En la década de los sesenta, Nevill Mott, Cavendish Professor

8 Estrellas que emiten radiación en frecuencias de radio.
en Cambridge, le preguntó a Hoyle “con voz algo desesperada”: “Fred, ¿por qué no puedes llevártela bien con Martin Ryle?” [...] Tantas respuestas posibles acudieron a mi mente —recuerda Hoyle— que no pude fijar ninguna de ellas”. Finalmente, replicó con ironía: “debe ser porque no tengo sentido del humor” (1997, p. 32).

Existen elementos adicionales que permiten entender la discusión de Cambridge. Quizás el más influyente de ellos ya fue mencionado: la tensión entre teóricos y experimentalistas. Creo que el programa de Ryle era solo la punta del iceberg, si bien harto visible.

En su concepción de la práctica científica, Ryle era un simple observador. A la pregunta “¿Se catalogaría usted como radioastrónomo antes que como astrofísico?”, Ryle respondió:

Yo soy un ingeniero. No hago mucha astronomía, de ningún tipo [...] Las observaciones fueron difíciles, y el resto fue juntar unas pocas relaciones, lo que nadie antes parece haber hecho, y ni siquiera sé por qué —probablemente, creo, porque no creían en las observaciones— (Edge y Mulkay, 1976, p. 183).

Comparemos esa respuesta, por ejemplo, con la dada por el mismo Ryle veinte años después:

Es una cuestión ingenieril, con las uñas, nada de la emoción acerca de la que tanto se lee. Ud. mira las placas, mide amplitudes, las estrellas aparecen y desaparecen por debajo del límite de la placa. Se obtienen sus periodos y luego sus distancias. ¿Qué hay de grandioso en eso? Es maravilloso porque es casi imposible creer que uno pueda hacerlo. Pero no hay nada misterioso en ello (Overbye, 1993, p. 173).

Evidentemente, ambas citas exhiben una concepción de la empresa científica marcada por la rutina, las tareas pesadas e incluso el tedio, pero sin misterio alguno. Los métodos de Ryle eran “limpios”, a diferencia de la astronomía teórica. Su trabajo “con las uñas” contrastaba ampliamente con la manera de Hoyle (o incluso de Gamow) de producir artículos. Para los astrónomos, esta falta de contacto con la vida del laboratorio era la faceta más irritante de “los teóricos”: el contacto con el laboratorio actuaba como el criterio de demarcación que distinguía a la ciencia de la especulación.

Las reticencias de Ryle en contra de la cosmología como un área dominada por la teoría pura eran categóricas. En 1976, Ryle explicaba que:
[La intensa controversia] era un shock considerable, debido a que, por supuesto, el problema con la cosmología hasta entonces era el haber sido un terreno de juego para los matemáticos —¿El espacio se curva de esta o de aquella manera? y todas esas cosas—. Tenía muy poco que ver con el mundo real y las observaciones nunca tuvieron, y al parecer nunca tendrían, ningún efecto sobre ella. Era un juego para los matemáticos, a salvo de cualquier ataque posible (citado por Sullivan III, 1990, p. 325).

Refutar “cualquier teoría cosmológica” era, entonces, una manera de limpiar la astronomía de las especulaciones irresponsables de los teóricos. Ryle vio su programa como una manera de alinear la cosmología con los estándares de la ciencia. En otras palabras, los esfuerzos de Ryle para refutar la teoría de Hoyle pueden ser explicados por su propia concepción de la ciencia. Para experimentalistas como Ryle, alejarse del laboratorio era análogo a alienarse del “mundo real”. En la tradición experimental, especialmente la británica, la ciencia era ciencia empírica. Lo demás, era especulación.

La recepción de los resultados de Ryle
El grupo de Ryle no era el único involucrado en la medición de radiofuentes. En Sidney, Australia, John Bolton estaba encargado de realizar el conteo de las fuentes de radio del hemisferio sur. Ambos grupos hacían uso de una zona común para calibrar y comparar los resultados. Sin embargo, desde el comienzo sus resultados discordaban. No era una controversia sobre el origen y naturaleza de las fuentes de radio, sino una discrepancia en los datos mismos. El desacuerdo persistió por más de diez años (hasta la Scientific Radio Union Meeting en Tokio). No creo necesario ir más allá en detalles de los resultados, dado que estos han sido ampliamente discutidos en la literatura sobre radioastronomía (ver Edge y Mulkay, 1976, pp. 134-182, y Kragh, 1996, pp. 308-324). El punto importante aquí es que durante mucho tiempo no hubo un consenso en cuanto al análisis de las fuentes de radio, incluso entre los astrónomos.

El otro aspecto en la prueba logN-logS era que los números tuvieron un cambio drástico de 1955 a 1965. Mientras que el primer resultado del grupo de Ryle (en 1951) reportaba una pendiente de -2,5, en 1961 calcularon -1,8. Eso quiere decir que, en diez años, el error estadístico era de 40 %, es decir, enorme.
De nuevo, Gold criticó la precisión de los experimentos:

Recuerdo ir a su laboratorio y sentarme en una mesa. Ryle y dos o tres miembros de su equipo median allí, y entonces dije ‘¿Qué tan seguros son sus datos? Quiero decir, ¿realmente lo saben?’ [...] Le dije a Hoyle: ‘No confíes en ellos, puede haber montones de errores y pueden ser tomados en serio’ (citado en Kragh, 1996, p. 314).

Aunque la mayoría de la comunidad astrofísica aceptó los resultados de Ryle, la discusión entre los defensores de la teoría del estado estacionario y los radioastrónomos nunca cesó, aunque se dio al margen de los debates centrales de la astrofísica de la época, es decir, de “puertas para afuera” de la comunidad. Para ser preciso, para los defensores de la teoría del estado estacionario los conteos de fuentes de radio eran impresionantes, pero, tal y como Scimia admitió en 1973, “si esa fuera la única evidencia contra el modelo de estado estacionario, yo habría estado renuente a abandonar mi apego a esa bella teoría” (Scimia, 1973, p. 59). En 1976, Jayant Narlikar y Geoffrey Burbidge —estudiante y colega de Hoyle, respectivamente— publicaron un artículo en el que daban una interpretación alterna a los datos de Ryle. Hoyle nunca cesó de pedir revisiones de que, por un lado, el universo evolutivo no era la única opción y que, por el otro, todo el test estaba basado en “malos datos” (Hoyle, 1982, pp. 23-26).

Sus esfuerzos fueron estériles. La atención de la comunidad científica se había vuelto hacia un nuevo tipo de objetos que también conspiraban en contra de la teoría de Hoyle: los cuásares. Después de diez años de discusión alrededor de los conteos de fuentes de radio, esta “continuó con muchos de los mismos participantes en terrenos que se habían desplazado nuevamente, esta vez acerca del corrimiento al rojo de los cuásares y, por tanto, acerca de si estos podían revelarnos algo sobre cosmología” (Schweber, 1990, p. 340).

Cuásares

El descubrimiento de los cuásares se ha atribuido al astrónomo de Caltech de origen alemán Maarten Schmidt, por un lado, y al joven radioastrónomo Tom Matthews y al astrónomo Jessie Greenstein, por el otro. Sin embargo, desde finales de la década de los cincuenta, el astrónomo Rudolph Minkowski sugirió al joven astrónomo Allan Sandage, quien más tarde se haría famoso por sus mediciones de la constante de Hubble, y en particular por calcular el corrimiento al rojo de las líneas
espectrales del hidrógeno de un objeto llamado 3C 295 (3C por el tercer catálogo de Cambridge, al que nos referimos más arriba, y 295 por las coordenadas aproximadas del objeto). El resultado fue sorprendente: de acuerdo con los cálculos de Sandage, el corrimiento al rojo de 3C 295 era de 0,46. Era de lejos el más grande corrimiento al rojo jamás encontrado: debía estar muy lejos, si Hubble estaba en lo cierto. Tanto Sandage como Minkowski quedaron desconcertados con el resultado. El episodio fue registrado por Sandage en el reporte anual del observatorio, en 1959, con las palabras: “el problema sigue irresuelto” (citado en Overbye, 1993, p. 66). El descubrimiento no se publicó sobre la base de que podía haber un error.

Tan solo fue en 1963 cuando Schmidt identificó algunas de las líneas espectrales que años atrás Sandage había reportado de los nuevos objetos en la fuente 3C 273, y discutió sus resultados con Greenstein y Matthews. Fue entonces cuento dos artículos, uno de Schmidt (1963, p. 1040), y otro de Greenstein y Matthews (1963, pp. 1041-1042), reportaron en *Nature* el descubrimiento de un nuevo tipo de objetos con estas características: (a) eran los objetos más brillantes del cielo; (b) su corrimiento al rojo era muy grande; y (c) eran objetos puntuales, casi como estrellas (cuasiestelares, cuásares).

Sandage siempre se preocupó porque la interpretación de sus resultados pudiera reconciliar esos tres elementos. Si se interpreta el corrimiento al rojo como una medida de la distancia, usando la ley de Hubble, entonces ¿cómo explicar que los objetos más distantes fueran los más brillantes en el cielo? Más exactamente, ¿cuál era el mecanismo físico responsable de la producción de esa inconcebible cantidad de energía? Este tipo de problemas originó lo que Clifford Hill llamó el “renacimiento de la relatividad general” (1993). También fue un paso crucial hacia el fin de la teoría del estado estacionario.

En 1958, Geoffrey Burbidge anotó, en la Reunión Anual de la *International Astronomical Union*, en París, que el mecanismo de producción de energía de las fuentes de radio podía no ser termonuclear, como se creía hasta ese momento. Por otra parte, la teoría de Hans Bethe sobre “la producción de energía en las estrellas” (título de su artículo

9 Las líneas espectrales son los patrones que muestra cada elemento químico cuando emite radiación. Si el objeto se mueve, este patrón se aleja de nosotros en la escala hacia frecuencias menores (es decir “hacia el color rojo”). E. Hubble había propuesto, en los años veinte, que esos corrimientos “al rojo” de galaxias cercanas eran una manifestación de su movimiento respecto a la Tierra. Es decir, una evidencia de la expansión del universo, ver De Greiff y Torres, 2001.
pionero de 1939) se había convertido en la descripción ortodoxa de los procesos estelares. Por tanto, la cuestión de los cuásares se volvió un desafío teórico para la comunidad astrofísica (la misma que disuadió a Sandage de publicar su descubrimiento).

La teoría de la relatividad general, base de la teoría de la gravitación, predecía el corrimiento al rojo de la radiación emitida por objetos masivos. Si se permitía que objetos masivos colapsaran, entonces los corrimientos al rojo podían ser, al menos en principio, adscritos a efectos gravitacionales, aducían Hoyle y Fowles. El resurgimiento de la relatividad general estaba en camino y la propuesta de Hoyle-Fowler se convirtió en el empuje principal para su establecimiento.

Edge y Mulkay han argumentado, en un trabajo ya clásico en los estudios sociales de la ciencia, que el modelo kuhniano de ciencia normal no puede ser aplicado al caso de la radioastronomía, puesto que los nuevos fenómenos no eran ignorados ni negados por la comunidad de astrónomos. Sin embargo, también argumentan que “cuando ocurrieron resultados inesperados [los cuásares], se presumió que debían ser explicados sin perturbar las ideas vigentes sobre las fuentes de radio” (Edge y Mulkay, 1976, p. 390, cursivas añadidas). Llamo la atención sobre el hecho de que el “establecimiento oficial” de la teoría de la relatividad general ocurrió simultáneamente con el anuncio de los cuásares. Tuvo lugar en el First Texas Symposium, o “Simposio Cuásar”, realizado en Dallas en 1963. Más aún, la promesa de que, al menos en principio, la teoría de la relatividad general podía explicar los nuevos fenómenos es lo que Kuhn (1962) identificó como el establecimiento de un paradigma. Por tanto, el descubrimiento de estos nuevos objetos no representaba amenaza alguna para el paradigma, puesto que, tal como Gold dijo a la prensa:

Todos están complacidos: los relativistas, que sienten que son apreciados, que son de repente expertos en un campo que no sabían que existía; los astrofísicos, que han extendido sus dominios y su imperio con la anexión de un nuevo tema —la relatividad general—. Todo eso es muy alentador, así que
esperamos que sea correcto. Sería una pena que procediéramos y tuviéramos que desmentir de nuevo a los relativistas (citado en Overbye, 1993, p. 73).

Por tanto, los cuásares y las teorías basadas en procesos gravitacionales generaron suficiente confianza en la relatividad general como para considerar a los nuevos objetos misteriosos pero no sobrenaturales. Los astrofísicos consideraron la cuestión de los cuásares como parte de los problemas en boga ligados a la “astrofísica relativista”. Esto es parte de la ciencia normal ignorada, en mi opinión, por Edge y Mulkay.

A pesar de que, en 1950, Hoyle había expresado sus dudas acerca de la relatividad general, y de que había dado una explicación alternativa de los aspectos cosmológicos de aquella teoría, después de 1963 era imposible convencer a la comunidad científica de que Einstein no estaba en lo cierto y los cuásares fueron instrumentales para su establecimiento. La “proliferación de cuásares” no conspiraba contra las ideas en radioastronomía o en astrofísica. Por el contrario, los cuásares catapultaron el nuevo entusiasmo por la teoría de la relatividad. Ese fue un argumento crucial contra la teoría del estado estacionario, como veremos en seguida.

La prueba cosmológica basada en los cuásares seguía la misma lógica de los conteos de fuentes de radio. Si el principio cosmológico perfecto era válido, la distribución de cualquier tipo de objeto debía ser homogénea. Por tanto, el test consistía en examinar la distribución de cuásares en el cielo: si no era uniforme, entonces la teoría del estado estacionario entraría en conflicto con las observaciones.

Uno de los aspectos destacados de los cuásares, reportado por Schmidt, Greenstein y Matthews, era su gran corrimiento al rojo. Una interpretación á la Hubble implicaba que los cuásares debían estar muy distantes. Era la así llamada “interpretación cosmológica”, dado que el efecto Doppler se explicaba por la expansión del universo. Sin embargo, había dos explicaciones alternas: los corrimientos al rojo podían deberse a efectos gravitacionales, como Einstein había predicho en 1915, y Hoyle y Fowler demostrado posteriormente; o podían ser un efecto local debido al movimiento relativo entre la fuente y el receptor, y no a una expansión universal. Si era lo segundo, los cuásares eran objetos locales alejándose de nosotros a gran velocidad como resultado, por ejemplo, de una violenta explosión en las proximidades del objeto. Esa era la propuesta de Hoyle y Burbidge, que evitaban así la interpretación cosmológica.
En 1966, en el tercer “Texas Symposium”, en Miami, Dennis Sciama consideró otra alternativa, al sugerir un modelo compuesto en el que algunos de los cuásares eran galácticos y otros extragalácticos. Su posición no fue apreciada por ninguno de los bandos en contienda. Tal y como Sciama reportaba en 1966: “desafortunadamente, todo el sentido del encuentro estaba en contra de este modelo compuesto para las fuentes cuasiestelares, y por tanto en contra de la teoría del estado estacionario. Sin embargo, no creo que esta cuestión haya sido establecida”. Y concluía su articulo con algunas palabras que pueden considerarse como el principio del fin para la teoría del estado estacionario: “el siguiente encuentro de la serie Astrofísica Relativista podría producir el rechazo final de la teoría del estado estacionario, aunque aún hay esperanzas” (Sciama, 1973).

No resulta claro si había o no esperanzas para la teoría, aunque parecía improbable que las hubiera. En cualquier caso, para Sciama los cuásares constituían una evidencia crucial para abandonarla. En un intento por ponerla a prueba, Sciama graficó el número de cuásares como una función del corrimiento al rojo. Obtuvo un buen acuerdo con la teoría, pero un estudiante suyo, Martin Rees (hoy día, sir Martin Rees) convenció a Sciama de que su curva estaba equivocada (Lightman y Brawer, 1990, p. 144). Sciama cambió entonces de bando y se alejó, por siempre, de la teoría de estado estacionario.

No obstante Sciama expresara su simpatía por la teoría del estado estacionario, su trabajo técnico en relatividad general no se afectaba por su paso a la teoría de la Gran Explosión. Para Sciama el verdadero paradigma era la teoría de la relatividad general, no la teoría del estado estacionario. Esta última era filosóficamente deseable, pero la primera le proporcionaba la “tecnología teórica” (tal y como lo define Warwick, 1992, ver Introducción y Episodio 1 de este libro) necesaria para su práctica diaria como astrónomo teórico. Su confianza en la teoría de la relatividad general se derivaba del uso que de ella hacía. De hecho, sus contribuciones a la teoría del estado estacionario eran meros ejercicios dentro del paradigma de la teoría de la relatividad general, más que el desarrollo de un programa de investigación.

Sin embargo, la abjuración de Sciama tuvo un gran efecto en la comunidad astrophísica, especialmente entre la joven generación. Apartarse de una teoría produce un gran impacto en la comunidad científica cuando quien lo hace es un miembro altamente reconocido de la misma. Por ejemplo, el 22 de mayo de 1969, Peter Stubbs, editor científico de la revista New Scientist, respondía en estos términos a los cargos de estar parcializado en contra de la teoría del estado estacionario:
Quisiera anotar que el presente cambio del estado estacionario al *Big Bang* es el resultado de la observación experimental, no del prejuicio, y de que muchos sostenedores anteriores del primero, incluyendo al Dr. Sciama, están ahora muy preocupados con todo el asunto (Stubbs, 1969, pp. 171-173).

Pero quizás fue un estudiante de la época quien mejor retrató el impacto de la decisión de Sciama:

> Pienso que puede ser de interés evocar un evento extraordinario, al menos para un estudiante de postgrado de primer año en la Universidad de Maryland. En 1966-67 nuestro jefe, Dennis Sciama, dio una charla en la que establecía que abandonaba la cosmología del estado estacionario. Quedé estupefacto —¡pensaba que las abjuraciones habían pasado de moda desde hacía tres siglos en el país en el que hablamos ahora [Italia]!— (Sullivan III, 1990, p. 344).

El paso de Sciama a la teoría de la Gran Explosión fue ciertamente un golpe para la teoría del estado estacionario. En ese sentido, su opinión también fue considerada buena *evidencia* contra el modelo. Aunque no pretendo restringir mi análisis al papel de la autoridad, sugiero que la retractación de un miembro respetado de la comunidad científica actúa como cerrojo de la puerta que impide la entrada de posibles seguidores de la nueva generación a la teoría. Hoyle y sus colegas quedan así por fuera del debate.

El problema del helio y la radiación cósmica de fondo. El golpe de gracia

Siguiendo su trabajo con George Gamow sobre la hipótesis de un universo primitivo, Ralph Alpher y Robert Herman predijeron la existencia de una radiación de origen cósmico. Su objetivo era reproducir la abundancia observada de helio (He) usando el mecanismo sugerido por Gamow unos años antes, a saber, la nucleosíntesis. Alpher y Herman calcularon que la “temperatura”, usada en este caso como medida de la energía, de la radiación remanente debía ser hoy de 5K. Para un recuento completo, ver Alpher y Hermann, 1990.
contactaron a Robert Dicke y a su grupo de Princeton. Años más tarde, Penzias y Wilson recibieron el Premio Nobel por el descubrimiento de la “radiación cósmica de fondo” (RCF).

En un encuentro realizado en L’Aquila (Italia) en 1990, para conmemorar el 25° aniversario del descubrimiento de la RCF, Dennis Sciama dijo de modo categórico que “el golpe de gracia contra la teoría del estado estacionario se produjo cuando se estableció el espectro térmico del fondo de radiación”. Dos puntos merecen ser mencionados al respecto. Primero, según Sciama la prueba crucial para la teoría del estado estacionario parece ser el descubrimiento de la RCF; segundo, la cuestión crucial, luego del descubrimiento, era la medición de su espectro.11 Ambos puntos son dignos de estudio detallado, especialmente viniendo de Sciama. Sin demeritar la importancia de la RCF, insistió en que fue la prueba de los cuásares ya discutida la que convenció a Sciama y a otros de que el estado estacionario era falso. Dos artículos pueden considerarse como la retractación oficial de Sciama. Uno de ellos publicado en New Scientist, y otro en Scientific American, con los títulos “Cuásar y cosmología” (1966) y “Cosmología antes y después de los cuásares” (1967), respectivamente. En ambos, Sciama discute en detalle la RCF, pero como el título lo indica, la prueba crucial eran los cuásares.

El segundo punto es aún más significativo. A partir del dictamen de Sciama se podría concluir que el espectro de la RCF fue establecido en las décadas de los sesenta o los setenta, y por tanto que era un buen argumento en contra de la teoría del estado estacionario. Sin embargo, como vamos a ver, la cuestión del espectro fue un problema que permaneció sin solución hasta 1990, aunque la mayoría de astrofísicos y radioastrónomos asumieron que el espectro era de un tipo especial llamado “de cuerpo negro” o “de Planck”, tal como lo predecía la teoría del Big Bang.

Las cantidades de helio en el universo predichas por Alpher y Herman estaban de acuerdo con los datos experimentales. Sin embargo, la teoría de estos tenía un problema grave: el mecanismo era incapaz de producir elementos más pesados que el helio. En otras palabras, ese modelo producía un universo constituido exclusivamente por núcleos de helio, sin algún otro elemento químico presente y, por supuesto, sin planetas, galaxias, estrellas y demás objetos que vemos a nuestro alrededor: evidentemente, ese universo no era el nuestro. El problema

11 Aquí se entiende que el espectro es la distribución de energía en cada frecuencia emitida, es decir, el patrón que caracteriza a cada tipo de radiación. Actúa pues, para estos propósitos, como un marcador de identidad del fenómeno.
permaneció sin solución hasta 1957, cuando Hoyle, Fowler, y Margaret y Geoffrey Burbidge publicaron un artículo mostrando que era posible producir elementos pesados en el interior de las estrellas. Dicho artículo fue conocido como B²FH (una notación química para identificar: dos Burbidge, un Fowler y un Hoyle, como ellos mismos explicaron posteriormente), en respuesta al artículo αβγ. 12

A pesar de que B²FH se convirtió en una referencia clásica en nucleosíntesis, reviviendo la alternativa de la teoría del estado estacionario, adolecía del problema contrario: era incapaz de producir helio en las cantidades requeridas.

El problema fue tratado por Hoyle y Bondi desde 1955 en una edición del Observatory, incluso antes del famoso artículo B²FH. Sin embargo, fue solo en 1963 cuando Hoyle consideró la cuestión como un problema grave para la teoría del estado estacionario. Llegó incluso a reconsiderar el universo de la Gran Explosión como la única alternativa posible para explicar la abundancia observada de elementos livianos. Muchos años después, Hoyle recordaba: “Preparando unas clases sobre cosmología en Cambridge en 1963-1964, decidí que el problema era tan grave que volver a la posición de Gamow era inevitable” (1997, p. 354).

