• Correo ElectrónicoCorreo Electrónico
  • Dirección Nacional de Información AcadémicaDNINFOA - SIA
  • BibliotecaBibliotecas
  • ConvocatoriasConvocatorias
  • Identidad U.N.Identidad U.N.
Escudo de la República de ColombiaEscudo de la República de Colombia
  • English 
    • español
    • English
    • português (Brasil)
  • Aspirantes
  • Estudiantes
  • Egresados
  • Docentes
  • Administrativos
repositorio.unal.edu.co
Bibliotecas
  • Mapa de sedes
  • Amazonía
  • Bogotá
  • Caribe
  • Manizales
  • Medellín
  • Orinoquía
  • Palmira
Biblioteca Digital
  • Repositorio Institucional
  • Entrega de tesis y publicación en línea
  • Digitalización de documentos
  • Normatividad publicación en línea
  • Portal de Revistas UN
  • Suscripción a contenidos UN
  • Contáctenos
Recursos Bibliográficos
  • Recursos electrónicos
  • Catálogo UN
  • Diccionarios y enciclopedias
  • Herramientas bibliográficas
  • Libros electrónicos
  • Descubridor
  • Índices bibliográficos
  • Adquisicion de material bibliografico
Formación
  • Agenda de formación
  • Solicitud de nuevo taller
  • Guía de autoarchivo de documentos
Acerca de
  • Misión y visión
  • Dirección Nacional de Bibliotecas
  • Convenios y redes
  • Video del Sinab
  • Preguntas frecuentes
Sedes
  • Amazonia
  • Bogotá
  • Caribe
  • De La Paz
  • Manizales
  • Medellín
  • Orinoquia
  • Palmira
  • Tumaco
Servicios
Perfiles
Home
    • español
    • English
    • português (Brasil)
  • Login
View Item 
  •   Institutional Repository of Universidad Nacional
  • 1- Tesis y Disertaciones
  • Sede Bogotá
  • Facultad de Ciencias
  • Departamento de Geociencias
  • View Item
  •   Institutional Repository of Universidad Nacional
  • 1- Tesis y Disertaciones
  • Sede Bogotá
  • Facultad de Ciencias
  • Departamento de Geociencias
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Detección y clasificación automática de registros sísmicos en el observatorio vulcanológico y sismológico de pasto utilizando redes neuronales artificiales

Thumbnail
oscarernestocadenaibarra.2011.pdf (3.586Mb)
Date published
2011
Author
Cadena Ibarra , Oscar Ernesto
Metadata
Show full item record

Summary
En este trabajo se aplica una metodología que combina Análisis de predicción lineal (LPC) y Redes neuronales artificiales (RNA) con el objetivo de detectar y clasificar tres tipos de sismos volcánicos: volcano-tectónicos (VT) tipo A, largo periodo (LP) y tremor (TRE). Se construye una herramienta computacional orientada a la detección y clasificación automática de estas señales sísmicas, generando información en tiempo real. Segmentos cortos de la traza continua se representan utilizando la técnica LPC que también cumple la función de reducir la dimensión del vector que contiene los datos de la forma de onda. Para las fases de detección y clasificación se utilizan RNA tipo perceptrón multicapa con una capa oculta. Entre las ventajas de la metodología está la posibilidad de detectar sismos con arribos emergentes, de corta duración o de bajo nivel energético. La aplicación del método muestra cerca de 100% de acierto para la distinción entre ruido y señal sísmica (fase de detección), 92 % de acierto para la clasificación entre sismos LP y VT y cerca del 100% en la detección de sismos tipo TRE. / Abstract. In this work is applied a methodology that to combine Linear Prediction Coding (LPC) and Artificial Neural Networks (ANN) in order to detect and classify three types of volcanic seismic signals: Type A Volcano-Tectonic events (VT), Long Period (LP) and volcanic Tremor (TRE). It was built a software oriented to detection and automatic classification of these kinds signals, generating information in Real-Time. Short segments of the continuous streams are represented