En 1964, Hoyle abordó el problema del helio junto con su colega Roger Tayler. Ese mismo año, en un artículo publicado en Nature y titulado “El misterio de la abundancia cósmica del helio”, Hoyle y Tayler hacían notar que para producir las cantidades observadas de helio era necesario tener condiciones de alta temperatura. Una interpretación natural de esta asertación era que Hoyle estaba admitiendo, por fin, la necesidad de un Big Bang “caliente” para resolver el problema. Por tanto, a pesar de que la teoría sobre la formación de los elementos pesados en el interior de las estrellas estaba en buena forma, el artículo de 1964 ponía en claro ante los astrofísicos que “Hoyle y Tayler formalmente [habían] reconocido la formación del helio como un problema insuperable para el modelo del estado estacionario” (Alpher y Hermann, 1990, p. 140).

12 αβγ fue como se conoció el artículo de Alpher, Bethe y Gamow que precedió al trabajo de Alpher, Herman y Gamow comentado. El acrónimo fue en realidad una especie de tomadura de pelo: Gamow le pidió a Hans Bethe, físico nuclear amigo suyo, que firmara el artículo, para cuadrar las letras de modo que sonara perfecto para hablar del origen del universo, aunque Bethe no hubiese efectivamente colaborado. El episodio fue una manifestación del espíritu irreverente de los dos contrincantes cósmicos: Gamow y Hoyle.
Con todo, para Hoyle la aceptación de condiciones de alta temperatura no significaba una aceptación inmediata del universo del Big Bang. Hacía notar que esas mismas condiciones podían darse en regiones especiales de alta densidad de energía; regiones que debían ser buscadas. De esta manera, pensaba, era posible evitar la producción “cosmológica” de helio, introduciendo “objetos supermasivos” que actuaban como “pequeños big bangs”. Su sugerencia fue considerada como otra de sus hipótesis ad hoc, y nadie iba a ponerse a buscar estos objetos de Hoyle.

La radiación cósmica de fondo: el acto final

En junio de 1955, la revista New Scientist anunciaba el descubrimiento de la RCF en una nota titulada “¿Evidencia para el Big Bang?”. El autor de la nota no hacía referencia a ningún artículo técnico, sino a la historia de Walter Sullivan en la primera página del The New York Times, al comentar lo siguiente:

Investigadores de los Laboratorios Bell de Holmdel, New Jersey, han observado los que consideran podrían ser los restos de la ‘explosión que dio origen al universo’. Dándole aún más credibilidad al hallazgo, resulta que los científicos de la vecina Princeton University acaban de postular la existencia de lo que la gente de Bell ha encontrado —sin que la mano izquierda supiera lo que hacía la derecha, por así decirlo— (Simons, 1965, p. 645).

La independencia de ambos grupos es un aspecto ampliamente comentado en la literatura, lo mismo que el inesperado carácter del descubrimiento. No pretendo, por tanto, describir el descubrimiento de la RCF en 1965.13 Mi propósito aquí es abordar la manera en que los resultados fueron recibidos por diferentes actores en Cambridge. Más aún, quisiera que nos concentráramos en cómo se evitaran algunas de las dificultades en torno a la confirmación de un aspecto fundamental de la RCF hasta que fue establecido en 1990 por el satélite estadounidense COBE (Cosmic Background Explorer).

Ha sido relevado por uno de nosotros (PJEP) que la observación de una temperatura tan baja como 3,5K [el resultado de Penzias y Wilson], junto con la abundancia estimada del helio en la

protogalaxia, arroja evidencia importante sobre las posibles cosmologías [...] Es este el tipo de proceso entrevisto por Gamow, Alpher, Herman y otros (Dicke et al., 1965, cursivas añadidas).

Esta fue la única cita referente a Gamow que evitaba cualquier tipo de referencia a la predicción explícita de la RCF. Sin embargo, para los fines de este episodio, quiero enfatizar que entre los “otros” estaba el trabajo de Hoyle y Tayler; la omisión es una forma retórica sutil de cerrar puertas a competidores e interpretaciones alternativas, la llamare el recurso de “marginación tácita”, en la que se cita de forma general el artículo dentro de un paquete que se descarta (Episodio iv). Tal como mencioné antes, el artículo de Hoyle y Tayler fue usado como apoyo para un universo evolutivo. Fue, por tanto, un antecedente importante para la solución, formulada por Peebles y confirmada por Penzias y Wilson (en 1965). En consecuencia, aceptando los resultados del primero, la interpretación de los segundos implicaba el fin del esquivo problema del helio.

Justo después de ser anunciado por la prensa, el descubrimiento de Penzias fue publicado en Astrophysical Journal, la revista más importante del campo. ¿Cuál fue su impacto sobre la teoría del estado estacionario? En este punto es interesante notar la reacción de los radioastrónomos de Cambridge, los más furibundos opositores de la teoría del estado estacionario. El grupo de Ryle recibió el descubrimiento con entusiasmo. A diferencia de su actitud en relación con los resultados de Sydney de una década antes, no manifestó duda alguna sobre la veracidad de las mediciones de Penzias y Wilson, ni sobre la interpretación de Dicke y compañía. No es difícil imaginar las razones de su confianza. Primero, estaba la autoridad de Dicke entre los radioastrónomos, dadas sus contribuciones fundamentales durante y después de la Segunda Guerra Mundial. En particular, el “interferómetro de cambio de fase” de Ryle se basaba esencialmente en un dispositivo ideado por Dicke. Fue este quien dio la interpretación teórica a favor de un modelo cosmológico particular (el universo en expansión).

En segundo lugar, y presumiblemente para Ryle, las mediciones de la RCF no eran solo una confirmación de la teoría de la Gran Explosión. Con seguridad, él pensaba que esas mediciones, junto con la supuesta confirmación del “espectro de Planck”, apoyaban la idea de un universo evolutivo y, de paso, sus reclamaciones sobre los conteos de fuentes de radio. Ciertamente esta no es una conclusión lógica, dado que poner a prueba un modelo con un experimento y confirmar su validez no con-
firma la validez de cualquier otra prueba independiente. Necesitaba de una prueba para convencer a sus colegas de que sus experimentos eran válidos también, y la RCF era un buen cedazo.

En tercer lugar, aparte de Robin Shakeshaft, joven investigador del Laboratorio Cavendish en Cambridge, nadie poseía el bagaje necesario para hacer o comentar en detalle las mediciones de Penzias y Wilson (estudios de emisión continua de nuestra galaxia). En este aspecto es interesante notar que, aunque “los primeros artículos en este tema [RCF] dieron origen a un trabajo considerable por parte de los radioastrónomos, las técnicas usadas provenían más de la tradición del trabajo con el fondo galáctico que con la investigación de fuentes de radio” (Edge y Mulkay, 1976, p. 297). Esto explica por qué solo Shakeshaft publicó un par de artículos de carácter técnico sobre el tema después de 1965. El más significativo fue un trabajo conjunto con un estudiante, T. F. Howell, quien, tal como lo explicó en su disertación doctoral, realizó mediciones para “demostrar la existencia de la radiación de microondas”.

Quiero enfatizar que esta actitud, por parte de los radioastrónomos de Cambridge, era generalizada:

Tal vez la comunidad estaba cansada, luego de una década de disputas en conteos de fuentes de radio, e incluso mucho antes de que fueran resueltos, y estuvo encantada de pasar a una evidencia enteramente nueva y diferente suministrada por la radiación de fondo (Sullivan III, 1990, p. 344).

Miremos, para terminar, la recepción de los resultados de Penzias y Wilson entre los asociados de Hoyle. Es significativo que sus alertas sobre algunos aspectos oscuros en la RCF no fueran tomadas en consideración, en particular, sus dudas sobre el carácter “de Planck” de su espectro.

El principal argumento de Hoyle a favor de la existencia de pequeños big bangs (en estrellas supermasivas) era una “extraordinaria coincidencia” que él mismo hizo notar desde entonces y hasta el presente. Si el helio observado había sido producido en las estrellas, el consiguiente despliegue de energía, en caso de que esta estuviera “termalizada” (y este era el problema crucial en la explicación alternativa de Hoyle acerca del origen de la RCF), tendría una temperatura del orden de 3K (Hoyle, 1990, p. 174). En consecuencia, no era necesario un primer big bang caliente para explicar la radiación de fondo detectada por Penzias y Wilson. Una vez más, sus objetos locales podían producir ese fenómeno con una enorme cercanía entre sus predicciones y los datos experimentales.
Siguiendo esta indicación, Chandra Wickramasinghe, otro estudiante de Hoyle, junto con el ya doctor Jayant V. Narlikar exploraron las posibilidades de termalizar la radiación saliente producida en objetos masivos. Sugirieron gránulos de grafito, material que Wickramasinghe había estudiado como posible absorbente estelar para la explicación de la “ley de extinción interestelar”. El problema era que los gránulos de grafito en el medio interestelar no habían sido detectados en las proporciones requeridas por la teoría. Un programa observacional se requería para su hallazgo, pero nadie se hizo cargo de llevarlo a cabo: los termalizadores, como había sucedido con los “objetos supermasivos”, fueron considerados innecesarios y, por tanto, ignorados. Hoyle, sin embargo, permaneció firme en su convicción. En 1990, McCrea le preguntó: “¿Cuál cree usted que es el mejor test observacional de su modelo?”. Hoyle respondió: “el objetivo inmediato sería demostrar mediante observaciones la existencia de partículas en capacidad de termalizar el fondo de microondas”.

La introducción del grafito, sin embargo, presentaba otro problema: el espectro predicho, luego de la termalización, no era de Planck. El asunto central era si la RCF tenía o no un “espectro de cuerpo negro”. Si era así, la explicación de la teoría de la Gran Explosión era prácticamente obligatoria; de otra forma, el origen cosmológico de la radiación no resultaba tan obvio. En un artículo de Nature (1968), Hoyle y sus colaboradores escribían: “Es de interés a este respecto que Partridge y Wilkinson han reportado recientemente un pequeño aumento en la radiación de fondo en la longitud de onda de 3,2 cm desde una región del cielo que está cerca del plano galáctico”. Y concluían:

Si el proceso anteriormente mencionado tiene lugar en un universo Big Bang, no podemos ver cómo la curva combinada de este proceso más la radiación primordial de cuerpo negro pueden conducir a una curva de cuerpo negro puro. Nuestra opinión es que la explicación de “cuerpo negro” ha sido establecida extraoficialmente (Narlikar y Wickramasinghe, 1968, p. 1235).

¿Había sido en realidad establecida extraoficialmente la explicación de cuerpo negro? Aunque había buenas razones para creer que la RCF era una radiación como “de cuerpo negro”, las medidas habían sido realizadas solo en un pequeño rango de frecuencias, denominada “región de Rayleigh”. El pico de la curva de Planck, así como la región de los submilímetros, eran difíciles de explorar en la segunda mitad de los años sesenta por dos razones: primero, se trata de una región de emi-
sión del vapor de agua atmosférico y de las moléculas de amoníaco, por lo cual sería necesario usar globos y cohetes (como de hecho ocurrió más tarde); y segundo, debido al posible uso militar de la espectroscopía milimétrica (en particular para la tecnología de radar), muchas de las técnicas instrumentales eran secretas.

¿Y qué podemos decir sobre la evidencia en la región de conflicto (o de Jeans, como se la conoce)? Hasta donde puedo establecer, había algunos grupos que reportaban distorsiones. Por ejemplo, K. Shivanandan y E. O. Hulbert, del US Naval Research Laboratory en Washington, junto con J. R. Houck y M. O. Harwit, del Centro Astronómico de la Universidad de Cornell-Sidney, encontraron resultados inesperados procedentes del bolómetro infrarrojo de estado sólido al ser volado a bordo de un cohete Aerobee. En longitudes de onda comprendidas entre 0,4 y 1,3 mm, la magnitud del flujo de energía era casi el doble de lo requerido para concordar con $T = 3K$. En otras palabras, la desviación era significativa. Los investigadores anotaron que la existencia de una señal indeseada procedente del telescopio era poco probable. Sin embargo, eran igualmente cautelosos al señalar que sus “resultados aún eran preliminares” (Shivanandan, Hulbert, Houck y Harwit, 1968, p. 233). Tres años más tarde, el investigador principal de nuevo hacía notar que la radiación en el infrarrojo era superior a la predicha por el espectro de Planck. Otro grupo, liderado por Partridge en 1971, decidió que en lugar de insistir en una medición que parecía todo menos prometedora, consideraría la prueba de isotropía como una mejor opción. La primera prueba estadounidense del espectro de la RCF que usó un globo tampoco funcionó. Estaba diseñada para trabajar en la región submilimétrica, cerca del pico de la curva. Este grupo encontró un pequeño exceso en el flujo de energía. Eso implicaba una distorsión en el espectro esperado de Planck. El resultado fue reportado aunque, como John Mather –líder del equipo– evocaría después, “nunca creímos [en él]” (Mather y Boslough, 1996, p. 58). El espectro debía ser de Planck si la explicación de la teoría del Big Bang era correcta, y toda evidencia contraria fue sistemáticamente ignorada. Tanto así que el equipo nunca comprendió por qué la señal era mayor, responsabilizando al instrumento de la distorsión (Mather y Boslough, 1996).

Cuando la RCF obtuvo la atención de la comunidad científica, Hoyle había gastado más de quince años defendiendo la teoría del estado estacionario, dando explicaciones ingeniosas y plausibles a la evidencia empírica en contra de su modelo. Ahora la comunidad astrophísica había llegado a la conclusión, como afirmó Chandrasekhar,
de que: “La interpretación, en lo concerniente a la cosmología, es que Einstein tenía razón y los teóricos del estado estacionario estaban equivocados” (citado en Simons, 1965, p. 261). Además Hoyle “no estaba en un estado mental suficientemente combativo como para defender la teoría estacionaria cuando el fondo de microondas fue descubierto en 1965” (Hoyle, 1982, p. 28). Ese fue el fin de la teoría del estado estacionario, que murió bajo el umbral de la cosmología moderna.

Conclusión

Un paradigma se entiende como categoría sociológica, y no exclusivamente epistemológica. Esta aclaración es esencial, puesto que la primera implica un elemento crucial que la segunda ignora: el papel de la comunidad para la supervivencia de una teoría. Este punto se vuelve decisivo para comprender la diferencia entre la teoría del estado estacionario en el periodo 1948-1970, y la teoría de la Gran Explosión luego de 1965.

La teoría del estado estacionario era, ciertamente, una teoría especulativa en el sentido de que postulaba conceptos, procesos físicos y entidades que no habían sido observados. Solo para mencionar aquellos tratados en este ensayo, estaban el principio cosmológico perfecto, la creación continua de materia, los pequeños big bangs y los termalizadores. Sin embargo, esta no es una característica exclusiva de dicha teoría. De hecho, la teoría del Big Bang introdujo en los últimos treinta años varios elementos “exóticos” para poder concordar con los datos experimentales: los universos-burbuja sugeridos por Andrei Linde, la energía de vacío, necesaria para producir una época inflacionaria, y la exótica materia oscura necesaria para “cerrar el universo”. Los astrofísicos de altas energías y los astrónomos consideraron estos ajustes como desarrollos de la teoría canónica del Big Bang. Al contrario, cuando Hoyle y colaboradores introdujeron “correcciones” al modelo original, estas fueron juzgadas como hipótesis ad hoc. Hasta que un modelo no se convierte en un paradigma compartido por toda una comunidad que lo usa para resolver distintos problemas, cualquier desarrollo para explicar nuevos fenómenos es considerado como un truco para salvar el modelo. La personalidad de Hoyle, y su abierto enfrentamiento con astrónomos fue un factor crucial para que se le cerraran las puertas de las pruebas positivas.
Todas las pruebas de la teoría del estado estacionario fueron “severas”, en el sentido de Popper. En el caso de los conteos de fuentes de radio, tuvieron sus raíces en la disputa entre los teóricos y los radioastrónomos. En el caso de los cuásares y de la RCF, ocurrió que ambas novedades empíricas surgieron simultáneamente con el establecimiento de la relatividad general como una teoría cosmológica paradigmática. En consecuencia, a los teóricos del estado estacionario les faltó integración con la comunidad experimental, y el advenimiento de nuevos fenómenos asociados con una creciente confianza en la teoría rival impidió a la teoría del estado estacionario encontrar test “positivos”. Ni un solo experimento se dedicó a la tarea de buscar las entidades predichas por la teoría del estado estacionario, así que el aspecto sociológico de este episodio, pasado por alto por los historiadores de la cosmología, no se limita al contexto del descubrimiento sino que desempeña un papel importante también en el contexto de la justificación (ver Introducción).

La teoría del estado estacionario es un extraordinario ejemplo de un programa popperiano en acción. Mirando la suerte que corrió la teoría a lo largo de más de veinte años, se puede concluir que si la ciencia procediera siguiendo el método de Popper, toda teoría sería abortada. En los siguientes episodios veremos dos casos en los cuales las circunstancias políticas y sociológicas de nuevo atentaron contra interpretaciones alternativas de resultados experimentales que cambiaron la forma de ver el mundo físico. En este caso nos moveremos al mundo de la cuántica y las partículas subatómicas.
Episodio III

El caso Tausk: orfandad y suicidio científico de un disidente

En este episodio\(^1\) veremos las consecuencias de no saber que para entrar en las polémicas no es suficiente creer, o saber, que se tiene razón. Hay que saber decirlo, o sea, conocer los códigos retóricos y sociales. De lo contrario, como en el caso de Hoyle, se puede terminar abortando la propia propuesta por falta de aliados. El “caso Tausk” es más extremo, porque se trata de un joven científico que habla desde muy lejos de un “centro de cálculo” como Cambridge. Esa posición lo invisibilizó al punto de que esta polémica, hasta ahora desconocida, llevó a su protagonista al suicidio científico, con lo cual desapareció un joven y brillante físico.

Klaus Stefan Tausk nació en Graz, Austria, en 1927, y emigró con su familia judía a São Paulo, Brasil, en 1938. Su nombre es prácticamente desconocido entre los físicos e historiadores de la ciencia. Sin embargo, fue uno de los participantes —aunque prematuramente marginalizado— de una controversia que ayudó a establecer el campo de los fundamentos de la mecánica cuántica. En 1966, mientras estaba en Trieste, Italia, distribuyó un informe que criticaba, con algunos argumentos originales, un documento de Adriana Daneri, Angelo Prosperi y Giovanni Loinger (Tausk, 1966; Daneri, Loinger y Prosperi, 1962). El artículo de Tausk produjo una acalorada controversia que llegó más allá del tema estrictamente científico. A la postre, el trabajo de Tausk fue ignorado y olvidado, aún por quienes lo utilizaron para presentar sus propias interpretaciones.

¿Por qué sucedió esto? En nuestra opinión, la falla de Tausk puede ser atribuida a su descuidado estilo de “tecnología literaria” (Shapin, 1984) y a su inhabilidad social para enrolar aliados de sus ideas. Por otra parte, su falta de éxito también estuvo condicionada por las cir-

\(^1\) Es una versión adaptada de Pessoa, Freire y De Greiff, 2008.
cunstancias del debate que se estaba llevando a cabo en el campo de los fundamentos de la mecánica cuántica, por la poca legitimidad de la cual este tema gozaba entre la mayoría de físicos de esa época y también por la controvertida reputación —debido a su política de publicación— de la institución que imprimió e hizo circular el documento de Tausk.

Recordemos, una vez más que, como ha dicho McMullin (1987, p. 60), una controversia científica es mucho más que un problema lógico; implica rasgos de personalidad y otras contingencias históricas.\(^2\) De ahí que para comprender la controversia de Tausk, como en los otros casos en este libro, examinemos no solo los temas científicos que están en juego, sino también las circunstancias históricas e ideológicas del momento.

La teoría cuántica ha sido especialmente controvertida: en los debates entre Bohr y Einstein (1927-35), en la Unión Soviética y en los cincuenta, especialmente luego de la aparición de la “interpretación causal” de David Bohm, en 1952, que presentó un marco de determinación con base en “variables ocultas”. Esta última controversia se incrusta en el contexto político de la Guerra Fría\(^3\) que, como veremos, también afectó la de Tausk.

Antecedentes científicos

La discusión alrededor del documento de Tausk implica el llamado “problema de medida”, uno de los principales temas de los fundamentos de la mecánica cuántica (Cushing, 1994; Mullet, 1999; Olwell, 1999; Freire, 2005). En la década de los cincuenta, dos amplios puntos de vista dividieron a los físicos teóricos que se interesaron en el problema. Dejando a un lado propuestas más heterodoxas, como la interpretación causal de Bohm o la de Hugh Everett, de 1957, relacionada con la interpretación de estado, los dos campos “ortodoxos” fueron los que explicamos a continuación.

Por una parte, físicos como John von Neumann, Georg Süßmann y Eugene Wigner describieron el aparato de medida utilizado en experimentos de mecánica cuántica de manera exacta (es decir, sin aproximaciones), como un sistema cuántico. Este tratamiento, algunas veces

\(^3\) Ver Cushing, 1994; Mullet, 1999; Olwell, 1999; Freire, 2005.
llamado la “interpretación de Princeton”, aplicaba la ecuación de Schrödinger (u otra equivalente que describiera un estado de evolución “unitario”) al sistema compuesto, que consiste de un aparato y un objeto cuántico, y concluía que esa descripción era insuficiente para tener en cuenta todos los aspectos del proceso de medida.

Por otra parte, después de la Segunda Guerra Mundial, físicos como Niels Bohr, Pascual Jordan, Günther Ludwig, Paul Feyerabend, H. S. Green, Angelo Loinger, Giovanni Maria Prosperi y Leon Rosenfeld, entre otros, sostenían que el proceso de medida podía ser descrito adecuadamente por una mecánica estadística de procesos cuánticos, que sería equivalente a un enfoque termodinámico. Los físicos involucrados eran íntimamente cercanos a la ortodoxa “interpretación de Copenhague”, que se centraba alrededor de la noción de “complementariedad” (véase Jammer, 1974, pp. 86-107 y 197-211), pero su propuesta implicaba una modificación del punto de vista original desarrollado por Bohr, Werner Heisenberg y Wolfgang Pauli entre 1928 y 1935.

El trabajo más ambicioso sobre amplificación termodinámica fue la teoría propuesta, en 1962, por Daneri, Loinger y Prosperi (DLP), del Istituto Nazionale di Fisica Nucleare, sección Milán. Dicho trabajo fue publicado en la revista Nuclear Physics, editada por Leon Rosenfeld. Rosenfeld aprobó la investigación de DLP e hizo énfasis en su importancia para el así llamado “problema de ergodicidad” (Rosenfeld, 1965, pp. 225 y 230; Daneri, Loinger y Prosperi, 1962).

La teoría de DLP fue el resultado de una serie de investigaciones emprendidas desde finales de los cincuenta por físicos teóricos italianos, como los mismos Loinger y Prosperi, además de Pietro Bocchieri y Antonio Scotti, de Pavia y Milán, respectivamente, sobre el teorema ergódico y sus aplicaciones en mecánica estadística y mecánica cuántica. Específicamente, la investigación de una solución más real para el problema de medida, en oposición a la dada por von Neumann, estaba inspirada por la influencia directa del físico teórico italiano Piero Caldirola, que ayudó a popularizar la teoría DLP. Hay que agregar que el trabajo de DLP, a juzgar por el número de citaciones que registra, fue recibido por la comunidad de físicos teóricos con mucho interés.\footnote{Caldirola, 1965. Ver también Garuccio y Leone, 2002. Un trozo de evidencia sobre el interés en el artículo de DLP es el hecho de que había recibido, hasta junio de 2003, más de 140 citaciones en revistas científicas indexadas (fuente: ISI-Web of Science).}

\footnote{Esta expresión fue usada por Ballentine, 1970, p. 360, pero no aparece en Jammer, 1974.}
Sin embargo, lentamente, el enfoque termodinámico declinó, básicamente por dos razones, la primera de las cuales estaba compuesta por los argumentos presentados por Wigner (1963) y otros, basados en las pruebas de insolubilidad, que se mencionaron antes. La segunda razón fue dada originalmente por Tausk (1966) y más tarde por Jauch, Wigner y Yanase (1967), y estaba basada en las “medidas de resultado cero”, examinadas por Mauritius Renninger.6

Aun cuando el argumento de Tausk, —basado en medidas de resultado cero, y visto por muchos (ver Jauch et al., 1967) como un argumento demoledor contra DLP—, Loinger (1968) defendería su teoría, demostrando que no era necesario que se tuviera una amplificación (Loinger, 1968; Dicke, 1981) del tipo criticado por los defensores del modelo alternativo.

Tausk en Trieste

Habiendo trazado un bosquejo de los campos, pasemos a examinar la participación de Tausk en este oscuro episodio. Tausk estudió física en la Universidad de São Paulo, en el período 1947-51. Luego trabajó en experimentos con rayos cósmicos en el American Kurt Sitte. Conoció a David Bohm, que trabajó en la Universidad de São Paulo desde octubre de 1951 hasta enero de 1955. Klaus afirma que la interpretación causal de Bohm no influyó en él, puesto que en esa época él no tenía un conocimiento adecuado de la mecánica cuántica.7 Después de unos pocos años alejado de la física, Tausk comenzó su investigación de posgrado en 1958, que incluyó un viaje a Hamburgo (1959-60) para trabajar con Harry Lehman en el campo de la teoría cuántica. Allí conoció a Georg Süßmann, quien laboraba en Frankfurt y estaba haciendo una investigación significativa sobre la teoría de la medida de la mecánica cuántica (Süßmann, 1958).

De regreso a São Paulo, en 1962, Tausk leyó un documento de Hitoshi Wakita (1960) sobre el problema de la medida y se interesó en el tema. Luego conoció la investigación de Renninger (1960) sobre “medidas de resultado cero”, que usaría en la crítica que llevaría a la controversia estudiada en este episodio.8 En ese momento, Tausk tam-

8 Para una discusión del argumento de Renninger, ver Jammer, 1974, pp. 495-496.
bién comenzó a cuestionar la interpretación ortodoxa (especialmente la versión de Copenhagen), y procedió a trabajar sobre el problema de medidas.

En 1965, Tausk escribió a Abdus Salam, director del International Centre for Theoretical Physics (ICTP) en Trieste, y se le concedió una beca. Fue presentado como un aspirante a doctorado del físico teórico brasileño Mario Schönberg, uno de los más renombrados científicos del Brasil en esa época. El ICTP había sido creado en junio de 1963, como un instituto de la Agencia Internacional de Energía Atómica, con el apoyo de la Unesco y el gobierno italiano. El ICTP estaba en una posición delicada en ese tiempo, porque fue fundado con fuerte oposición de India, la Unión Soviética, Estados Unidos y la mayor parte de los países desarrollados. El director de la Agencia Internacional de Energía Atómica, Sigvard Eklund, era amigo de Rosenfeld. Durante las negociaciones para la creación del ICTP en Trieste, Rosenfeld había propuesto a Copenhagen como sede alternativa del instituto. Los físicos daneses pensaban que la Agencia Internacional de Energía Atómica debía apoyar instituciones regionales como el Nordisk Institut for Teoretisk Atomfysik (Nordita), en Copenhagen, y eran escépticos sobre la importancia de sostener la física teórica para el desarrollo del Tercer Mundo (De Greiff, 2002).

Tausk estuvo en Trieste un año, desde mediados de 1965 hasta finales de septiembre de 1966. Fue aceptado para trabajar en una propuesta de investigación sobre la teoría cuántica pero, de hecho, lo que hizo fue continuar sus estudios sobre el problema de la medida. Al final de su estadía, terminó un documento titulado “Relación de medida con ergodicidad, sistemas macroscópicos, leyes de información y conservación”, en el cual criticaba duramente el documento antes mencionado de Danieri, Loinger y Prosperi (1962), así como la interpretación ortodoxa (especialmente la versión presentada en Heisenberg, 1958). También criticó una nueva reimpresión del grupo milanés, que circuló en febrero de 1966 (Tausk, 1966; Daneri, Loinger y Prosperi, 1966). El documento de Tausk fue escrito como tesis para la International Advanced School of Physics, subdivisión del ICTP, dirigida en esa época por Luciano Fonda,9 y comenzó a circular en agosto de 1966.

Como miembro del Centro, Tausk tenía el derecho de exigir que su documento fuera mecanografiado y que fueran impresas cincuenta copias como un “informe interno” del ICTP, sin que nadie lo revisara.

También agregó una carátula del ICTP, lo que en cambio no era un procedimiento usual para un estudiante sin aprobación del ICTP. Más tarde se excusó, aduciendo su “ignorancia de los reglamentos, una serie de malos entendidos y la ausencia de parte del personal del Centro en esos días [...]” (Tausk, 10 de octubre de 1966).

Distribuyó el documento a unos cuantos físicos, incluidos Süssmann, Daniele Amati (físico argentino que había estudiado unos pocos años en Río de Janeiro y trabajaba en Trieste), Jeffrey Bub (Universidad de Minnesota) y Jean Pierre Vigier, de París, a quien Tausk había conocido en São Paulo cuando el físico francés —conocido también por su posición marxista— fue a trabajar con Bohm, en 1954. Tausk había vuelto a ver a Vigier en Trieste y le habían ofrecido trabajar con él y Louis de Broglie en el Instituto Henri Poincaré de París, sobre teoría de la medida.

También se lo envió a Loinger, quien a la sazón estaba en la Università degli Studi di Pavia, y llegó a manos de Rosenfeld, quien trabajaba en Nordita, en Copenhague. Como anotamos antes Rosenfeld había escrito un texto en el que defendía explícitamente la teoría DLP, que también fue criticado por Tausk. Tanto Loinger como Rosenfeld no solo rechazaron el trabajo de Tausk, sino que consideraron el documento un ultraje por parte del joven físico. Daneri et al. (1967) consideraron su propio trabajo como “un complemento indispensable y una coronación natural de la estructura básica de la actual mecánica cuántica” y estaban convencidos de que “los siguientes progresos en este campo de investigación consistirán, esencialmente, en refinamientos” de su aproximación. No sobra anotar que los aspectos retóricos de esa afirmación inmodesta son de enorme poder al confrontar al joven estudiante. Tausk (1966), en contraste, concluyó que, al contrario de la tesis DLP, “no se ha establecido la relación entre ergodicidad y reducción de estado”, señalando una clase de medidas, las medidas de resultado cero de Renninger, “para las cuales las consideraciones de ergodicidad son obviamente irrelevantes”. “Afirmaciones recientes hechas por los mismos autores [...] y L. Rosenfeld [...], quien sostiene que su enfoque es de importancia fundamental, son, por consiguiente, contradictorias”.

10 He omitido los detalles técnicos del artículo de Tausk. Para aquellos interesados en el tema, pueden ver el apéndice del artículo original en el que se basa este episodio (Pessoa, Freire y De Greiff, 2008).
Los ataques de Loinger y Rosenfeld

El primero en reaccionar públicamente contra el documento de Tausk fue Loinger, quien escribió una carta abierta (Loinger, septiembre 9, 1966) a Gilberto Bernardini, presidente de la Società Italiana di Fisica (SIF), en la que solicitaba que fuera publicada en el Bollettino della SIF. En esa carta, escrita en italiano, deploraba el creciente número de documentos anodinos que aparecían de diferentes instituciones (tenía en mente, especialmente, el ICTP de Trieste) y que eran sometidos a Il Nuovo Cimento, la revista oficial de la SIF. Después ofrecía dos sugerencias a la Sociedad. Primero, Il Nuovo Cimento debía publicar título, autor e institución de todos los documentos rechazados por el periódico, como manera de obligar a las instituciones a controlar la cantidad de documentos innútiles que se estaban produciendo. Segundo, el SIF debía constituir un antiprize (antipremio) para los peores documentos preparados en Italia! Y su sugerencia era que el documento de Tausk “no debía poder escaparse del primer antipremio”.

El ataque de Loinger estaba dirigido no solo al artículo crítico de Tausk, sino también al ICTP. Más o menos al mismo tiempo, había enviado una carta abierta (Loinger, septiembre 22, 1966) a la revista italiana L’Europeo, de amplia circulación entre círculos políticos e intelectuales, en la que cuestionaba el apoyo financiero dado por el gobierno italiano al ICTP y criticaba el dudoso rigor de las investigaciones originadas en el Centro. La opinión de que el ICTP no ejercía ningún control sobre sus documentos era un consenso entre físicos europeos y estadounidenses. De hecho, esta falta de control interno era intencional: Salam, director del ICTP, quería llevar al máximo las oportunidades de publicación de los científicos del Tercer Mundo.11

El 20 de septiembre, Rosenfeld escribió una carta a Salam, llamando su atención sobre el documento de Tausk. La comunicación comenzaba tácita, pero claramente, cuestionando la política de publicaciones adoptada por el ICTP: “Del inagotable flujo de documentos de su Instituto, el otro día recogí uno con el, de alguna manera, rimbombante título ‘Relación de medidas con ergodicidad, sistemas macroscópicos, leyes de información y conservación’ por un tal K. S. Tausk” (Rosenfeld, septiembre 20, 1966). Ciertamente, semejante introducción de una autoridad como Rosenfeld, que había levantado dudas sobre la

creación del ICTP en Trieste, era una amenaza intimidatoria para Salam, que estaba empeñado en demostrar que su instituto merecía apoyo por sus logros científicos.

La carta de Rosenfeld continuaba con una diatriba inmisericorde:

Es una basura tan increíble, que difícilmente puedo creer lo que leen mis ojos. Sentí que debía escribirle a usted en el evento (espero) de que esta obra maestra haya escapado a su atención [...] El autor es, supongo, muy joven e inexperto; una buena cosa que usted podría hacer por él, puesto que presumiblemente lo conoce mejor que yo, sería hacerle caer en la cuenta de que, antes de asumir tan fácilmente que las trivialidades que llenan este documento pudieron ser pasadas por alto por personas tales como Niels Bohr y Heisenberg, él podría reflexionar sobre si él es quien ignora de lo que trata el asunto.

Vale la pena observar, de nuevo, la referencia a una posible falta de control en el ICTP en relación con sus publicaciones.

Una semana más tarde, Salam le responde a Rosenfeld: "quiero presentarle mis más sinceras excusas por el documento del señor Tausk que le llegó a usted". Explicó las reglas para publicaciones en el ICTP y cómo Tausk le puso la carátula a su informe interno.

El señor Tausk es un alumno especial de Mario Schönberg en Brasil. Todavía no he tenido oportunidad de conocerlo. Debe dejar el Centro al final de este mes, para unirse al grupo Vigier en París. Le pediría a usted que considerara este episodio como parte de las viejas batallas y, en ningún caso, como la expresión de la opinión de este Centro (Salam, septiembre 26, 1966).

El ICTP cerraba así sus puertas para que Tausk atacara desde Trieste; Tausk quedaba institucionalmente huérfano.

Las “viejas batallas” a las que se refiere son las controversias relacionadas con las interpretaciones de la teoría cuántica. Rosenfeld, finalmente, se apaciguó:

Sin embargo, puesto que claramente es un caso de falta de atención, sin mala intención de su parte, pienso que no debemos ser muy severos con él y, mejor, minimizar todo el asunto sin mencionarlo más. Me complace saber (por el bien del Centro) que el documento de Tausk no recibirá más publicidad por parte del Centro, pero no me hago ilusiones sobre lo que el grupo de Vigier hará con él. Sin embargo, esta es otra historia (Rosenfeld, octubre 4 de 1966).
Por su parte, Rosenfeld se encargaba de echarle llave a la puerta que Salam había cerrado. Este fue el comienzo del aislamiento de Tausk: su documento había sido marginado de la controversia. Quedaba, no obstante, una base sin cubrir: el grupo de Vigier.

La defensa de Bohm, Jauch y la marginación explícita

Mientras tanto, Fonda, director de la *International Advanced School of Physics*, escribió a dos renombrados expertos en los fundamentos de la mecánica cuántica, para pedirles su opinión. El 26 de septiembre, David Bohm, entonces en el Birkbeck College, Universidad de Londres, escribió a Fonda una breve carta manuscrita (con copias a Salam, Tausk y Paolo Budini, entonces subdirector del ICTP): “He leído el documento del doctor [sic] Tausk y pienso que lo que escribe es correcto. Sugeriría que lo publicara en un artículo resumido” (Bohm, septiembre 26, 1966). Una semana después le escribió a Tausk una carta mecanografiada de tres páginas, en la cual aclaraba “la confusión entre el individuo y el conjunto, que está contenida en el argumento de DLP” (Bohm, octubre 1.º, 1966). Podríamos preguntarnos si el apoyo de Bohm fue útil o, más bien, despertó más dudas sobre el trabajo de Tausk. Dada su posición heterodoxa relacionada con los fundamentos de la mecánica cuántica, la opinión de Bohm podría no haber tenido mucho peso en ese momento para la mayoría de los científicos interesados en el tema, y si lo tuvo, fue negativo.

El otro árbitro fue Josef Maria Jauch, de la Universidad de Ginebra, Suiza. Estuvo de acuerdo en que “una crítica del documento de Daneri *et al.* con seguridad es muy útil”, y coincidió con la conclusión de Tausk de que “ninguna conexión entre las propiedades ergódicas del aparato de medida y la reducción de estado ha sido establecida por DLP” (Jauch, octubre 4, 1966). Sin embargo, Jauch encontró que ciertas afirmaciones del documento de Tausk no eran muy claras, que unos cuantos argumentos estaban mal construidos y se quejó sobre la falta de referencias más completas (artículos de Wigner, 1963, y Jauch, 1964). “En conclusión, debo decir que yo no permitiría que un documento en esta forma saliera de mi instituto. Por otra parte, la crítica a Daneri *et al.* es necesaria y podría ser hecha de una manera más objetiva y digna en varios aspectos” (Jauch, octubre 4, 1966).

Tausk habló con Salam, quien le mostró la carta de Rosenfeld. Tausk escribió a Rosenfeld asumiendo la responsabilidad por haber roto las reglas de publicación del ICTP, pero agregó:

Afortunadamente para mi reputación, su opinión sobre mi documento no es universal entre quienes le han dado una seria consideración al problema de la medida: el Prof. David Bohm cree que lo que escribí es correcto y me ha recomendado publicarlo. El Prof. Louis de Broglie me ha enviado uno de sus libros con la inscripción “con el homenaje del autor”, cuando acusa recibo del documento. Una carta del Prof. G. Süßmann contiene lo siguiente: “He leído con gran interés su trabajo. Lo que usted dice sobre DLP y el comentario de Rosenfeld me parece completamente evidente (Tausk, octubre 10, 1966).”

En vista de las cartas de los dos árbitros (Bohm y Jauch), Amati, Budini y Fonda, a nombre de la International Advanced School of Physics, escribieron una carta abierta (en italiano) a la Società Italiana di Fisica, argumentando contra la institución de un antipremio para el peor documento, especialmente porque

fácilmente podría ser causa o efecto de asuntos personales. Por ejemplo, el trabajo de Tausk, señalado por Loinger como merecedor del antipremio del año, contiene una severa crítica de un documento del mismo Loinger, elaborado con participación de Daneri y Prosperi (Amati et al., octubre 11, 1966).

Luego hacen referencia al documento de Tausk, y resumen las opiniones de Bohm y Jauch. Loinger replicó agriamente a la “terrible carta abierta” de Amati, Budini y Fonda, manteniendo su posición original y diciendo que “si Bohm y Jauch realmente declararon, con relación a la mencionada obra maestra, lo que Amati, Budini y Fonda afirman, entonces perdieron una excelente oportunidad de quedarse callados” (Loinger, octubre 20, 1966).

Fonda, por su parte escribió la siguiente carta a Tausk:

He recibido la respuesta de Jauch y veo que está de acuerdo con usted sobre su crítica al documento de Loinger. Conuerdo con el profesor Budini en que su documento será apoyado por la Advanced School of Physics; sin embargo, en ese caso queremos que usted tenga en cuenta las sugerencias y críticas del profesor

Jauch sobre su manuscrito. Una vez lo haya revisado, por favor envíemelo y yo lo remitiré a la revista que usted prefiera (Fonda, octubre 17, 1966).

Tausk afirma que nunca recibió la carta de Jauch y, por consiguiente, no revisó el manuscrito ni lo volvió a enviar a la *International Advanced School of Physics*. Sin embargo, remitió el artículo a la *American Journal of Physics*, donde fue rechazado por dos árbitros.

Tausk en el contexto de la disputa Wigner-Rosenfeld y los esfuerzos por vetarlo

Las reacciones airadas de Loinger y Rosenfeld ante el escrito de Tausk no pueden ser totalmente comprendidas sin referirse al contexto de la disputa en la que estaban liados estos dos físicos justo cuando el documento de Tausk comenzó a circular. El programa de amplificación termodinámica para solucionar el problema de la medida, que se presentó entre los años cincuenta y comienzos de los sesenta, llegó a su forma más desarrollada con el trabajo DLP y con el apoyo dado por Rosenfeld. Sin embargo, este programa fue criticado por unos pocos teóricos, especialmente por Wigner, quien siguió los lineamientos de von Neumann en la descripción del aparato de medida como un sistema cerrado de la mecánica cuántica, y quien sugirió que la consciencia humana tendría un imprescindible papel en la reducción del “paquete de ondas”.

Daneri *et al.* publicaron su segundo documento en 1966, como respuesta a esta y otras críticas, subiendo la temperatura de la controversia cuando afirmaron que autores como Wigner, Abner Shimony, P. A. Moldauer, Yanase y Jauch no habían presentado nuevas contribuciones importantes al problema de la medida. Este documento de los físicos italianos, citado y criticado en el documento de Tausk, irritó a Wigner, como se puede ver en la siguiente carta a Jauch:

> Acabo de terminar de leer el artículo de Daneri, Loinger y Prosperi en la entrega de julio de *Nuovo Cimento* y realmente estoy un poco irritado. Primero que todo, no es de buen gusto decir que una serie de artículos no hacen contribuciones substanciales a un tema. Sobra decir que estoy menos preocupado por mí que por otras personas que son mucho más jóvenes que yo y cuyas carreras futuras pueden ser lesionadas por esas afirmaciones [...]. También me entristece el apoyo de Rosenfeld al artículo que, después de todo, considera axiomático que los sistemas
macroscópicos solo tengan estados que pueden ser descritos por la mecánica clásica. Naturalmente, esto está en conflicto con la mecánica cuántica (Wigner, septiembre 6, 1966).14

Wigner estaba preocupado por las carreras de Yanase y Shimony, a quienes había servido como asesor doctoral. De ahí que, con Jauch, elaborara la respuesta enviada al \textit{Nuovo Cimento} en diciembre de ese año.

La percepción de la intensidad de la disputa es evidente en las palabras de Otto Robert Frisch, físico experimental, en una conferencia abierta dada en 1968, en una reunión sobre los fundamentos de la teoría cuántica:

Entiendo que en el momento existe una controversia, claramente hablando, entre un grupo de personas que incluye a Wigner como el más conocido y otro grupo en Milán (DLP), y que tienen diferentes opiniones sobre cómo esta reducción (de la función de onda durante una medida) sucede (Frisch, 1971, p. 14).

La aspereza de la disputa que enfrentó a Wigner, por un lado, y a Rosenfeld, por el otro, puede ser explicada por los diversos temas que estaban en juego. Además de los aspectos estrictamente científicos, incluyó diferencias sobre el legado intelectual —con relación a los fundamentos e interpretación de la teoría cuántica— de los padres fundadores de esta teoría: Wigner hizo énfasis en la opinión de von Neumann y Rosenfeld defendió la de Bohr. Esto implicó una diferencia de estilos científicos, relacionados con los fundamentos de la mecánica cuántica: Wigner insistió en el axioma y Rosenfeld en un tratamiento más fenomenológico (Jauch, septiembre 16, 1966; Jauch, Wigner y Yanase, 1967, pp. 149-150). También hubo una marcada divergencia en el terreno político e ideológico: Wigner, idealista, alineado con el ala derecha estadounidense y con el apoyo de la carrera armamentista; Rosenfeld, marxista, asociado con los movimientos de paz y desarme. Esta dimensión ideológica de la controversia en la física cuántica era común en aquellos años, y podemos encontrar referencias significativas en las palabras del mismo Frisch, mencionado anteriormente, en una carta a su primo Hugo Tausk, padre de Klaus:

Varías veces me he ocupado personalmente del trabajo de Klaus, pero no soy teórico y no pude seguirlo. Las preguntas que hace (esencialmente, la de la realidad del mundo exterior)

118
me parecen muy interesantes. La interpretación ortodoxa de Copenhague dice que la física no trata cosas sino medidas. Eso suena a idealismo y, por consiguiente, es rechazado por los comunistas. Viceversa también aplica, puesto que cualquiera en Occidente que dude de la interpretación ortodoxa —aún por razones objetivas— es sospechoso de comunismo. Todo esto, con las complejidades y tonterías de una guerra religiosa, se completa con conversos: el más grande defensor de la ortodoxia es un comunista (Rosenfeld) y muchos de los opositores son totalmente burgueses (Frisch, septiembre 16, 1967).

Tausk, con su documento distribuido en agosto de 1966, entró a la escena de la disputa alineándose, quizás sin estar absolutamente consciente de esto, con las críticas a Rosenfeld, Daneri, Loinger y Prosperi. En particular, sus argumentos resonaban con los de Wigner y Jauch.

Por otra parte, la intensidad de la discusión entre Wigner y Rosenfeld parece haber contribuido substancialmente a la aceptación, entre físicos, de los problemas en los fundamentos de la teoría cuántica como campo legítimo de investigación en física. Es irónico que Tausk haya contribuido a legitimar un campo de investigación en el cual no fue más que un protagonista marginal.

El trabajo de Tausk: marginación tácita

Tausk no estaba enterado de que su documento había sido enviado a Amati por John Stewart Bell —de Irlanda del Norte—, miembro del Conseil Européen pour la Recherche Nucléaire (CERN) de Ginebra, quien también había recibido los informes de Loinger. El 26 de octubre, Bell le escribió a Loinger: “No puedo aceptar todos los detalles de Tausk, como lo justifican las críticas del documento de usted. Pero pienso que sus puntos principales son correctos y su posición general, válida” (octubre 26, 1966). A lo que Loinger respondió bruscamente: “Estimado Profesor Bell, creo que usted no ha comprendido la esencia del problema de la medida cuántica. Sinceramente, A. Loinger” (octubre 31, 1966). La ironía es que Bell, con su documento publicado dos años antes, se convertiría en poco tiempo en el nombre más importante de los fundamentos de la física cuántica (Bell, 1964).

En noviembre, Tausk recibió una respuesta de Jeffrey Bub, físico sudafricano, que era entonces un estudiante de posdoctorado en Minnesota. Bub había recibido una carta de Loinger que contenía algunas críticas de su artículo con Bohm (Bohm y Bub, 1966), y le replicó al físico italiano con la reproducción de muchas de las ideas del argumento
de Tausk. Bub escribió a Tausk que su artículo “aclaraba varios puntos que yo no había entendido antes correctamente” (Bub, noviembre 15 de 1966). La única cita del documento de Tausk que aparecería en la literatura sería en la crítica de Bub sobre la teoría de medida de DLP: “algunos aspectos del siguiente análisis han sido influenciados por un artículo crítico de K. S. Tausk” (Bub, 1968, p. 505).

En 1967, Jauch, Eugène Wigner y Mutsuo Yanase publicaron un artículo (presentado a finales de noviembre de 1966) en el que criticaba fuertemente a DLP. Mencionaron que el problema implicaba medidas de resultado cero (1967, p. 149-150), pero sin mencionar a Tausk, el creador original de esta idea, que Jauch recibió mientras revisaba la controversia con DLP y Rosenfeld. Jauch le había informado a Wigner sobre la existencia del trabajo de Tausk:

Quizás debo mencionar que recientemente ha aparecido un informe interno de Trieste (informe interno del ICTP, 14/1966), escrito por K. S. Tausk, que critica el documento de Daneri et al. muy severamente. Este documento contiene algunos puntos interesantes, que quizás también deben ser discutidos en nuestro artículo (Jauch, octubre 16, 1966).

Wigner no mencionó esta información en cartas subsiguientes. La primera versión del artículo fue escrita por Wigner y Jauch hizo las modificaciones finales. Jauch habría podido introducir una referencia al trabajo de Tausk, conocido por él mas no por Wigner ni por Yanase, pero no lo hizo.

En otras palabras, el desprestigio de Tausk lo marginó de espacios de controversia, pero además el artículo fue también desaparecido de la controversia: llamo a ese proceso “marginación tácita”.

¿Por qué el documento de Tausk nunca se mencionó en el de Jauch et al.? Quizás por un halo que lo habría rodeado en la comunidad científica europea, que lo describía como un físico no calificado del Tercer Mundo, un polemista que criticaba la ortodoxia sin comprenderla, un simpatizante del grupo liderado por el marxista Vigier. Además, Jauch et al. podrían no haber querido alinearse —ni a ellos mismos ni a su trabajo— con una de las numerosas publicaciones del ICTP, especialmente una escrita por un físico prácticamente desconocido.

Franco Selleri (sobre el cual volveremos en el siguiente acápite) comentaría más tarde sobre esta falta de citación: “este es otro ejemplo (personalmente tengo algunos) de cómo varios reconocidos físicos se apropián de contribuciones que llegan de otros autores, cuando juzgan seguro hacerlo” (1972, p. 2).
De vuelta a Brasil

Luego de estar durante algún tiempo en Graz, Klaus regresó a São Paulo para terminar su doctorado. Su asesor, Mario Schönberg, estaba claramente contrariado por el “escándalo” en Europa. Schönberg era un amigo de larga data de Rosenfeld, tanto en ciencia —en física de rayos cósmicos— como en política —en el Comité del Movimiento por la Paz—, puesto que ambos eran marxistas. Schönberg también era un amigo cercano de Piero Caldirola, a quien había conocido en Roma en 1938.\footnote{Caldirola escribió, en un artículo dedicado a los setenta años de Schönberg, que “el autor nunca olvidó los valiosos consejos de Mario al comienzo de su carrera científica en 1938, en la Universidad de Roma”. Ver Caldirola, 1984. Para una nota biográfica sobre Schönberg, ver, en ese mismo volumen, Fernandes, Cattani, Ventura, Ueta y Salinas, 1984; también Freire, 2004. Para las dimensiones ideológicas de la controversia, ver Freire, 1997.} Es factible que Schönberg recibiera una comunicación de Rosenfeld (o Salam, o inclusive Caldirola) que lo molestara, por considerar que la acción de su estudiante podría poner en riesgo su capital en el mundo científico europeo.

Tausk trabajó y terminó escribiendo su tesis solo, en portugués. Fuera del material contenido en su controvertido documento, incluyó un episodio en el cual demostró (posiblemente por primera vez) que la no localidad en sistemas correlacionados no puede ser usada para transmitir señales. En algún momento en 1967, en una primera discusión con su comité asesor (equivalente a un examen calificador), que también incluía a los físicos Antonio Piza y Yogiro Hama, su trabajo fue severamente criticado por Schönberg. El comité concluyó que la tesis no podía ser defendida como estaba, y que ciertas partes tendrían que ser escritas nuevamente.

La defensa de la tesis (Tausk, 1967), que tuvo lugar unos pocos meses después, resultó ser otra experiencia traumática para Klaus. Se presentó sin asesor, puesto que Schönberg, según Tausk, no le hablaba. El comité examinador casi lo “rajó” y el importante físico teórico brasileño, Jorge Swieca, entonces de la Universidad de São Paulo, fue muy crítico de su trabajo.

Según Tausk, el único físico brasileño que lo leyó y aprobó fue el renombrado físico experimental Cesar Lattes, de la Universidad Estatal de Campinas. Luego de su defensa, Lattes lo llamó y le pidió una copia de su tesis, que leyó esa noche y aprobó telefónicamente. Sin embargo, este concepto probablemente no tuvo mucha influencia en la opinión de otros físicos brasileños.
Luego de unos pocos años, en 1972, Franco Selleri, de la Universidad de Bari, por entonces completamente dedicado a los fundamentos de la teoría cuántica, visitó la Universidad de São Paulo por invitación del físico teórico Henrique Fleming. Selleri escribió una nota sobre la tesis de Tausk. Sus comentarios siguieron el tono de los de Bohm y Jauch, observando ciertos malentendidos del autor pero, en general, simpatizando con sus puntos de vista. Anotó ocho contribuciones originales de Tausk y cuatro puntos débiles, concluyendo que la tesis de Tausk fue una lectura muy interesante y muchos físicos, indudablemente, se beneficiarán de ella, una vez aclaradas las ambigüedades filosóficas. Con más autocritica, probablemente Tausk podrá contribuir significativamente a la comprensión de la estructura del mundo físico (Selleri, 1972, p. 2).

Conclusión

La prometedora carrera de Tausk en los fundamentos de la física no se concretó. En Europa se hizo a un mal nombre; en Brasil, su campo de estudio no era considerado importante (difícilmente lo era en Europa y Estados Unidos); el campo de los fundamentos de la física solo obtendrían respeto en los años setenta). No recibió asesoría adecuada y no pudo revisar su documento de 1966 ni publicarlo, o publicar otras ideas originales de su disertación doctoral. El estilo, ligeramente agresivo o arrogante (no muy “digno” según Jauch), de su documento contribuyó a su imagen negativa, lo que indica la importancia de los factores sociológicos para la explicación de ciertos episodios epistemológicos.

Tausk podría ser considerado como una especie de antihéroe de la física moderna. Sus puntos de vista originales fueron incorporados al creciente campo de los fundamentos de la física, por medio del manuscrito que no fue publicado pero sí leído por físicos que desempeñaron un papel relevante en el tema. Pero él venía del Tercer Mundo, comenzó tarde su carrera, escogió un área que en esa época tenía poco prestigio, no pudo beneficiarse de un asesor, cometió errores en su documento, no pudo publicar en revistas respetadas y tenía una personalidad poco amigable. Los físicos deben aprender cómo redactar documentos, lo que conlleva el uso de formato, lenguaje, presupuestos y grado de detalle matemático apropiados, que sean aceptados por los miembros de cada subdisciplina. Tausk no tenía esa habilidad. Su supervisor, Schönberg, decidió ponerse de parte de Rosenfeld, como lo hizo Salam; el físico brasileño estaba científicamente huérfano.
Atacar a científicos reconocidos desde esta condición es un suicidio profesional. Además, una parte central del aprendizaje de un físico implica el desarrollo de habilidades sociales necesarias para tener éxito cuando se presentan sus propios argumentos. Esto incluye no solo el tener acceso a los chismes (Traweek, 1988, pp. 121-122), sino también tener un tono apropiado durante una controversia, saber cuál es el momento oportuno para intervenir y, lo más importante, escoger aliados y enemigos. El estudio de la carrera de Tausk es muy revelador de cómo actúan los científicos, cómo interactúan los programas de investigación, cómo las ideologías políticas están unidas a las posiciones científicas y las dificultades de hacer ciencia en la periferia. Sin embargo, quizás es aún más revelador sobre la clase de conocimiento tácito que los científicos aprenden durante su entrenamiento. Los jóvenes científicos pueden ser desperdiciados si no se les enseña a participar en controversias; este es un arte que va más allá de la razón y de la lógica. El caso de Tausk sirve para demostrar las consecuencias de tratar de participar en discusiones sin entrenamiento y orientación apropiados. El Tercer Mundo, así como los científicos jóvenes, creen ingenuamente que este “maquiavelismo” corrompe la ciencia, hasta cuando ven cómo se comportan sus asesores. Quizás la historia de la ciencia podría ser útil para mostrarles a los jóvenes científicos hasta qué grado la ciencia es una práctica social.

La frase utilizada por Salam —“considere este episodio como parte de las viejas batallas”— para describir el incidente relacionado con la publicación de Tausk muestra esta dimensión social de las controversias y sugiere una analogía entre controversia y arte militar. Lo mismo que en una guerra, las controversias tienen ganadores y perdedores; se puede perder una batalla pero, en el largo plazo, ganar la guerra. En la controversia de la teoría cuántica, algunos fueron ganadores, como Niels Bohr. Y otros que perdieron batallas, como David Bohm y el programa de variables ocultas de los cincuenta, perseveraron y al final ganaron algunas batallas o, por lo menos, dejaron su marca en la historia de la controversia. Pero también hay perdedores que se rinden frente a la austeridad de la disputa: este parece haber sido el caso de Tausk.

Finalmente, la marginación de un disidente puede ser tácita o explícita. Tausk solamente recibió comunicaciones privadas que apoyaban su trabajo. Cuando fue atacado, los únicos documentos que pudo mostrar fueron cartas o un libro dedicado, que llegaron de científicos considerados como heterodoxos. Estos instrumentos son muy débiles
para un joven y desconocido científico. Su “tragedia” no fue estar en el centro de una controversia, sino, precisamente, que él y su trabajo fueron ignorados en la esfera pública de la polémica. Los espacios privados son importantes para conseguir aliados, pero la participación de Tausk se restringió a ellos y, además, su trabajo aparece solamente en una nota de pie de página, o simplemente no aparece. Entonces se produjo la “marginación tácita”, que puede llegar a ser más efectiva que la confrontación explícita. En estos procesos, tanto los review papers como las conferencias son fundamentales como ha argumentado convincentemente Olga Restrepo. Esto lo veremos más claramente en el siguiente episodio.
Episodio IV

Las revoluciones de noviembre: oportunismo en contexto y marginación tácita

Como vimos en el episodio anterior, una de las formas más eficientes de excluir interpretaciones alternativas cuando un debate está construyéndose es a través de lo que he llamado “marginación tácita”. En este episodio veremos un caso casi más dramático de uso de este recurso social, que además nos permitirá discutir un concepto propuesto por el físico y sociólogo Andrew Pickering para explicar la práctica científica desde una perspectiva sociológica: el “oportunismo en contexto”.

Ya hemos mencionado el Centro Internacional de Física Teórica (ICTP) de Trieste. Desde su creación, en 1964, rápidamente se convirtió en la institución más conocida en donde físicos del Tercer Mundo llegaron a tener acceso a los últimos desarrollos en el campo y tuvieron la oportunidad de hacer investigación. Entre 1964 y 1980, más de 6000 científicos de los países en desarrollo (y una cifra similar de los industrializados) visitaron el Centro. El actor central de la temprana historia del ICTP fue el Profesor Abdus Salam, su primer director, pero también fueron importantes Paolo Budinich y Luciano Fonda, que aparecieron en la historia de Tausk.

Nacido en la región de la India británica que más tarde sería Pakistán, Salam estudió matemáticas y física en Cambridge. En 1958 se convirtió en el primer profesor de Física Teórica en el Imperial College. En 1979 recibió el Premio Nobel de Física. Bajo su liderazgo, el ICTP llegó a ser un punto de referencia para los científicos de los países en desarrollo, como el modelo de cooperación científica internacional para el desarrollo del Tercer Mundo, y Salam quizás el más famoso portavoz de la ideología de “ciencia para el desarrollo”, en los medios políticos y científicos tanto del Tercer Mundo como de los países industrializados (De Greiff, 2006a).
En sus primeros años, el ICTP operó bajo los auspicios de la Agencia Internacional de Energía Atómica (IAEA, agencia técnica de las Naciones Unidas) y también tenía apoyo económico substancial del gobierno italiano. En 1970, la Unesco se unió a IAEA en la operación. La colaboración de la Unesco fue vital para la supervivencia del Centro, pues las condiciones financieras del ICTP siempre fueron precarias. En los primeros años del ICTP, Salam trató de evitar la tutela de la Unesco; sin embargo, en 1970 había muy pocas alternativas para aumentar el presupuesto del Centro. No obstante, continuó la sensación de inestabilidad porque, aunque el acuerdo con la Unesco trajo más recursos, sus planes futuros continuaban estando sometidos a aprobaciones periódicas.¹

A mediados de los setenta, la tensión en el Medio Oriente puso en peligro real la cooperación internacional con el Tercer Mundo. Tres resoluciones “anti-Israel” aprobadas en la Conferencia General de la Unesco de 1974 dispararon un boicot masivo contra la organización internacional y, como resultado de su asociación, también contra el ICTP.² Fue liderado por científicos estadounidenses e israelíes que creían que la Unesco, y de rebote el instituto de Salam, no respetaba su vocación internacional, se había politizado y estaba asociada con grupos radicales determinados a atacar a Israel cuando y como pudieran.³

“Un boicot es una forma particular de sanción contra un país o un grupo, con el fin de presionar algún cambio”. Está basado en una teoría de acción que identifica una relación entre el aislamiento del objetivo y el propósito deseado (Lorrain y Lancaster, 1995, pp. 1-2). Este fenómeno, como parte de una política internacional, es relativamente

¹ En noviembre de 1974, un comité presidido por Leon van Hove, físico teórico en el CERN, expresó que “prevalece un sentimiento de incertidumbre en relación con el futuro del Centro, tanto entre sus líderes científicos como entre su personal administrativo”, y recomendó la adjudicación de fuentes estables de ingresos porque “debiera dárselle al personal la mayor seguridad en su posición” (IAEA, 1975).

³ Sobre el aspecto político y las negociaciones internacionales del ICTP con Unesco y la IAEA, ver De Greiff, 2006b.
nuevo. En la historia de la ciencia, el caso mejor conocido se relaciona con los intelectuales alemanes y austriacos, luego de la Primera Guerra Mundial. Las posiciones chauvinistas adoptadas por intelectuales y científicos de ambos lados de las trincheras rompieron el internacionalismo científico que había prevalecido desde alrededor de 1870. Como Paul Forman lo ha demostrado, el internacionalismo científico—como el nacionalismo—siempre es una instancia política (Forman, 1973; Landström, 1996; Kevles, 1971). El boicot actúa como una negación del internacionalismo científico. A pesar del interés potencial en las relaciones internacionales de la ciencia, la literatura sobre boicots científicos prácticamente no existe, especialmente en el período posterior a la Segunda Guerra Mundial.4

Este episodio aborda tres cuestiones relacionadas con la exclusión del ICTP de la red de centros de investigación en Física debido al boicot contra la Unesco. Primero, analizaremos los criterios y razones que los científicos tienen para boicotear ciertas instituciones en lugar de otras. Las motivaciones para el boicot se relacionan, esencialmente, con la imagen del ICTP como un centro para el desarrollo del Tercer Mundo, más que como una institución de investigación. Esas motivaciones nunca, o casi nunca, se revelan de manera explícita. De ahí que el boicot nos permitirá investigar cómo reaccionó la comunidad científica cuando el Centro fue atrapado por una crisis importante de la política de las Naciones Unidas, y también analizar el funcionamiento del internacionalismo científico en la segunda mitad del siglo XX. Segundo, veremos cómo los científicos boicoteadores movieron la frontera entre ciencia y política, con el fin de acomodarla a sus intereses e ideologías. Este trabajo de frontera sirvió como base para defender normas mertonianas, como la necesidad de mantener a la ciencia alejada de la política y la identificación de la ciencia con los valores de las democracias occidentales (ver Introducción).5 Sugiero que la oposición a la “politicización de la ciencia” no solo estaba destinada a mantener las instituciones científicas internacionales políticamente neutrales; se

4 Quizás la única excepción es la relacionada con las sanciones en contra del régimen racista en Sudáfrica (Haricombe y Lancaster, 1995). Los efectos del boicot sobre Sudáfrica son fuente de grandes debates. Algunos autores han estudiado las actividades de los activistas boicoteadores y han concluido que las sanciones por sí solas no garantizan los efectos deseados (Wallensteen, 1971; Doxey, 1980). Otros critican la colaboración científica porque la ciencia y los científicos fueron cruciales para la prolongación del gobierno racista (Nordvelle, 1990).

pretendía definir la ciencia “ideológicamente correcta” dentro del contexto de intercambio internacional de conocimiento científico (Gordin, Grunden, Walker y Wang, 2003).

La tercera cuestión es la concerniente a los efectos sobre la ciencia del boicot. La exclusión efectiva del ICTP, de su director Abdus Salam y de uno de sus colaboradores –Jogesh Pati– de una de las más importantes controversias de física de altas energías, la principal área de investigación del Centro, ilustra la importancia de la política en el desarrollo de debates científicos. La noción de “oportunismo en contexto”, introducida por Andrew Pickering, desde mi punto de vista, ignora la importancia de la política global en el desarrollo de debates científicos. Aquí veremos que la afiliación institucional desempeña un papel crucial, especialmente cuando científicos del Tercer Mundo tratan de entrar en debates científicos.

Las resoluciones de la Unesco: la “Revolución diplomática de noviembre”

En las dos décadas entre 1950 y 1970, la descolonización le dio una nueva composición a las Naciones Unidas y a sus agencias técnicas. La emergencia de una nueva mayoría y el carácter controversial de algunos de los temas que esto produjo se convirtieron en una fuente de alta tensión dentro del sistema. Naciones Unidas fue transformada en un foro para la confrontación entre los regímenes radicales del Tercer Mundo y los antiguos países colonialistas. Para finales de los sesenta, el Tercer Mundo comandaba más de dos tercios de los votos en la Asamblea General de Naciones Unidas, Unesco, Fao y la Organización Mundial de la Salud.

Los nuevos Estados ganaron determinación en los escenarios internacionales, bajo el liderazgo de jóvenes y carismáticos revolucionarios. Por primera vez, posiciones e iniciativas en bloque desafiaron el “orden institucional existente”. La alianza estratégica entre algunos

7 Solo para mencionar unos pocos nombres: el egipcio Gamal Abdel Nasser, Patrice Lumumba, del Congo, y Fidel Castro, de Cuba.
8 En el contexto de la Unesco, Wells los define como “asuntos de representación política y legitimidad” relacionados de cerca con “el reto a patrones establecidos de adjudicación de recursos, esto es, un cuestionamiento explícito de los fines políticos que pueden ser servidos por una actividad extensiblemente técnica”. (Wells, 1987, p. 5).
Estados árabes y el movimiento panafricano catalizó los sueños de la Conferencia de Bandung (1955): unir el Tercer Mundo contra colonizadores, neoimperialismo y regímenes represivos.

La confrontación en Naciones Unidas llegó a su clímax cuando, en 1974, luego de la guerra de Yom Kippur/Ramadán, la Asamblea General y la Conferencia General de la Unesco aprobaron varias resoluciones contra Israel y África del Sur. La mayoría de los estados africanos desarrollaron acres sentimientos antisemitas, por su estrecha relación con los regímenes blancos que dominaban en Sudáfrica y Rodesia, por una parte, y Portugal y Estados Unidos, por la otra. Como lo anotó un analista en 1975 “Israel era considerado como parte del mundo occidental [...] Parecía ser, en la práctica, el Estado número cincuenta y uno de Estados Unidos [...] A ese respecto, Israel parecía un pedazo del Occidente incrustado en el corazón del Tercer Mundo” (Mazui, 1975. Ver también Goldschmidt, 1991). A esta revuelta contra el orden tradicional en la estructura institucional de Naciones Unidas la llamaré la “Revolución diplomática de noviembre”.

El tono fue fijado por la Asamblea General de Naciones Unidas en Nueva York, que exigió que el Secretario General estableciera contactos con la Organización para la Liberación de Palestina (OLP) “sobre todos los asuntos relacionados con la ‘Cuestión de Israel’”. Yaser Arafat fue invitado a hablar en la Asamblea y, un año después, en 1975, la Asamblea aprobó una resolución condenando el sionismo “como una forma de racismo y discriminación racial”. Además, la OLP fue admitida en la Organización Internacional del Trabajo, otra agencia de Naciones Unidas que cada vez era más combatida por Estados Unidos. Simultáneamente, Naciones Unidas suspendió la presencia de Sudáfrica en su seno, por sus políticas raciales, como contraprestación a la alianza quid pro quo.

9 Los retiros de Unesco por parte de EE.UU. y el Reino Unido fueron motivados por este tipo de manifestación de movimientos antioccidentales. El debate sobre el “flujo libre de información” exacerbó esta confrontación (Elzinga, 1996b, pp. 114-115). Otra instancia fue la confrontación alrededor de la Declaración de Río sobre el Establecimiento de un Nuevo Orden Internacional (1974).
11 La edición de diciembre de 1975 del Unesco Courier publicitaba dos estudios auspiciados por esa agencia: uno llamado “Racismo y apartheid en Sudáfrica” y otro “Sudáfrica y Namibia y el colonialismo portugués en África: el fin de una era”.
De manera similar, la Conferencia General de la Unesco celebrada en París en 1974 produjo dos resultados importantes. Primero, la elección de Amadou Mahtar M’Bow, de Senegal, como su director general. Segundo, la aprobación de tres resoluciones que atacaban a Israel. Vale la pena describir, por lo menos, sus puntos más generales. La Primera Resolución Israel “invita al Director General a suspender la asistencia de Israel en el campo de educación, ciencia y cultura hasta cuando el país respete escrupulosamente la resolución y las decisiones del Comité Ejecutivo y de la Conferencia General”. Esto se refería a decisiones relacionadas con las excavaciones arqueológicas llevadas a cabo por Israel en lugares musulmanes en Jerusalén, en violación de las resoluciones de Naciones Unidas y Unesco de 1967. Además, la conferencia condenó al Estado israelí, en su “Segunda Resolución Israel”, por violar los derechos de la población de los territorios árabes ocupados, “su vida cultural y nacional”. Sin embargo, los más amargos ataques contra la Unesco se originaron cuando Estados Unidos, Canadá e Israel introdujeron un proyecto de resolución que pedía que fueran incluidos “en la lista de países con derecho a participar en las actividades regionales europeas en las cuales el carácter representativo de los Estados es un factor importante”. El 20 de noviembre, Estados Unidos y Canadá fueron admitidos, pero no Israel. El rechazo fue interpretado como la exclusión efectiva de Israel de la Unesco; esta fue la “Tercera Resolución Israel”.

El Departamento de Estado de Estados Unidos, a través de su secretario, Henry Kissinger, objetó inmediatamente, haciendo énfasis en que estas decisiones significaban la “politicización de la Unesco”. The New York Times hizo eco de las declaraciones de los diplomáticos estadounidenses e israelíes sobre “la tiranía de la mayoría” y Naciones Unidas como el “centro mundial del antisemitismo”, mientras que las páginas editoriales denunciaban la manera en la cual el bloque árabe “y sus aliados, a nombre de la OLP, amasan votos de venganza contra Israel”. Casi sin excepción, el discurso de los altos oficiales estadouni-

12 El borrador de la Resolución fue votado en la Comisión para las Ciencias Sociales, las Humanidades y la Cultura con los siguientes resultados: 85 en contra; 2 a favor (Israel y Paraguay); 11 abstenciones (Austria, China, Australia, Francia, Honduras, Chile, Finlandia, Japón, Nepal, Suiza y Uruguay). Los países socialistas votaron en contra, y muchos países europeos no estaban presentes en la sala en el momento de la votación, ver Moore, 1977.

denses de Relaciones Exteriores y los medios de comunicación llevó a la identificación de la “polvización de la Unesco” con la imposición de la mayoría, concretamente los países del Tercer Mundo y “sus aliados” —los comunistas y la organización terrorista OLP—. Como algunos años más tarde observó Robert Jordan, director de investigación estadunidense de Naciones Unidas: “para Estados Unidos lamentar la ‘politzación’ de la Unesco (o la OIT) es meramente una manera de decir que la influencia de Estados Unidos ha decaído” (1984).14 Estados Unidos declaró que suspendería su contribución a la Unesco si la Resolución no era retirada.15 Francia y Suiza, a pesar de su posición ambigua durante la Conferencia General, anunciaron intenciones similares (Editorial The New York Times: U.S. Threat to Unesco Budget, 1974). El director general M’Bow replicó a los ataques aclarando que Israel no había sido “excluido de la Unesco”, como se podría inferir de la presentación de las resoluciones en los medios. Su exclusión era de “la lista de países con derecho a participar en actividades en las cuales el carácter representativo de los Estados es un factor importante” (M’Bow, 1975). La declaración también fue publicada en The New York Times, pero pasó inadvertida; aunque la distinción era significativa, en la práctica las resoluciones sí permitían la exclusión de Israel de algunas actividades de la Unesco.

Desde mucho antes del episodio en la Unesco, intelectuales judíos en Estados Unidos habían estado movilizando apoyo contra el boicot económico árabe, que se venía adelantando mucho antes de la guerra de Yom Kippur/Ramadán. Numerosas voces dentro del sector político israelí comenzaron a hacer campaña para presionar a los gobiernos israelí y estadounidense —así como a los de Reino Unido, Francia y Canadá— a adoptar contramedidas apropiadas. En palabras de Danny Halperin, fundador, en 1975, de la israelí Economic Warfare Authority, la “filosofía” era “no actuar, sino activar”. Años después, Halperin describió la efectividad de esta estrategia:

Pienso que debería ser verdad decir que, antes de 1973, la gente en Israel miraba el boicot [contra Israel] como una molestia. Algo que uno podía usar para ensuciarles la boca a quienes

14 Ver The New York Times, 22 de noviembre de 1974, 6. En un discurso para el Instituto de Asuntos Mundiales (IWA, por sus iniciales en inglés), en la Universidad de Wisconsin, en 1975, Kissinger insistió en que “las sanciones del Tercer Mundo contra Israel” eran la expresión de una “fuerte politización” de la Unesco.

lo estaban aplicando, pero nadie estaba comprometido en una lucha real contra el boicot [...] Pero, después de 1973, todos nos dimos cuenta de que el boicot no solo es un problema, sino también un peligro (Halperin, 1985).

Un tema central era la movilización del público en Estados Unidos y Europa. Susan Hattis-Rolef lo dijo de manera elocuente:

La lógica detrás de este tratamiento era que mientras más ruido se hiciera alrededor del asunto, tanto en Israel como en el exterior [mucho mejor...] En relación con Estados Unidos y Europa, esto era parte de un amplio esquema que buscaba convencer a la opinión pública de que los árabes no servían para nada, y que Occidente podía y debía enfrentarlos (Hattis-Rolef, 1989, p. 36 cursivas añadidas).

Aun cuando la iniciativa incluía a las tres principales organizaciones judías estadounidenses, estaba liderada por “personas presas del pánico” ajenas al gobierno israelí y “en cooperación con gente de buena voluntad del exterior, para hacer un esfuerzo mucho mayor que antes, para encarar el boicot árabe a niveles legal, práctico y moral” (Hattis-Rolef, 1989, p. 45). Además, desde 1974, asociaciones judías en Estados Unidos, especialmente el Congreso Judío Americano (la organización más grande e influyente), reaccionaron definitivamente contra “la Revolución diplomática de noviembre”. Se organizaron varias manifestaciones de protesta contra la invitación de Naciones Unidas a la OLP para hablar en la Asamblea General. Artículos e informes sobre el boicot árabe y la “nueva estrategia árabe” en Naciones Unidas aparecieron todos los meses en las páginas del Congress Monthly. Pero los conservadores no fueron los únicos que condenaron a Naciones Unidas y Unesco; también escritores liberales —“los intelectuales de Nueva York”, como los llama Hollinger, (1996, p. 8)— deploraron la decisión de la Asamblea General. Colaborar con la Unesco fue presentado por intelectuales y científicos en Israel como respaldar su política contra Israel: “los israelíes están decepcionados por la falta de reacción de la comunidad científica del exterior, pero penosamente resignados a su creciente aislamiento” (Hall y Newmark, 1974, pp. 626-627), informó un reporte en la revista Nature.

Algo irónico: había sido el ICTP, poco antes, el que llamó la atención sobre sus lazos financieros con la Unesco. Salam siempre había utilizado revistas y diarios científicos para pedir mayor apoyo para su instituto. Pocos meses antes de la Conferencia General de 1974, en las páginas de *Nature* apareció un largo artículo sobre el ICTP: “el apoyo financiero es compartido por partes iguales por IAEA, la Unesco y el gobierno italiano” (*Centre for Practice of Theory*, marzo, 1974, pp. 270-271), escribió el autor. El 8 de noviembre, solo doce días antes del escándalo de la Unesco, otro artículo, en la misma revista, detallaba las finanzas del ICTP: “el apoyo de la Unesco, aunque modesto al comienzo, tiene, por lo menos formalmente, diez años, y la Unesco tiene la política de ver su ayuda financiera como una semilla para hacer que una institución marche” (Support for Trieste, noviembre, 1974, p. 87). El artículo también observaba la frágil situación en la que se encontraba el Centro, debido a su inestabilidad financiera y la línea dura adoptada por algunas delegaciones en la Unesco. Por consiguiente, cuando las Resoluciones de Israel fueron aprobadas, los científicos sabían que el ICTP, instituto bien conocido por su preocupación por el Tercer Mundo, dependía de la Unesco. En Israel, este conocimiento produjo, en la comunidad científica, la decisión de convertirlo en objetivo estratégico (Bertocchi, julio 26, 1975).
El boicot a los programas del ICTP

En junio de 1975, el periodista científico John Maddox informó:

He escuchado que una conferencia que se iba a celebrar en el ICTP durante el mes de julio tuvo que ser trasladada a Venecia, simplemente porque hay límites en la libertad de los centros científicos internacionales, como el de Trieste, que están apoyados por la Unesco, para patrocinar conferencias a las cuales los israelíes pueden asistir (Maddox, 1975).

En 1975, Salam organizó las celebraciones de los sesenta años de Fred Hoyle, su exmentor en Cambridge y protagonista del “Episodio II” de este libro. Poco después del anuncio del evento, los científicos israelíes afirmaron que no podían visitar el ICTP por sus lazos con la Unesco, que había “excluido” a Israel. Estos científicos estaban encabezados por un exalumno de Salam, Yuval Ne’eman, entonces rector de la Universidad de Tel Aviv. A principios de 1975, Ne’eman fue elegido “miembro correspondiente” del ICTP, presumiblemente como una maniobra para demostrar que el Centro quería permanecer alejado de la trifulca política de la Unesco. Ne’eman replicó que no quería visitar ni aceptar ningún honor del Centro (Ne’eman, mayo 13, 1975). Después de algunos meses, el Centro fue inundado con cartas de físicos israelíes que seguían la actitud adoptada por Ne’eman. De ahí que la conferencia del cumpleaños de Hoyle hubiera tenido que ser llevada a Venecia. Esto fue tan solo el comienzo de un año difícil para el ICTP.

Para 1975, el ICTP había programado reuniones sobre análisis complejo, física del estado sólido, física nuclear, física del plasma y física de altas energías. Para mediados de diciembre de 1974, un grupo de físicos y matemáticos estadounidenses e israelíes habían renunciado como organizadores de los cursos del ICTP, y rehusado asistir a cualquier actividad allí. El boicot afectó de modo negativo a casi todos los programas y actividades.

Lipman Bers, autoridad mundial en análisis complejo de Columbia University, asumió una posición abiertamente hostil. Envió una fuerte carta de renuncia con copias a un gran número de sus colegas (Bers, enero 20, 1975). Convenció a su buen amigo y eminente matemático, Lars Varedian Ahlfors, de que siguiera sus pasos. Ahlfors lo hizo, explicándole a Salam que “el hecho de que algunos de mis amigos más cercanos se estén retirando, hace que mi participación sea poco atractiva” (Ahlfors, enero 27, 1975). Wolfgang Fuchs, profesor de Cornell y organizador del curso, obró de manera similar: “la única manera de
protestar que [va] más allá de palabras vacías [es] renunciar” (Fuchs, diciembre 12, 1974). Siguieron más cartas y la corriente de renuncias se convirtió en una avalancha.

El curso de verano de materia condensada tuvo un patrón similar. A finales de 1975, Walter Kohn y Norton Lang, de la Universidad de California en San Diego, ambas figuras centrales del evento agregaron sus nombres a la lista de boicoteadores. Se hizo un intento para reorganizar el curso, reemplazando los conferencistas estadounidenses con científicos de España y América Latina, y solicitando a los demás asumir sesiones adicionales. La situación se volvió crítica en diciembre de 1975, cuando, pocas semanas antes de iniciar el curso, Leo Falicov, un físico argentino que trabajaba en Estados Unidos, renunció. Falicov era el principal conferencista y tenía a cargo quince sesiones. John Ziman, el organizador, tuvo que pedirle a españoles y latinoamericanos cubrir el hueco.

El caso del curso para físicos nucleares padeció problemas similares a los de matemáticas y materia condensada. Muy pocos científicos, aparte de los estadounidenses e israelíes, se unieron al boicot. Sin embargo, la ausencia de investigadores de importantes instituciones de investigación de Estados Unidos o del prestigioso Instituto Weizmann, en Israel, afectó gravemente al Centro. El ICTP era un espacio donde científicos del Tercer Mundo se podían reunir con sus colegas de centros importantes. Los jóvenes científicos europeos se sentían atraídos a las reuniones del ICTP debido, principalmente, a la presencia de físicos famosos, la mayoría de los cuales trabajaba en universidades estadounidenses. La renuencia de estos fue un terrible golpe a sus expectativas.

El boicot contra el ICTP tuvo lugar mientras estaba en camino una gran revolución en física de altas energías. Los físicos de esta especialidad en el ICTP orbitaban alrededor del grupo de Salam. El 11 de noviembre de 1974, dos laboratorios estadounidenses que estaban invesitgando la aniquilación e+e− (positrón-electrón) detectaron una partícula de masa igual de 3,1 GeV, lo que se considera muy grande en el mundo subatómico. El grupo de Burton Richter, en el Stanford Linear Accelerator (SLAC), llamó a la nueva partícula “ψ”, y la colaboración del Brookhaven National Laboratory–MIT, encabezada por Samuel Ting, la llamó “J”. Unos pocos días después, el laboratorio italiano de Frascati confirmó el descubrimiento de la partícula “J/ψ”. Eventualmente, el resultado fue el “descubrimiento” del quark “encanto” y el establecimiento de la cromodinámica cuántica, el modelo que se impondría...
como el paradigma para el estudio de interacciones entre partículas. Fue la comunidad de físicos de partículas la que acuñó el término de “Revolución novembrina en la física de altas energías” para referirse a este episodio.

Unas pocas semanas después del descubrimiento de J/ψ, Salam y Jogesh Pati, su colaborador de la India, ofrecieron una espectroscopía de partículas alternativa a la predicha por el modelo del “encanto”: es decir, propusieron un nuevo conjunto de partículas elementales en el cual la nueva J/ψ también encajaba. Afirmaron que era necesario iniciar una investigación en las regiones de energía en las cuales su modelo predecía la existencia de algunas partículas nuevas. Salam esperaba que los gluones de color fueran detectados, convirtiéndose en compañeros del recién nacido “encanto”. En suma, Salam y Pati aseguraban que el “zoológico” de partículas tenía el espacio y la estructura necesarios para más especímenes; era cuestión de que los laboratorios los buscaran.

Salam propuso celebrar una reunión en Trieste, durante el verano de 1975. Su título era “Fenomenología en Física de Altas Energías y las Partículas Faltantes”, refiriéndose a las posibles compañeras de la J/ψ. Fueron invitados importantes investigadores, incluyendo Richter, pero estadounidenses e israelíes se negaron a participar. Algunos teóricos israelíes influyentes, como Ne’eman y David Horn, ya habían rechazado cualquier colaboración con el ICTP, como lo hizo Haim Harari. Al rechazar cualquier cooperación con el Centro, este último le dijo a Salam que “la única reacción posible del mundo civilizado debía ser rehusar cualquier participación de la Unesco en cualquier […] evento” (Harari, febrero 4, 1975, cursivas añadidas). También le advirtió a Salam que pretendía hacer circular ampliamente entre colegas la carta en la cual había desestimulado la participación de científicos en actividades del ICTP. Salam trató de persuadirlo, a él y a otros, de detener el boicot, anotando que el daño se haría al Centro y no a la Unesco.

En resumen, el boicot afectó seriamente todas las actividades del Centro entre 1975 y 1976, pero el programa de investigación de Salam recibió un golpe mortal.

La anatomía del boicot

El argumento común que se divulgó para promover el boicot del Centro fue el patrocinio de la Unesco. Para entender la anatomía del boicot, debemos investigar qué otras iniciativas científicas, en áreas similares a las del ICTP, eran patrocinadas por la Unesco.
Unesco apoyó, desde comienzos de la década de los cincuenta, actividades internacionales relacionadas con el intercambio de información científica y el establecimiento de centros regionales para la promoción de investigación científica. Desde 1946, el Consejo Internacional de Unión Científica (ICSU, por sus iniciales en inglés) ha sido consultor de la Unesco sobre cooperación científica internacional. Aunque su dependencia financiera de esa institución ha disminuido desde entonces, para el año fiscal 1975-76, la Unesco contribuyó al ICSU con US$560 000, por servicios de asesoría y actividades específicas, que era el doble de la contribución de la Unesco al ICTP (Unesco, 1975, p. 186, párr. 2113).

La Unión Internacional de Física Pura y Aplicada (Iupap, por sus iniciales en inglés) era y es la más importante asociación internacional de físicos. El ICSU canalizaba fondos para eventos de física a través de la Iupap. Los documentos oficiales de la Unesco contienen explícitamente esta colaboración, que extiende su compromiso al apoyo de socios del ICSU: “cuando sea necesario, se proporcionará apoyo financiero adicional a los sindicatos, asociaciones y otros órganos del ICSU, para la ejecución de actividades específicas” (Unesco, 1975). Los informes de la Iupap también establecían los lazos entre la Unión y la Unesco y, aunque se concentraba en programas educativos, el acuerdo no tenía límite en cuanto a temas (Iupap, 1973, p. 5).

Una característica significativa, pero no sorprendente, de la Iupap era su presentación e imagen Occidental. En 1971, 10 de los 39 comités nacionales de la Iupap estaban en países del Tercer Mundo, y del número total de votos, asignados de acuerdo con el número de acciones que pertenecían a cada país, el Tercer Mundo tenía solo 15 de 102. Para julio de 1975, Salam decidió que valía la pena tratar de exponer el peligro potencial que enfrentarían el ICSU y la Iupap si el boicot crecía. Escribió a su amigo Richard Dalitz: “Si el boicot de todas las instituciones patrocinadas por la Unesco continúa, el ICSU pronto va a tener una época difícil” (Salam, julio 1.°, 1975). Si los científicos boicoteadores eran consecuentes con postura política y moral, la ecuación resultaba simple: si el ICSU merecía protección, la comunidad científica debía suspender el boicot contra el ICTP. La predicción resultó equivocada.

El único documento de Iupap que Salam conservó en su biblioteca personal de Trieste, Book of Nomination Forms, fue la entrega de 1975, cuyo contenido es revelador.17 Por lo menos tres nominaciones del

17 En la biblioteca personal de Abdus Salam, dentro de la Abdus Salam ICTP Library (ver lista de fuentes del presente libro, AS 341.16 Iupap).
Comité Nacional de la Iupap de Israel fueron presentadas a consideración de la Decimoquinta Asamblea General, que se debía celebrar en Múnich en 1975: A. Muny, para un cargo en la Comisión sobre Superconductores; W. Low, en la Comisión sobre Magnetismo, y Haim Harari, para membresía en la Comisión de Partículas y Campos. Al parecer, la solicitud fue sometida a consideración en mayo de 1975, es decir, después de que Harari había comenzado su campaña contra el ICTP. Otro miembro de la Iupap durante estos años fue Yuval Ne’eman.18 Vale la pena observar que Salam no expuso esta aparente contradicción a ninguno de los científicos saboteadores. Él reconoció que, con el fin de mantener un pie en ambos campos, desarrollo del Tercer Mundo y ciencia del Primer Mundo, tenía que asegurarse de que ciertas fronteras no fueran transgredidas por alguien en su posición de vulnerabilidad política.

Esta no fue la única incongruencia entre las razones aducidas para boicotear el ICTP y la actitud hacia otras iniciativas científicas patrocinadas por la Unesco. La conferencia de SLAC de agosto de 1975 (física de altas energías) fue apoyada parcialmente por la Iupap. Salam tenía sus esperanzas en la conexión SLAC-Iupap-Unesco y escribió al director general asistente para la Ciencia, el canadiense J. M. Harrison: “Si SLAC sabe de la relación de la Iupap con Unesco, debe haber suspendido la hostilidad hacia la Unesco. Estas son buenas noticias para nuestros programas del año entrante” (Salam, julio 28, 1975).

Unos pocos meses más tarde, Salam se enteró de que el boicot no solo fue provocado por la conexión con la Unesco, sino por algo más profundo. Inmediatamente después de la conferencia de SLAC, Salam recibió una carta de uno de los asistentes, Tai Tsun Wu, investigador de Harvard. Había visitado el Centro solo un par de veces y sus contactos con Salam eran esporádicos,19 pero “conversaciones extrañas” entre algunos participantes sobre “lo que hay que hacer sobre la Conferencia de Trieste” llamaron su atención y provocaron la carta. La posición oficial era boicotear la Conferencia porque estaba patrocinada por la Unesco, le dijo Wu a Salam. Y luego agregó:

Posteriormente, alguien mencionó que la conferencia de SLAC también era parcialmente apoyada por la Unesco y que Harari estaba bien enterado de esto. No puedo juzgar la certeza de esta

18 En 1971, Ne’eman organizó una conferencia internacional en Tel Aviv, apoyada parcialmente por la Unión mediante una subvención de US$1000. Iupap, 1973.

19 Wu al autor, correo electrónico, julio 23 de 1998.
afirmación pero, en cualquier caso, no fue desafiada. Luego de algunas discusiones adicionales, un físico pro israelí finalmente admitió que la razón real para el boicot no era contra la Unesco, sino por sus estrechos lazos con los países en desarrollo, que eran responsables de la echada de Israel de la Unesco (Wu, septiembre 22, 1975, cursivas añadidas).

Salam le respondió a Wu: “Siempre he sentido curiosidad de saber por qué Harari ha tomado esa actitud contra nosotros [...] Su carta parece hacer que las cosas sean un poco más claras” (Salam, octubre 20, 1975).

Esta carta merece examen cuidadoso. La “politización” de una institución cultural internacional como la Unesco ha sido relacionada en Estados Unidos con la “tirania de la mayoría”. Según esto, los países en desarrollo “y sus aliados” amenazan el curso normal de la cooperación internacional. La carta de Wu nos permite saber cómo los científicos saboteadores trasladaron ese lazo y definieron “normalidad” en el campo científico. Me gustaría ampliar la tesis de Jessica Wang, para argumentar que el propósito de los boicoteadores era apelar a una ciencia “anti-Tercer Mundo” como una estrategia discursiva para definir una ciencia “políticamente correcta” (Wang, 1999). Para los promotores del boicot, una ciencia “políticamente correcta” implicaba mantener neutrales las instituciones científicas en relación con cualquier conflicto político, queriendo decir que la ciencia no sería usada para entorpecer las relaciones de poder existentes en la política internacional. La exclusión del intercambio científico internacional de aquellos que amenazaran el statu quo era el corolario de esa norma.

Pero, ¿cuál era el lazo de Salam con los regímenes del Tercer Mundo interesados en “politizar” la Unesco y otras organizaciones internacionales? Indudablemente, Salam era el líder de la causa del Tercer Mundo en la comunidad de físicos de Occidente, y el ICTP abrazaba esa cruzada pro modernización de los países en desarrollo a través de la ciencia. Pero vale la pena considerar otra faceta de la vida de Salam y sus lazos con el Tercer Mundo. Las relaciones de Salam con Pakistán eran al más alto nivel. Durante catorce años, había sido un científico asesor de tres presidentes diferentes. A principios de 1972, Pakistán salió de la Commonwealth y, para noviembre, había abandonado el Pacto de Seguridad de la Organización del Tratado del Sudeste Asiático (Seato, por sus iniciales en inglés). Se esperaba que cortar los lazos económicos y militares con Gran Bretaña y Estados Unidos cimentaría la vía para una posición de liderazgo entre las naciones árabes.

De hecho, a Salam no le gustaban las opiniones antioccidentales de Buttho, su retórica y sus acciones, pero su posición no era clara para quienes estaban fuera de su círculo inmediato; a final de cuentas, continuaba siendo el asesor jefe científico del presidente de Pakistán. Irónicamente, era identificado por sus compañeros de Occidente con un movimiento de su país natal con el que no estaba de acuerdo. A mediados de 1974, Salam renunció a su cargo como asesor presidencial y, unos pocos meses más tarde, a su membresía en el Consejo Nacional de Ciencia, entidad de la cual había sido parte desde 1963. Sus discrepancias con la política exterior de Buttho no fueron la causa; fue su preocupación sobre la política interna del nuevo presidente. Salam pertenecía a una secta islámica heterodoxa llamada Ahmadiyya Jammat. En 1974, una coalición de ocho partidos de los ulama (autoridades religiosas) lanzó una campaña contra los ahmadiyyas y, como consecuencia, la secta fue expulsada oficial y legalmente del islam.

Dos de las existencias de Salam chocaron, dejándolo como blanco fácil para ataques desde ambos extremos: los musulmanes populistas de Pakistán y los físicos “pro Israel” en la comunidad científica. El ICTP fue el chivo expiatorio de los lazos conflictivos y ambiguo de Salam con un país del Tercer Mundo que estaba empeñado en extender sus lazos

21 Como Talbot explica, Buttho “encontró que mientras los lazos más cercanos con el mundo islámico eran todos buenos para fortalecer la posición diplomática de Pakistán, el dinero proveniente del Oriente Medio, rico en petróleo, también fluía libremente dentro de las arcas de sus posibles oponentes” (Talbot, 1998, p. 238). La Constitución de 1973 declaró al islam como la religión estatal. De aquí que la expulsión de 1974 no solo tuviera consecuencias religiosas que condujeron a una posterior persecución, sino también consecuencias políticas y legales. De hecho, desde 1974, el hostigamiento y las violaciones de derechos humanos en contra de la comunidad ahmadiyya se intensificaron con la complicidad tácita del Estado, tal como lo han hecho público Amnistía Internacional y otras organizaciones. (Gualtieri, 1989).
con el mundo islámico, por un lado, y con un centro del Tercer Mundo que buscaba apoyo Occidental, por el otro. Ambiguos también porque, ignorando los llamados de varios colegas de ambos lados de la disputa, Salam nunca aclaró públicamente su posición sobre las Resoluciones de Israel.

Sin embargo, la asociación de Salam con el islam no era suficiente para que se produjera el boicot. Durante sus primeros quince años, el ICTP no consiguió el puesto de escuela importante de investigación. Era visto como un centro para patrocinar el desarrollo del Tercer Mundo más que como una institución de investigación. Como resultado, el boicoteo del ICTP tuvo muchas consecuencias profesionales diferentes a las que podría tener el saboteo a una institución élite como Stanford, por ejemplo. Mientras que sabotear Stanford era un suicidio científico, boicotear el ICTP podría incluso representar dividendos en el campo de la política científica internacional. A mediados de los setenta, Harari era un jugador de las grandes ligas, visitante regular de SLAC y profesor en el Instituto Weizmann. Para la mayoría de los israelíes, el prospecto de aumentar sus lazos con un laboratorio prestigioso en Estados Unidos ciertamente era más atractivo que una asociación con un centro identificado con desarrollo del Tercer Mundo. Entonces, podemos comenzar a entender por qué el ICTP era un obvio chivo expiatorio: su escasa reputación científica, su identificación con las aspiraciones del Tercer Mundo y la situación financiera inestable lo hicieron un blanco fácil de un ataque contra la Unesco. Las puertas de la exclusión estaban abiertas para el ICTP, y quienes salieron del campo fueron Salam y su grupo.

La “Revolución novembrina de las altas energías” y la exclusión de la alternativa de Salam

Los eventos de 1974-1976 en la física de alta energía han sido relatados y analizados por varios autores, incluyendo protagonistas de los eventos, que se han interesado en el desarrollo intelectual de la física de partículas y las relaciones entre teoría, experimentos y máquinas. No trato de reproducirlos aquí. Solo un breve resumen puede ser apropiado.\footnote{Sobre la “Revolución novembrina”, ver Pickering, 1984, pp. 180-188, 213-228 y 253-281, y Hoddeson, Brown, Riordan y Dresden, 1997.}
Mientras la detección de la partícula omega, en 1964, les dio a los físicos de partículas la confianza de creer que los quarks constituían una noción útil para analizar el zoológico subatómico, no se llegó a ningún acuerdo sobre su realidad ontológica. El anuncio de la nueva partícula fue recibido como una señal positiva en una época en la cual la miríada de nuevas partículas que salían de los aceleradores no podía ser explicada satisfactoriamente o clasificada por los pocos modelos teóricos disponibles. No era claro cómo interpretar el nuevo fenómeno pero, sin embargo, era un estímulo importante. El resultado fue el establecimiento de la cromodinámica cuántica, el último modelo del siglo XX sobre interacciones de partículas. Las peculiares características de la inesperada partícula J/ψ —más larga vida y más grande masa— hicieron pensar a los teóricos que podría ser una manifestación de un nuevo quark.

Desde mediados de los sesenta, algunos teóricos, motivados por presunciones teóricas como la simetría en el número de leptones y quarks, o la carga eléctrica del quark, sugirieron la existencia de quarks adicionales. Sheldon Glashow, James D. Bjorken, Daniele Amati y otros abogaron por la existencia de uno que llamaron “encanto”, a ser agregado a los ya aceptados “arriba”, “abajo” y “extraño”.

Más radicalmente, Leon van Hove y otros en CERN sugirieron una tripleta adicional de quarks, con lo cual se doblaba el número total. Yoshio Nambu y M. Y. Han, de la Universidad de Chicago, motivados por el problema de estadísticas quark, propusieron tres tripletas que elevaron el número a nueve. Ninguno de estos esquemas llamó mucho la atención, hasta cuando fue revivida la teoría de unificación de Weinberg-Salam, gracias al trabajo de Gerardus ’t Hooft y Martin Veltman sobre renormalización, a principios de los setenta. Otro problema persistía: algunos modos de desintegración de una nueva partícula intermedia, predichos por el modelo Weinberg-Salam (la corriente neutra Z^0), no se manifestaban en los laboratorios. Los teóricos Glashow, Iliopoulos y Madani (“GIM”) inventaron un mecanismo que reintrodujo el “encanto” con el fin de resolver este problema, conocido entonces como “el problema del cambio de extrañeza”. Glashow recordaría este período en su conferencia Nobel, cuatro años más tarde.

23 Estos nombres carecen totalmente de sentido físico; no representan ningún atributo de la entidad en cuestión; son etiquetas.
Luego de languidecer durante una década, el problema de las reglas de selección de la corriente neutral finalmente fue solucionado... por el trabajo de 'T Hooft, Veltman, Benjamin Lee y Zinn Justin, fue claro que el ansatz Weinberg-Salam era, de hecho, una teoría renormalizable. Con GIM, fue trivialemente extendido de un modelo de leptones a una teoría débil de interacciones. Lógicamente, el balón ahora estaba en manos de los experimentadores (Glashow, 1979, p. 542).

Sin lugar a dudas, cuando se anunció la partícula J/ψ, esta fue asociada de inmediato con “encanto”, identificando J/ψ con un sistema compuesto de un quark “encanto” y su antipartícula. En 1975 y 1976, se detectó una “familia de nuevas partículas”. El “modelo encantorium”, versión elaborada del sistema encanto-antiencanto, aparentemente era capaz de reconstruir los canales correctos de degradación de cada partícula y, en consecuencia, de reproducir lo que podría llamarse la “genealogía familiar”. Prevalció sobre las otras alternativas y, aun cuando más tarde fue descartada, sirvió para establecer a “encanto” como un nuevo miembro del zoológico de partículas. El resultado de la “Revolución novembrina de las altas energías” fue el establecimiento de los quarks como partículas reales. En 1976, Richter y Ting recibieron el Premio Nobel de Física, y el modelo Weinberg-Salam “con GIM” se convirtió en el “modelo estándar” de la física de partículas.

Sin embargo, el “modelo encantorium” tuvo varios competidores, uno de ellos el esquema de unificación de Pati-Salam, de electromagnética débil e interacción fuerte. El modelo fue presentado en Fermilab en 1972 y publicado en una serie de artículos entre 1973 y 1974. Fue el producto de la colaboración entre Salam y el joven físico indio Jogesh Pati, de la Universidad de Maryland. Fue el primer intento de construir una gran teoría unificada de todas las interacciones (excluyendo la gravedad), y fue la principal actividad de investigación llevada a cabo por Salam en el ICTP en la década de los setenta. La presunción básica era considerar leptones y hadrones como objetos similares y, por consiguiente, asentados en la misma representación de grupo. Esto conllevó la ampliación del grupo color SU(3)$_c$ (del esquema cromodinámico cuántico) a SU(4)$_{l+r}$ SU(3)$_c$, SU(4)$_{l+r}$. El origen de la estructura de grupo (matemática) sugerida por Pati y Salam puede ser rastreado en dos tradiciones diferentes: Salam y el trabajo de sus estudiantes del Imperial College sobre el grupo SU(6) relativista, y el trabajo de Pati relacionado con las reglas de selección en los quarks de fermión en Maryland, que también estaba conectado, indirectamente, con SU(6). El modelo
Han y Nambu fue, de hecho, una reformulación del mismo problema. Pati y C. H. Woo, ambos en el Centro de Física Teórica de la Universidad de Maryland, habían explorado las consecuencias experimentales de la teoría Han-Nambu. El modelo Pati-Salam heredó el grupo tipo Han-Nambu para la parte hadrónica, que propone varias alternativas para la asignación de los nueve quarks. También heredó el prejuicio teórico de que los quarks transportan cargas eléctricas íntegras. Sin embargo, esta presunción era innecesaria en ambos esquemas: Han-Nambu y Pati-Salam. En 1974, Pati y Salam sugirieron “consecuencias experimentales” con su esquema. Se referían a la existencia de nuevas partículas, especialmente ocho gluones de color. Se esperaba que esto último ocurriera en “colisiones hadrónicas normales” que tuvieran una masa entre 3 y 10 GeV. Se predecía también que aparecerían partículas en aniquilaciones e+e− como las que se producían en SLAC. Pati y Salam propusieron modos específicos de descomposición para estas partículas, en caso de que fueran inestables.

Cuando Spear y Brookhaven anunciaron la nueva partícula, Pati y Salam enviaron una comunicación a Physical Review Letters titulada “¿Son las nuevas partículas gluones de color?” (1975). El artículo comenzaba anotando que en su modelo 1972-3 “se ha afirmado que tanto encanto como color son esenciales” y que “desde el punto de vista de ese esquema, las partículas descubiertas indudablemente podrían ser compuestos quarks encanto-antiencanto […] o, alternativamente, de norma coloreada”. El documento presentaba reglas de selección específicas. Con base en estas reglas, Pati y Salam predijeron los modos de decaimiento de estas partículas, es decir, el proceso de aparición de nuevas partículas. En otras palabras, ofrecieron una espectroscopia de partículas alternativa a la predicha por el “modelo encantariorum”. Adicionalmente, afirmaron que era necesario iniciar una exploración experimental en las regiones de energía que su modelo predecía. Escribieron: “con esta identificación, llegamos a predecir dos partículas más”, agregando que “deben existir dentro de, máximo, 50 a 100 MeV de ψ y ψ’: urgimos una investigación sobre ellas”. Si esa investigación tenía un resultado positivo, concluían: “debe ser una indicación de buscar los restantes miembros del octeto de gluones”.

Salam presentó sus predicciones a Gösta Ekspong, uno de sus amigos de la Universidad de Estocolmo y jefe del Comité Científico de CERN. Luego de explicar en detalle sus predicciones en el marco del modelo Pati-Salam, concluyó:
Los físicos están polarizados acerca de qué nuevo número cuántico hemos encontrado. El favorito de CERN es encanto y SU(4)—Amati y Prentki fueron los descubridores de este número cuántico (con Bary, Nuyts, Glashow, Bjorken y Okun)_. Otra vez corre el rumor de que Ting produce Ψ' en pares. Esto favorecería el color. Como he estado afirmando, si es color, entonces el modelo de fotón que tenga partes de color y carga fraccional está muerto (Salam, marzo 21, 1975).

Su correspondencia privada durante este período se enfoca en preparar a eminentes figuras para su interpretación. El grado de detalle encontrado en algunas de estas cartas es extraordinario, especialmente las dirigidas a colegas de la Academia Sueca. Parte de sus correos respondieron con preguntas sobre los nuevos resultados empíricos. Salam contestó con explicaciones sobre el modo como su esquema podía acomodarse a la mayoría de los nuevos resultados. Ahora Salam quería que su modelo fuera probado empíricamente; lo que requería era un barrido en pequeños pasos, a través de rangos específicos de energía determinados por el modelo. Este es un elemento de negociación crucial en las relaciones entre teóricos y experimentadores, es decir, qué ver y cuándo verlo. Salam esperaba que se detectaran los gluones de color que acompañarían al “encanto”:

Me parece que definitivamente el color ha sido descubierto y quizás también el encanto y las cargas integrales. Los experimentos importantes ahora son 1) llenar el octeto de mesones de color y 2) descubrir mesones tripleta y antitripleta de encanto (Salam, marzo 21, 1975).

Había muy pocas probabilidades de “una prueba severa”, en el sentido popperiano. Pati y Salam anotaron que algunas de sus predicciones podrían no ocurrir, aún dentro de su marco teórico. Anticipando esto, escribieron: “En el evento de que no aparezcan los (e- e+) en los experimentos [...] estas dos partículas faltantes pueden entonces obtenerse en producción asociada y en colisiones hadrónicas simples” (Pati y Salam, 1975). De ahí que el esquema fuera flexible y tuviera espacio para un número de hipótesis auxiliares: estamos frente a un caso de margen de negociación producido por la “flexibilidad interpretativa” que propone la misma teoría a sus predicciones experimentales. Predecía canales específicos de decaimiento de las nuevas partículas, pero también reglas de selección que precluían fenómenos no observados. Si se detectaban las partículas adicionales, entonces los físicos tendrían que considerar
más cuidadosamente su alternativa. Usando una terminología latouriana, Pati y Salam vieron la partícula ψ como un aliado potencial no humano (o actante) para movilizar su teoría de gran unificación entre la comunidad (Latour, 1992). Con el fin de obtenerlo, era necesario convencer a sus colegas de que valía la pena iniciar la búsqueda de “sus” partículas.

Ante las dificultades para llevar a cabo la conferencia de Trieste sobre “las partículas faltantes”, dada la campaña liderada por Harari desde SLAC y Ne’eman desde Tel Aviv, Salam decidió hacer contacto con los saboteadores a principios de julio. Luciano Bertocchi, profesor de la Universidad de Trieste e investigador vinculado al ICTP, estaba en Estados Unidos y Salam le sugirió que se acercara a los científicos estadounidenses e israelíes. Salam tenía dos objetivos en mente. Primero, Bertocchi explicaría la posición del ICTP en relación con Israel —que la resolución de la Unesco no tenía efecto sobre la política de selección del ICTP—, y segundo, investigaría la actitud general hacia el Centro. Bertocchi tuvo varias reuniones con los científicos saboteadores en Estados Unidos. En su informe, escribió acerca de una “larga discusión en Israel sobre si se debía o no boicotear el Centro”. Le explicó a Salam que la única manera como el Centro podía evitar un boicot era presentar una declaración denunciando a la Unesco. Salam también se enteró de la actitud oficial de SLAC, a través de un memorando interno, firmado en el laboratorio por quince físicos, que afirmaba que “ningún resultado experimental obtenido en SLAC puede ser exhibido en un instituto de la Unesco, como Trieste” (Bertocchi, julio 26, 1975). Este fue el golpe de gracia en la reunión de Trieste y, de hecho, la única actividad que fue cancelada como resultado del boicot.

Debemos ahora detenernos a entender lo que significó la exclusión del ICTP de la “Revolución novembrina de las altas energías”. Tanto Pati como Salam se sintieron excluidos de los debates llevados a cabo en Estados Unidos, no porque su modelo fuera rechazado, sino porque fue abiertamente ignorado. Las nuevas partículas fueron discutidas en agosto, en una importante conferencia en SLAC. Harari dio una charla sobre las “Implicaciones teóricas de las nuevas partículas”, en la cual hizo una revisión de los diversos modelos teóricos. En las preguntas “¿ψñ posee un nuevo número cuántico? ¿Tiene color?”, Harari se refirió a “las muchas versiones de color tipo Han-Nambu”, insistiendo en que “todos esos modelos sufran dificultades comunes”. De modo que la única mención tácita al modelo Salam-Pati fue en referencia con otros diez modelos que ni siquiera nombró y que tenían que ser descartados.
Luego de un corto comentario, concluyó: “El rechazo de la posibilidad de que las partículas Psi sean coloreadas nos devuelve al marco teórico convencional de la física de los hadrones”. De ahí que, según él, los experimentadores deban concentrarse en probar la regla Zwei-lizuka, la regla de selección del “marco convencional”. “La regla ZI contempla varias características que, de otra manera, son muy misteriosas”, concluyó (Harari, 1975). Se había producido una marginación tácita: tras excluir al ICTP del ruedo, el trabajo de Salam y Pati quedó atrapado en una nota a pie de página, junto con otros que no eran parte del “marco convencional de la física de hadrones”.

Cuando Salam y Pati se enteraron de la charla de Harari en SLAC, le enviaron cartas de protesta, remitidas a SLAC y al Instituto Weizmann. Argumentaban que la interpretación del experimento Spear dada por Harari había sido sesgada desde el punto de vista de que algunas cuestiones fundamentales, como la carga de los quarks y la existencia de quarks “libres” todavía no estaban resueltas, y que sus observaciones (las de Salam y Pati), siendo una alternativa legítima, merecían atención. Harari replicó: “Me doy cuenta de que ninguno de nosotros puede convencer al otro. A final de cuentas, la belleza de la física es que tenemos un árbitro no sesgado, llamado experimento, que eventualmente soluciona todas las disputas de manera concreta y final. Debemos esperarlo” (Harari, diciembre 11, 1975). Esto provocó una respuesta de Salam, que revela la clase de negociaciones que ocurren entre experimentadores y teóricos, y pone en evidencia la debilidad del argumento de neutralidad que Harari le concede a los procedimientos experimentales:

No creo que podamos convencernos el uno al otro solamente por correspondencia. Lo mejor que usted ha dicho es: “dejemos que el experimento sea el árbitro”. Pero eso era lo que decía mi carta. Puesto que usted, mi querido Harari, es uno de los que les dice a los experimentadores cuáles son las posibles alternativas teóricas que ellos tienen que observar, yo esperaba que usted enumeraría las que nosotros [Pati y Salam] presentamos, así como otras propuestas —y luego les podría exponer sus razones para descartar alguna en particular—. Los experimentadores pueden juzgar si las razones que usted aduce son convincentes (Salam, enero 15, 1976).24

24 Pati señala que Harari había malinterpretado su teoría, ver Pati, febrero 9, 1976.
Pati y Salam sabían que su teoría no se soportaría solamente sobre sus méritos epistemológicos y que para sobrevivir debía ser comunicada dentro de los círculos sociales apropiados. Si ellos querían que su teoría fuera considerada y “probada”, era obligatorio que fueran movilizados todos los recursos disponibles para familiarizar a sus colegas con su potencial. Sobre todo, esto requería el tiempo para explicar sus motivaciones, presupuestos, implicaciones y, lo más importante, la flexibilidad en la acomodación de la nueva información. La principal preocupación de Pati y Salam era que a su teoría se le debía dar tiempo y espacio adecuados. La controversia privada con los físicos en Estados Unidos duró años, debido a lo que Salam y Pati calificaron como “las imprecisiones en interpretar [su modelo]”. En una sesión compartida por Glashow, Bjorken, Pati y J. L. Rosner se discutió la disyuntiva entre la interpretación color versus “encanto” en los experimentos de Spear/MIT. Pati le dijo a Salam que aun cuando él solamente “tuvo sie- te minutos”, pensó que sus ideas habían sido “muy bien acogidas”. Y lo más importante, agregó, es que “había muchos experimentadores” presentes y había sido posible, “en conversaciones”, ver la posición de algunos teóricos: Feynman “simpatizó con las ideas”, pero Gell Mann y Glashow todavía estaban en plan “dogmático y resentido”. Además, agregó que “ellos [Gell Mann y Glashow] aceptaron, en conversaciones conmigo, que las objeciones familiares contra el color físico habían desaparecido” (Pati, diciembre 8, 1975). En todo caso, esta opinión privada no fue hecha pública. Unos pocos meses más tarde, Martin Perl (de SLAC) dio una charla en Nueva York, que suscitó la siguiente queja de Pati: “me molesta saber que usted no se refirió a nuestra sugerencia en la reunión de Nueva York, mientras que sí lo hizo con las de Feinberg y Lee” (Pati, febrero 9, 1976). Perl se excusó con el argumento de que “soy un conferencista informal y usualmente vario lo que digo” y prometió mencionar, en el futuro, la alternativa Pati-Salam. Sin embargo, a pesar de las promesas privadas y buenas intenciones, la interpretación Pati-Salam siguió siendo marginal tanto en congresos como en publicaciones.

El objetivo de la Conferencia de Trieste era, precisamente, decirles a los “experimentadores cuáles eran las posibles alternativas teóricas que tenían que observar”, con énfasis en las potencialidades más que en las dificultades del modelo Pati-Salam. Sin embargo, Salam nunca tuvo esta oportunidad en el ICTP, a pesar de que, en el verano de 1976, el Centro debía celebrar una conferencia sobre el tema con el título alterado de “Interacciones leptónicas y las nuevas partículas”, ¡es decir que
cambió el “faltantes” por “nuevas”! Salam habló con Wolfgang Panofsky, director de SLAC, y le pidió que le sugiriera nombres de participantes. Panofsky respondió secamente que los arreglos debían ser hechos sobre “bases personales” y que él “no podía garantizar que algunos de los problemas que creó su última conferencia no se produjeran nuevamente” (Panofsky, febrero 17, 1976)

La conferencia de 1976 fue un fracaso por una razón: para entonces, como lo anotó Pickering, “la fase crítica de la Revolución novembrina se había superado” (1984). Había poco espacio para convencer al experimentador de comenzar una búsqueda de alternativas para “encantar”. Se “estableció una nueva tradición” y el ICTP solo pudo enterarse de lo que estaba pasando en otra parte, como un observador externo o, mejor, excluido.

Aparentemente, Salam ni siquiera fue a la reunión. Los “hechos negativos y positivos” de la conferencia fueron informados en un reporte interno. Entre los negativos se enumeraron los siguientes: solo la mitad, aproximadamente, de los invitados asistió; la limitada participación internacional estaba compuesta principalmente por italianos y yugoslavos; algunos conferencistas se negaron a asistir y, dice el informe, “nuestra impresión es que algunos fueron porque son amigos” y, por último, presumiblemente aludiendo a la ausencia de Salam, la “participación de científicos del ICTP ha sido muy limitada en todos los niveles”. Los hechos positivos no compensaron las fuertes críticas por la falta de interés de Salam. Paolo Budinich, subdirector del ICTP, quien redactó el reporte en cuestión, pensó que algunas de “las razones para un éxito solo parcial” podrían estar por cuenta de Salam:

Finalmente pensamos que el Centro no es tan llamativo como solía ser. Quizás esto es debido a una tendencia actual que hace que otros sitios sean más atractivos pero, en nuestra opinión, la principal razón para esto es que la vida científica del Centro en cuanto a física de partículas no es comparable con lo que fue en años previos, en lo que se refiere tanto a cantidad como a calidad de visitantes [sic] (Budinich, marzo 16, 1976).

Conclusión

¿Cómo se cerró la batalla de la Unesco, el ICTP e Israel? ¿Cómo podemos interpretar el efecto del boicot en el desarrollo del establecimiento del modelo estándar? Los sabotajes están destinados a producir cambios políticos en el objetivo. Los científicos boicoteadores pensaron que negando la colaboración científica al Tercer Mundo a través del ICTP
presionarían a las delegaciones para anular su decisión sobre Israel. Al comienzo del boicot, Leon van Hove confiaba que “bajo su dirección [la de Salam], el Centro evitaría cualquier forma de prejuicio político” y estimaba que la crisis solo duraría “unos pocos años” (van Hove, febrero 3, 1975). Ambas opiniones fueron correctas. El factor tiempo es, de hecho, crucial en un boicot; su forma de sanción requiere una acción sostenida durante períodos extensos, debido a la complejidad de las redes del campo académico. Para 1977, después de que la Conferencia General de la Unesco levantó las sanciones de Israel, independientemente del boicot del ICTP, el Centro de Trieste otra vez estaba funcionando normalmente.

En cuanto a cómo interpretar lo sucedido, el episodio muestra las tensiones y contradicciones de la ciencia internacional (Doel, 1997, p. 216). A pesar de estar consciente de que una clara frontera entre ciencia y política era esencial para la imagen pública del Centro, Salam amplió cuidadosamente durante las negociaciones el lazo entre el ICTP y la Unesco, y se mantuvo apartado del debate público. Rápidamente se dio cuenta de que mientras el boicot fuera contingente, la escasez de fondos era el obstáculo real para la consolidación del ICTP como centro de investigación. Era esencial evitar cualquier confrontación directa porque, de otra manera, sería acusado de “politizar” la ciencia. Acusar a alguien de “politizar” la ciencia, como lo hicieron estadounidenses e israelíes, es una maniobra política para desacreditar al oponente, demostrando que está violando el carácter supuestamente neutral del espectro científico. La fuerza ideológica de la retórica propia de los científicos sobre el internacionalismo científico reposa en su poder para movilizar aliados, aun cuando las contramedidas, como la participación en un boicot, demuestren el carácter político de la ciencia. Ese comportamiento proporciona, quizás, un crisol ideal en el cual explorar las contradicciones de la práctica del internacionalismo científico.

La exclusión de la alternativa de Pati y Salam en el contexto del boicot permite una discusión sobre la interacción entre experimento y teoría. Este episodio puede ser visto como un buen ejemplo de lo que Pickering ha identificado como la simbiosis entre experimentadores y teóricos en física de altas energías. Sin embargo, la exclusión del ICTP durante las “Revoluciones novembrinas” apunta hacia otra dimensión de la pregunta sobre práctica científica. En su trabajo sobre la “historia social” de la física de partículas, Andrew Pickering anota que los científicos toman decisiones sobre paradigmas, métodos y hechos competidores basados en lo que él llama “oportunismo en contexto”.
Parece dar por sentadas las bases institucionales “naturales” para controversias científicas, es decir, la “tradición científica” en instituciones de élite. Sin embargo, el episodio del ICTP parece revelar la presencia de una jerarquía entre la red científica institucional y el hecho de que los científicos decidan cuáles son los espacios sociales legítimos para debates científicos. Con el fin de participar a través de “oportunismo en contexto”, primero se debe tener acceso a los contextos sociales de la controversia. Para ejercer el “oportunismo en contexto” efectivamente, se debe tener acceso a los espacios sociales de debates y deliberaciones, esto es, a los contextos y contactos sociales apropiados. El aislamiento de actores que participan en una controversia es una condición social que puede tener implicaciones sobre el valor epistemológico que la comunidad termina asociando a sus enunciados. Este caso muestra el error de creer, con Pickering, que el contexto de la controversia es un espacio exclusivo de la “práctica científica”, ignorando la dimensión política que permea a la ciencia por ser, esencialmente, una práctica social. Como lo han anotado antropólogos y sociólogos científicos, las teorías, como las instituciones, necesitan aliados poderosos. Salam y Pati pensaron que su modelo era flexible. Sin embargo, para desplegar tal maleabilidad, es crucial tener acceso directo tanto a experimentadores como a teóricos. El contacto personal permite no solo una exposición más clara de puntos oscuros en las versiones escritas, sino que hace énfasis en la flexibilidad del modelo en relación con ciertas interpretaciones y presunciones. Merz (1997) ha sugerido que hablar de física no produce nuevos conocimientos. Sin embargo, puede contribuir a un cambio de equilibrio durante una controversia científica al familiarizar, por ejemplo, a la comunidad con un modelo, recalculando sus fortalezas y ofreciendo maneras de eludir los obstáculos. Los espacios sociales para discusión son sitios de negociación, y mientras más tiempo escuche la contraparte, mayores son las oportunidades de transar. Salam pensó que el ICTP podía ofrecerle una buena oportunidad para presentar su modelo y discutir los últimos resultados. En un centro como el ICTP, tan íntimamente ligado a la carrera de su director, era imposible no estudiar el ‘modelo de la casa’ mientras que, en otros foros, podría ser percibido como una especulación teórica más. La exclusión del ICTP como un espacio apropiado para debates limitó el margen de negociación de Pati y Salam para presentar un modelo alternativo. Además, la exclusión del ICTP de la “Revolución novembrina
de la física de altas energías", debida a la “Revolución diplomática de noviembre”, fue una manifestación de la marginalidad científica de un centro científico “para el desarrollo del Tercer Mundo”.

La marginalidad intelectual resulta de la exclusión social. En este caso, las limitaciones a espacios sociales controlados (exclusión de la conferencia en el ICTP) y la desaparición silenciosa de la alternativa propuesta (eliminación del trabajo vía nota al pie en el artículo que haría un balance del campo, o review paper) actuaron como dispositivo de marginación tácita de Salam, Pati y su teoría.
Coda

Puertas, redes y marginación

Empezamos este libro invitando a explorar los espacios en que se desarrollan las polémicas científicas a partir de las puertas de acceso que existen para los “recién llegados”; aquellos que, de una u otra forma, desafían el statu quo, los disidentes. Son puertas con distintos tipos de cerraduras: políticas —que cierran el acceso físico y simbólico a los espacios de debate—, como la exclusión de Salam y Pati de la “Revolución novembrina” en física de partículas; sociales, como las que obstruyeron la confrontación abierta entre los teóricos del estado estacionario y la comunidad de astrónomos; socioepistemológicas, como en el caso de la relatividad general, cuya falta de una tecnología teórica practicada por los físicos en la primera mitad del siglo XX evitó que se buscaran nuevos problemas; o retóricas, donde Tausk se presenta como un caso de libro de texto para ilustrar la forma en que no se debe exponer una crítica a autoridades: desde una posición de debilidad (un centro marginal y un estudiante desprotegido).

Esas puertas no son externas a la ciencia, sino constitutivas: se construyen dentro y como parte esencial de la práctica científica. La ciencia, como actividad social, y no solo como cuerpo de ideas y resultados experimentales, define sus topologías, es decir, lo que está adentro y lo que está afuera. Lo que encontramos detrás de esas puertas en todos los casos estudiados son densas redes de actores humanos y no humanos. Pero también del lado de los que quieren entrar hay otras redes, tal vez más tenues y débiles. El desafío de los “nuevos” científicos es lograr conectar las dos redes, es decir, abrir las puertas que permiten que los nuevos objetos, teorías, aliados y recursos se pongan en contacto con los del campo en polémica. De esa forma, el aporte de ese científico o su grupo se vuelve punto obligado de paso. Para explicar los resultados de Eddington se requiere pasar por la teoría de la relatividad. Pero lo contrario es también cierto: sin Eddington, Einstein habría permanecido aislado por muchos años. Hoyle logró abrir la puerta y hacerse escuchar, pero del otro lado de la puerta encontró los
brazos cruzados y la hostilidad de los astrónomos experimentales, que son pieza clave para participar en la conformación del nuevo campo de la astrofísica.

También comprobamos una vez más que no es posible pensar la ciencia en contexto, sino que ciencia y contexto son un continuo: política, objetos naturales, instituciones, artículos científicos, instrumentos de medición, teorías, datos experimentales, autoridad, etc. constituyen a la ciencia en acción (Latour, 1992). El paso a la ciencia “terminada”, la que se consigna en los libros de texto o, como la llamaría Kuhn, el paradigma, se da cuando esas puertas están bien cerradas y detrás de ellas ya solo quedan inermes “excéntricos” que, como los locos urbanos, refunfuñan mientras los “normales” los ven como marginados. Para fines de los años setenta, Hoyle y sus estudiantes seguían gritando detrás de las puertas, pero ya nadie en la red del Big Bang les prestaba mucha atención. Se veían como una curiosidad en el paisaje histórico, mientras que a los jóvenes iniciados se les enseña que fueron parte de la prehistoria de la disciplina. Tausk, por su lado, abandonó la lucha y se retiró por completo de la investigación. Einstein se resignará a que su teoría sea marginal debido a la falta de practicantes y de objetos por estudiar. Salam y Pati insistieron durante un tiempo en que su modelo debía ser discutido, pero las redes del “encanto” ya habían clausurado las puertas del debate.

Todos los episodios presentados se han concentrado en problemas referidos a la física teórica. En principio, ese campo sería visto como uno de los más refractarios a los “factores sociales”. En cambio, hemos visto que la imagen del universo contemporáneo está también sujeta a negociaciones sociales permanentes, de modo que la evidencia empírica es solo parte del entramado socioepistemológico. El destino de nuestro universo –es decir, de nuestra representación del mundo– reposa en la manera en que los actores humanos logran posicionar sus ideas, evidencias, métodos, problemas, aliados, retórica, etc. frente a sus colegas y competidores.

No se trata de restringir la explicación del mundo a variables eminentemente sociales, como aspiró el programa fuerte de Edimburgo. Pero tampoco creo que la naturaleza les hable a los humanos y sea, como le decía Harari a Salam en nuestro cuarto episodio, el “árbitro” de las contiendas científicas. Latour y la teoría de actor-red intentan mostrar que tanto actores humanos como no humanos son movilizados y construidos en el desarrollo de polémicas. También sucede cuando se
están precocinando las polémicas. En esa fase, los “recién llegados” luchan porque se le dé cabida no solo a sus ideas, sino también a los nuevos objetos que ellas involucran: es también un forcejeo ontológico.

La cercanía de Einstein y Eddington, así no se conocieran personalmente, permitía que se llevara a cabo la observación en la clave que predecía la relatividad. De hecho, Einstein había tenido contacto con todas las expediciones anteriores. Hoyle, Salam y Pati no tuvieron la misma suerte, y eso se refleja en el destino de sus propuestas. Más aún, después de 1919, los trabajos de Einstein se alejaron de los intereses de los físicos, particularmente de los experimentalistas. Una de las principales lecciones de estas historias es que los teóricos requieren introducir en sus redes a los experimentalistas: primero interesarlos y segundo convencerlos de que vale la pena explorar sus predicciones. Un experimentalista sin un teórico está ciego, un teórico sin un experimentalista está desaparecido, y ambos están perdidos si no son parte de la red de negociación social en la cual se dirimirán las polémicas.

En suma, no se trata del constructivismo social solipsista, en el cual el mundo externo no desempeña ningún papel. En una metáfora matemática simplificada, las representaciones científicas del mundo \(U \) son una suma ponderada de interacciones sociales (entre humanos) y socionaturales (entre actores humanos y no humanos):\(^1\)

\[
U = a \cdot x + b \cdot y,
\]

donde \(a \) y \(b \) son los “pesos” de \(x \) e \(y \) que son los “datos” de los factores sociales y socionaturales, respectivamente. En el modelo de programa fuerte solo los factores sociológicos son relevantes —es decir, \(b = 0 \)_. En el programa de actor-red todos los recursos y aliados se mueven con igual fuerza y tienen la misma importancia. Luego \(a = b \).

Los ejemplos de este libro han querido mostrar que las negociaciones se dan primordialmente entre humanos, pero nunca a espaldas o ignorando lo que sucede en los laboratorios en la interacción con la naturaleza. Es decir, \(a > b \), pero \(b \neq 0 \).

\(^1\) Por supuesto que uno puede descomponer más esta suma, por los distintos niveles en los cuales se producen tanto las interacciones socionaturales (instrumentos, protocolos, definición de rangos de tolerancia...) como las sociales (políticas, culturales, económicas, institucionales...). Si se quiere extender la analogía, \(x \) y \(y \) son vectores; es decir, describen factores en múltiples direcciones. En este modelo simplificado hemos agrupado los factores “descriptivos” o “explicativos” en los dos grandes tipos de intercambios: entre humanos y entre humanos y no humanos.
Esta forma de presentar el problema del constructivismo social puede tener un valor heurístico para entender los distintos matices de los programas de investigación en los estudios sociales de ciencia y tecnología. Creo que, hoy, todos reconocen que ni a ni b son cero, aunque en las guerras entre ciencias se trate de mostrar tan solo los casos extremos, en los cuales alguno se anula.

En los cuatro casos que hemos estudiado aparecen múltiples factores que afectan el acceso a las polémicas. La teoría general de la relatividad prácticamente quedó congelada en el tiempo por falta de experimentos que generara interés entre los físicos, por la ausencia de un grupo de “discípulos” que la “profesaran” y por no haberse desarrollado una “tecnología teórica” que permitiera practicarla y aplicarla a los problemas que otros científicos estaban trabajando. Hoyle nunca logró que los astrónomos buscaran los objetos que él predice como alternativas al modelo del Big Bang. Siempre estuvo a la defensiva, y esa, como enseña la historia militar, es la peor estrategia de ataque. Tausk, por otro lado, no supo negociar sus propuestas en el lenguaje ni atraer a aliados lo suficientemente bien posicionados para contrarrestar la posición débil desde la cual hablaba (estudiante en un centro vinculado con el Tercer Mundo, más que con la física de frontera). Salam y Pati fueron marginados en medio de una tormenta política que no les permitió abrir las puertas para que los experimentalistas y teóricos “jugaran” con sus propuestas y buscaran formas de adaptarlas a los resultados de MIT y Stanford.

En los últimos dos casos hemos visto claramente que la marginación en las polémicas se produce por vías sutiles, más que en la forma de confrontaciones violentas. Ese recurso lo he llamado marginación tácita, y consiste en cerrar espacios sociales de participación y después desear las alternativas por medio de un dispositivo retórico: referencias (tácitas o explícitas) en trabajos de revisión del campo (review papers), en forma de notas al pie de página en las que se agrupan propuestas muy distintas, pero tipificadas con una característica común: son trabajos “errados” o “desviados”. Este tipo de citas aparentemente visibiliza las interpretaciones alternativas, pero rápidamente las descarta, sin explicar los contraargumentos para cada caso en particular. Ello les cierra las posibilidades de adaptación a nuevos contextos. Como ha mostrado Olga Restrepo (2003), los artículos de revisión son parte central en la construcción de los campos de conocimiento que dicen “describir”. Salam y Pati perdieron la oportunidad de presentar y discutir su trabajo con el suficiente detalle en Trieste, cuando la polémica se
estaba forjando y, por consiguiente, el grado de estabilidad de la teoría del modelo de partículas era muy precario: en ese momento, su versión de los hechos habría podido inclinar la balanza en un sentido o en otro, al menos para que las nuevas partículas fueran también evaluadas a la luz de su propuesta —nuestro universo habría podido ser distinto—. Después, el balance de Harari cerró el debate sobre la partícula J/ψ. La marginación tácita extrema consiste en ignorar por completo las propuestas alternativas, es decir, ni siquiera tomarlas en consideración en los espacios públicos, como el trabajo de Tausk, que fue deliberadamente ignorado por Wigner y sus colaboradores, al punto que significó prácticamente la desaparición de este disidente. Solo en los espacios sociales públicos se puede desplegar el “oportunismo en contexto” que propone Pickering, que debe tener en cuenta los dispositivos sociales que hay en los contextos de polémica.

El problema con las historias de los vencedores es que invisibilizan gran parte de la realidad, lo que no solo es un problema político sino también epistemológico. Si explicamos las redes que se volvieron dominantes en términos de su capacidad de enlistar aliados, y tratamos a las “subordinadas” como cajas negras (en las que se ignora su dinámica interna y su interacción con el statu quo), regresamos a las narrativas retrospectivas (whig histories). Incluir las redes de los derrotados requiere un principio que vaya más allá de la simetría generalizada de la teoría de actor-red. El estudio de las redes de los marginales y excluidos se desprende del principio de una sociología supersimétrica que defino así: los espacios de polémica íntegramente deben incluir las subredes (a) que prevalecieron, y (b) las que no lograron insertarse en el corpus científico (las redes de los nuevos) y explicar por qué fueron derrotadas a partir de la dinámica de la red completa (a. La dominante y b. La excluida).

La marginación en ciencia y en historia de la ciencia suele ser muy común cuando las voces alternativas provienen desde fuera de Europa, Estados Unidos y, recientemente, China e India. Desde la “periferia” es difícil demostrar la primacía de “descubrimientos”, pero además sus redes suelen ignorarse. El nortecentrismo cultural hace permanente uso de la marginación tácita. El acceso a las redes de las ciencias naturales como a las sociales solo se logra cuando es posible atravesar las puertas que separan espacios epistemológicos, culturales y políticos.
Bibliografía

164

BIBLIOGRAFÍA

New Scientist, 13 de septiembre, 1971. 156.

Rencontre pour l’universalité de l’Unesco [s. f.]. [Mimeo]. Abdus Salam Papers, catalogado por el National Cataloguing Unit for the Archives of Contemporary Scientists (Catálogo 99/4/1, Bath UNIT, G. 116), Archivos de la Biblioteca del Centro Internacional Abdus Salam para la Física Teórica, Miramare-Trieste.

BIBLIOGRAFÍA

Unesco. (2007). 60 years Unesco’s History.

Ciencia, tecnología y desarrollo: interrelaciones teóricas y metodológicas (pp. 51-89).
Caracas: Nueva Sociedad.

Perspective. En B. Bertotti, R. Balbinot, S. Bergia y A. Messina (eds.), *Modern Cosmology in
Retrospect* (pp. 159-188). Cambridge: Cambridge University Press.

32-40.

A Multi-Method Introduction to International Politics (pp. 128-254). Chicago, IL: Markham.

Oxford: Oxford University Press.

and Einstein’s Relativity 1905-1911. Part I: The Uses of Theory. *Studies in History and
Philosophy of Science*, 23(4), 625-656.

Cambridge University, 1760-1930*. Chicago, IL: University of Chicago Press.

Wheeler, J. A. y Feynman, R. P. (1945) Interaction with the Absorber as the Mechanism of

Sheets (eds.), *Serendipitous Discoveries in Radio Astronomy* (pp. 175-184). Green Bank,
WV: National Radio Astronomy Observatory.

Correspondencia

Ahlfors, L. (27 de enero de 1975). [Carta a Abdus Salam]. Abdus Salam Papers, catalogado por el
National Cataloging Unit for the Archives of Contemporary Scientists [Catálogo 99/4/1,
G. 118], Archivos de la Biblioteca del Centro Internacional Abdus Salam para la Física
Teórica, Miramare-Trieste

Italiana di Fisica, desde Trieste, en italiano, una página mecanografiada]. Leon Rosenfeld
Papers, Niels Bohr Archive, Copenhagen.

Bell, J. S. (26 de octubre de 1966). [Carta a Loinger, desde Génova, en inglés, una página
mecanografiada]. Leon Rosenfeld Papers, Niels Bohr Archive, Copenhagen.

Bohm, D. (26 de septiembre de 1966). [Carta a Fonda, con copia a Salam, Budini y Tausk, desde
Londres, en inglés, una página manuscrita]. Archivo personal de K. S. Tausk, São Paulo.

Jauch, J. M. (16 de septiembre de 1966). [Carta a Wigner, en inglés]. Eugene P. Wigner Papers (Caja 71, Carpeta 3), Manuscripts Division, Department of Rare Books and Special Collections, Princeton University Library, Princeton, NJ.

Jauch, J. M. (13 de octubre de 1966). [Carta a Wigner, en inglés]. Eugene P. Wigner Papers (Caja 71, Carpeta 3), Manuscripts Division, Department of Rare Books and Special Collections, Princeton University Library, Princeton, NJ.

Rosenfeld, L. (4 de octubre de 1966). [Carta a Salam, desde Copenhague, en inglés, una página mecanografiada]. Rosenfeld Papers, Niels Bohr Archive, Copenhagen.

Salam, A. (26 de septiembre de 1966). [Carta a Rosenfeld, desde Trieste, en inglés, dos páginas mecanografiadas]. Rosenfeld Papers, Niels Bohr Archive, Copenhagen.

Salam, A. (21 de marzo de 1975) [Carta a G. Ekspong]. ASP (G. 119)

Süssmann, G. (16 de septiembre de 1966). [Carta a Tausk, desde Fráncfort del Meno, en alemán, dos páginas mecanografiadas, traducción del alemán de J. Guillot].

Tausk, K. S. (10 de octubre de 1966). [Carta a Rosenfeld, desde Graz, en inglés, una página mecanografiada]. Leon Rosenfeld Papers, Niels Bohr Archive, Copenhagen.

Wigner, E. P. (6 de septiembre de 1966). [Carta a Jauch]. Eugene P. Wigner Papers (Caja 94, Carpeta 7), Manuscripts Division, Department of Rare Books and Special Collections, Princeton University Library, Princeton, NJ.
A LAS PUERTAS
DEL UNIVERSO
DERROTADO
Índice temático

A
Acceso a las redes naturales; 157
Actividad(es)
colectiva; 31
mentales; 27
espirituales; 27
sociales; 27
Actores sociales; 37
Actos
colectivos; 25
individuales; 25
Agencia Internacional de Energía Atómica; 111, 126
América Latina; 11, 24, 41, 135
Análisis
de las fuentes de radio; 91
sociológico; 28
Artefactos; 23, 25, 31, 33, 43-44, 48
Astrofísica de altas energías; 82
Autoridad dentro de la comunidad científica; 33, 54

B
Bienes públicos; 36, 37
Boicot; 16, 48, 126-128, 131-132, 134-139, 141, 146, 149-150
Bombas nucleares; 47

C
Campo(s)
científico(s); 23-24, 33-34, 66, 77, 139
configuración de los; 19, 25, 45
exógenos; 26
sociales; 25, 32
Capital simbólico; 26, 33, 40, 44
Capitalismo; 37, 39
Carisma; 27, 83
Centro(s)
de cálculo; 33, 107
de producción de conocimiento, 33
de Trieste; 150
Cerrajeros sociales; 25
Ciencia(s)
como institución; 27
en la historia política; 19, 31
estudios sociales de la; 21, 23, 25, 29, 41, 46, 94, 156
físicas; 30, 44, 84
fronteras en la; 36
imágenes normativas de la; 38
marginación en; 22, 157
naturales; 30, 157
normal; 78, 86, 94-95
política de la; 33
politzación de la; 36, 127
relación entre tecnología; 15, 24
sociales; 25
tfoniones de la; 18, 23
Civilización; 26
Código(s)
internos; 26
lógicos; 29
retóricos y sociales; 107
Comité del Movimiento por la Paz; 121
Comunidad(es)
astrofísica; 82, 92, 94, 96, 104
astronómica; 79, 83-84
científica; 18, 20, 31-32, 54-55, 62, 67, 70, 73, 78, 92, 95-97, 104, 120, 127, 132-133, 137, 140
de astrónomos; 94, 153
Condição(es)
sociales o culturales; 23
Congreso Judío Americano; 132
Entorno
natural; 27
social; 27
Escuela prepreradigmática; 83
Espacio(s)
construcción de; 25
epistemológicos, culturales y políticos; 157
exterior; 26
interior; 26
prepolémicos; 40
sociales; 151-152, 156, 157
Espectro de Planck; 101, 104
Estados árabes; 129
Estatus de beligerancia; 17, 26, 45
Estudios sociales
de género; 25
de la ciencia y la tecnología; 25, 29, 156
de laboratorio; 46
de las instituciones y las organizaciones sociales; 25
Estructura(s)
celestes; 77
terrestres; 77
Evidencia(s)
acumulada; 78
empíricas; 29, 104, 154
Evolución del universo; 50, 77
Experiencia(s)
científicas; 27, 31
mágicas; 27
místicas; 27, 31
Experimento Spear; 147, 148

F
Factor(es)
históricos; 28
psicológicos; 28
sociales; 32, 154-155
sociológicos; 28, 78, 122, 155
cosonaturales; 155
Falsacionismo; 35
Fenómeno(s)
electromagnético; 38
Filtros sociales; 19, 31
Física
colegio invisible de la; 47
del siglo XX; 45

Conocimiento científico; 17, 30, 36, 42, 128
Contexto(s)
social(es) y culturales; 15
Constante de Hubble; 80, 92
Constructivismo social; 155-156
Control de las fronteras; 26
Cosmología
contemporánea, 82
del Big Bang; 80
evolutiva; 80
Creación científica; 27, 29
Cuásares
descubrimiento de los; 92
extragalácticos; 96
galácticos; 96
proliferación de; 95
prueba de los; 98
Cuerpo negro; 98, 103
Cuota de ingreso; 25

D

Debates científicos
desarrollo de los; 128
Desarrollo(s)
científico; 24
de la ciencia; 27
de las matemáticas; 29
del modelo del estado estacionario; 78
de la física o la química; 29
político; 39
tecnológico; 24

Dinámica (s)
juego de inclusión y exclusión; 25
Dispositivos sociales; 25, 157

E

Eclipse; 35, 46, 49, 50-54, 56, 60-61, 64, 65, 67, 70, 75, 81
Ecualción(es)
de Einstein; 80-81
de McCrea; 82
de Schrödinger; 83, 109
Efecto(s)
Cassimir; 82
gravitacionales; 94, 95
Enfoque termodinámico; 109, 110
historia de la; 11, 46
newtoniana; 38
principios fundamentales de la; 79
teórica; 15-16, 18, 21, 46-47, 111,
125, 144, 154
Filosofía
historia de la; 28
modelos de; 46
Fronteras disciplinarias; 47

G
Galaxias; 77, 94, 98
Genealogía familiar; 143
Génesis; 37
Geometría del espacio; 80
Gran Explosión; 77-78, 80, 88, 96-97,
99, 101, 103, 105
Grupo(s)
de Cambridge; 87
de discípulos; 156
de ideas; 19, 31
de Ryle; 91, 101
de teóricos; 47
SU(6); 143
Guerra(s)
Fria; 36, 108
Mundial; 27, 47, 57, 87, 101, 109,
127
regulares y declaradas; 27
simbólicas; 26

H
Hadrones
física de los; 147
Herramientas heurísticas; 23
Hipótesis ad hoc; 78, 100, 105
Historia(s)
de las ideas; 29, 31, 46
de las teorías; 32, 46
de los derrotados; 23
del siglo XX; 23
internalista; 46

I
Ideas y objetos; 25
Identidades; 19, 25
Induccionismo; 34
Interacción social; 29
Instrumentos de formalización; 28
Integridad del sistema; 26
Interacciones
leptónicas; 148
sociales; 34, 155
International Centre for Theoretical
Physics; 48
Interpretación
causal; 108, 110
de Princeton; 109
Instituciones científicas internacionales;
127
Investigación científica; 30, 37, 137

J
Jerarquía; 19, 26, 33, 151
Justificación del conocimiento; 28

L
Leptones; 142-143
Ley(es)
de extinción interestelar; 103
de Hubble; 93
de información y conservación; 111,
113
físicas; 80
naturales; 80

M
Marginación
explicita; 115, 123
táctica; 16-17, 22, 48, 101, 119-120,
123-125, 147, 152, 156-157
Matriz eurocéntrica; 41
Mecánica cuántica
fundamentos de la; 107-108, 115,
118
Medición(es)
de la deflexión; 46, 50
de la RCF; 101
Medio cultural; 30
Membranas sociales; 26
Método(s)
científico; 29, 56
internos; 29
Modelo(s)
alternativos; 77
canónico; 78
cosmológico; 82, 87, 101
de acción; 31
de la cosmología; 46
de leptones; 143
de ruptura súbita; 31
cantaríum; 143, 144
estacionario; 78
estándar de la cosmología; 47, 82
estándar de la física de partículas; 48, 143
evolutivo; 80
popperiano; 42
Mundo
autónomo; 37
biológico; 38
de la física; 34
de las bibliotecas científicas; 34
de los valores; 29
externo; 23, 118, 155
imagen del; 30, 42
platónico de las ideas; 34
político; 37
subjetivo; 36

N
Naciones Unidas
Asamblea General de; 128-129
Negaciones
de los valores; 27
sociales; 48, 154
Norma(s)
éticas; 37
mertonianas; 127
Nortecentrismo; 22, 157
Nucleosíntesis; 97, 99
Nueva partícula; 135, 142, 144
Número cuántico; 145, 146

O
Objetos
galácticos o extragalácticos; 89
Observatorio Vaticano; 86
Oportunismo en contexto; 18, 40, 48,
125, 128, 150-151, 157
Organización Internacional del Trabajo;
129
Organizaciones sociales; 25-26

P
Paradigma; 20, 32, 38-40, 42, 78-79, 83,
94, 96, 105, 106, 136, 150, 154
Paradoja; 15, 20, 27, 31
Pelea salvaje; 88
Periferia; 18, 20-22, 24, 33, 41, 44, 123,
157
Política; 12, 19, 25, 30-33, 35-36, 40,
43, 46, 56, 71-72, 85, 106, 108, 113,
123, 126-128, 132-134, 137-141,
150-151, 154-156
Princeton University; 100
Principio(s)
cosmológico de Milne; 81
cosmológico perfecto; 81-82, 95, 105
de conservación de energía; 81
de conservación de la materia; 82
de sociología supersimétrica; 157
de unidad, simplicidad y belleza; 39
Proceso(s)
de construcción; 23
de descubrimiento; 28
de justificación; 28, 29
gravitacionales; 95
Problema(s)
de demarcación; 34, 36-37
de ergodicidad; 109
de la edad del Universo; 80
de medida; 108-109, 111
del helio y la radiación cósmica; 97
del horizonte; 82
Producción
cosmológica; 100
intelectual; 27, 28
Programa fuerte de Edimburgo; 32, 154
Programa(s)
científico; 89
cosmológico; 88
educativos; 137
popperiano; 87, 106
Protogalaxia; 101
Prueba logN-logS; 91
Puerta(s)
acceso a espacios; 19, 26
como artefactos de acceso; 23
de la ciencia; 18, 28, 33, 39, 42, 44,
61, 76
de la creación; 77
de la naturaleza; 29
del mundo; 77
popperianas; 36

de creencias; 30
de distribución espacial; 39
Solar; 80, 84
taxonómicos; 25
Segunda Guerra Mundial; 27, 36, 47, 87,
101, 109, 127
Sociología
aspectos de la; 27
del conocimiento; 29, 42

Índice temático

Q
Quarks
encanto-antiencanto; 144
existencia de; 142, 147

R
Radiación
Cósima de fondo; 97-98, 100
de microondas; 102
Radioastronomía
avance de la; 87
programa de investigación en; 87
Radioconteo; 87
Radioestrellas; 89
Radioobservatorio; 88
Red(es)
del conocimiento; 24
Reino de la justificación; 28
Reformas; 26
Región de Rayleigh; 103
Regla ZI; 147
Relación(es)
de cercanía o lejanía; 25
de fuerza; 40
de poder; 24-25, 30, 33, 139
Religión
de la modernidad; 24
dimensión de la; 27
República de Weimar; 31, 71
Reputación investigativa; 83
Revolución(es)
de noviembre; 40, 48, 128, 132, 152
Royal Astronomical Society; 46, 54,
57-58, 84
Royal Society; 46, 54, 57, 65

S
Sistema(s)
cuántico; 108

Tecnocidanos; 45
Teorema ergódico; 109
Teoría(s)
aceptación de una; 29
canónica; 105
científicas; 34-35, 42, 49, 86
cosmológica paradigmática; 106
cosmológicas; 77
cuántica; 46, 83, 108, 110-111, 114,
118-119, 122-123
de Gamow; 80, 85
de la medida; 47, 110-112
de la relatividad especial; 51-52, 57,
66
de la relatividad general; 35, 46, 50-
51, 53-54, 61-70, 72-76, 94, 96
de los cuantos; 31
del actor-red (TAR); 41
del Big Bang (o de la Gran
Explosión); 47, 74, 77, 78, 79, 80,
82, 88, 96, 97, 98, 101, 103-104, 105
del estado estacionario; 16, 77-79,
81, 83, 85-88, 92-93, 95-99, 101,
104-106
inflacionaria; 82
pseudocientífica; 34
"verificadores" o "falseadores" de;
43
Teóricos del estado estacionario; 105-
106, 153
Tercer Mundo
desarrollo del; 111, 125, 127, 138,
141, 152
países del; 131, 137, 140
regímenes radicales del; 128, 139

175
Tesis
de Forman; 31
DLP; 112
Terroristas; 27
Tierra; 39, 80, 85
Transdisciplinas; 25

U
Umbral simbólico; 23
Unesco
Conferencia General de la; 126, 129-130, 150
politización de la; 130-131
Resoluciones de la; 128, 133
Unión Internacional de Física Pura y Aplicada; 137
Universidad(es)
de Cornell; 104
de Estocolmo; 144
de Manchester; 87
de Maryland; 97, 143-144
de São Paulo; 110, 121-122
de Trieste; 146

University
College London; 89
Universo
conocimiento del; 29
en expansión; 81, 85, 101

V
Valores
dominantes; 30
éticos; 34
Variables
clase o interés; 28
independientes; 28
ocultas; 108, 123
sociológicas; 35
Viena
Círculo de; 28, 34
Visión científica; 31

Z
Zoológico subatómico; 142
Índice onomástico

A
Alpher, Ralph; 80, 97-101
Amati, Daniele; 111-112, 116, 119, 142, 145
Arafat, Yaser; 129, 140
Aron, Raymond; 133
Arrow, Kenneth; 133

B
Barber, Bernard; 37
Bell, John Stewart; 119
Bernardini, Gilberto; 113
Bers, Lipman; 134
Bertocchi, Luciano; 133, 146
Bethe, Hans; 74, 93, 99, 133
Bijker, Wiebe E.; 43
Bjorken, James D.; 142, 145, 148
Blake, William; 27
Bocchieri, Pietro; 109
Bohm, David; 108, 110, 112, 115-116, 119, 122, 123
Bohr, Niels; 13, 81, 108-109, 114, 118, 123
Bolton, John; 91
Bondi, Herman; 79, 81-82, 84-85, 88-89, 99
Bourdieu, Pierre; 17, 23, 25-26, 39-40, 44
Braudel, Fernand; 26
Broglie, Louis de; 112, 116
Brush, Stephen; 78
Bub, Jeffrey; 112, 119-120
Budinich, Paolo; 125, 149
Burbidge, Geoffrey; 92-93, 95, 99
Buttho, ZulfiqarAli; 140

C
Caldirola, Piero; 109, 121
Callon, Michel; 41
Carnap, Rudolf; 28, 34
Chamberlain, Owen; 133
Chandrasekhar, Subrahmanyan; 55, 57, 61, 72-73, 104
Collins, Harry; 46, 70, 108
Copérnico, Nicolás; 39, 67, 79
Curie, Marie; 28

D
Dalitz, Richard; 137
Daneri, Adriana; 107, 109, 111-112, 115-117, 119-120
de Greiff, Alexis, 15-21, 31, 46, 77, 82, 93, 107, 111-113, 125-126
Descartes, René; 25
Dicke, Robert; 98, 101, 110
Dirac, Paul A. M.; 54, 73, 83
Doel, Ron; 150
Duhem, Pierre; 78

E
Eddington, Arthur; 15, 51-59, 61, 64-70, 72-73, 75, 77, 81, 153, 155
Edgerton, David; 11, 27, 90-91, 94-95, 105
Einstein, Albert; 11, 16, 33, 35, 43-44, 46, 49-53, 55-58, 60-76, 80-81, 85, 95, 105, 108, 153-155
Eklund, Sigvard; 111
Ekspong, Gösta; 144
Elzinga, Aant; 126, 129
Everett, Hugh; 108

F
Falicov, Leo; 135
Feynman, Richard; 148
Fleck, Ludwik; 37, 38, 39
Fleming, Henrique; 122
Fonda, Luciano; 111, 115-117, 125
Fornax, Paul; 12, 29-32, 127
Foucault, Michel; 17, 25
Fowler, Willy; 94-95, 99
Freire Jr., Olival; 12, 107-108, 112, 121
Frisch, Otto Robert; 118-119
Fuch, Wolfgang; 134-135

G
Gadafi, Muhamad; 140
Galison, Peter; 12, 46
Gamow, George; 74, 80, 85, 90
Geison, Gerald; 83
Gieryn, Thomas; 36, 127
Glashow, Sheldon; 142-143, 145, 148
Gold, Thomas; 79, 81, 85, 88-89, 92, 94
Goldschmidt; 129
Gramsci, Antonio; 25
Greenstein, Jessie; 92-93, 95
Guth, Alan; 82
Gutiérrez, Carlos B.; 45

H
Hacking, Ian; 46
Halperin, Danny; 131-132
Hama, Yogo; 121
Harari, Haim; 136, 138-139, 141, 146-147, 154, 157
Harrison, J.M.; 138
Hattis-Rolef, Susan; 132
Hawking, Stephen; 24, 80
Heisenberg, Werner; 47, 109, 111, 114
Herman, Robert; 80, 97-101
Hill, Clifford; 93
Hofstadter, Robert; 133
Hollinger, David A.; 132
Horn, David; 136
van Hove, Leon; 126, 142, 150
Howell, T. F.; 102
Hoyle, Fred; 16, 47, 79, 81-86, 88-92, 94, 95, 97, 99-105, 107, 134, 153-156
Hubble, Edwin; 47, 80, 90, 92-93, 95
Huxley, Aldous; 27
Huxley, Julian; 133

I
Iliopoulos, John; 142

J
Jammer, Max; 109, 110
Jansky, Karl; 87
Jasanoff, Sheila; 28
Jauch, Josef Maria; 110, 115, 118, 120, 122
Jordan, Pascual; 109
Jordan, Robert; 131
Justin, Zinn; 143

K
Kaiser, David; 12, 46
Kevles, Daniel; 127
Kissinger, Henry; 131
Kohn, Walter; 135
Kragh, Helge; 49, 77-79, 82-83, 86, 91-92, 100
Kuhn, Thomas Samuel; 23, 31, 37-39, 78-79, 86-87, 94, 154

L
Lafuente, Antonio; 45
Landströlm, Catharina; 127
Lang, Norton; 135
Latour, Bruno; 17, 20, 23, 32-33, 40-41, 43, 46, 74, 146, 154
Lattes, Cesar; 121
Law, John; 41
Lee, Benjamin; 143
Lehman, Harry; 110
Lightman, Alan; 96
ÍNDICE ONOMÁSTICO

Linde, Andrei; 105
Loinger, Angelo; 107, 109-113, 116-117, 119
Lovell, Bernard; 87
Ludwig, Günther; 109
Lyttleton, Raymond; 84

M

M’Bow, Amadou Mahtar; 130-131
Mach, Ernst; 80
MacLeod, Roy; 31
Maddox, John; 134
Mann, Gell; 148
Masterman, Margaret; 38-39
Mather, John; 100, 104
Matthews, Tom; 92-93, 95
Mccrea, John; 109-113, 116-117, 119
Merton, Robert K.; 35-37, 127
Milne, Edward A.; 81
Minkowski, Rudolph; 92-93
Morrison, Jim; 27
Mott, Nevill; 89
Mulkay, Michael; 27, 90-91, 94-95, 102

N

Nambu, Yoshio; 142, 144, 146
Narlikar, Jayant V.; 92, 103
Ne’eman, Yuval; 134, 136, 138, 146
Neumann, John von; 108-109, 117-118
Nieto Olarte, Mauricio; 12, 25, 31
Nietzsche, Federico; 44-45

O

O’Connel, Daniel; 86
Overbye, Dennis; 88, 90, 93, 95

P

Panofsky, Wolfgang; 149
Parsons, Talcott; 37
Pati, Jogesh; 40, 48, 128, 136, 143-147, 150-156
Pauli, Wolfgang; 109
Peebles, P.J.E.; 101
Penzias, Arno; 74, 97-98, 100-102
Perl, Martin; 148
Pickering, Andrew; 17, 20, 33, 40, 48, 125, 128, 141, 149-151, 157
Pinch, Trevor; 43, 46, 70, 108
Pizà, Antonio; 121
Planck, Max; 81, 98, 101-104
Popper, Karl; 23, 28, 34-38, 40, 47, 50, 64-65, 87-88, 106
Prenkki, Jacques; 145
Prosperi, Giovanni Maria; 107, 109, 111, 116-117, 119

R

Rabi, Isidor; 133
Ravetz, Jerome; 27
Rayleigh, Lord; 103
Rees, Martin; 96
Reichenbach, Hans; 28, 30
Renninger, Mauritius; 110, 112
Restrepo F., Olga; 12, 40, 124, 156
Richter, Burton; 135, 136, 143
Rosenfeld, Leon; 109, 111-122
Rowan-Robinson; 88
Ryle, Martin; 87-92, 101

S

Sabato, Ernesto; 29-30, 133
Sadat, Anwar Al; 140
Salam, Abdus; 13, 16, 40, 48, 111, 113-116, 121-123, 125-126, 128, 133-156
Sandage, Allan; 92-94
Sartre, Jean Paul; 133
Schweber, Silvan; 88, 92
Schmidt, Maarten; 92-93, 95, 129
Schönberg, Mario; 111, 114, 121-122
Schrödinger, Erwin; 111, 114, 121-122
Sciama, Dennis; 82, 85, 92, 96-98
Scotti, Antonio; 109
Selleri, Franco; 120, 122
Shakeshaft, Robin; 102
Shapin, Steven; 39, 107
Shimony, Abner; 117-118
Shivanandan; 104
Silone, Ignazio; 133
Stubbs, Peter; 96-97
Süssmann, Georg; 108, 110, 112, 116
Swieca, Jorge; 121

T
Talbot, Ian; 140
Tausk, Klaus; 16, 47-48, 107-108, 110-125, 153-154, 156-157
Tayler, Roger; 99, 101
Teller, Edward; 133
’t Hooft, Gerardus; 142-143
Ting, Samuel; 135, 143, 145
Traweek, Sharon; 123

V
Varedian Ahlfors, Lars; 134
Veltman, Martin; 142, 143
Vigier, Jean Pierre; 112, 114-115, 120

W
Wakita, Hitoshi; 110
Wang, Jessica; 128, 139
Warwick, Andrew; 43-44, 46, 52, 62, 66, 96
Wickramasinghe, Chandra; 103
Wigner, Eugene; 108, 110, 115, 117-120, 133, 157
Wilkinson, D.T.; 103
Wilson, Robert; 74, 97, 98, 100-102
Wis, M. Norton; 31-32
Wolf, André; 133
Woolgar, Steve; 46
Wu, TaiTsun; 138-139

Z
Ziman, John; 12, 62, 135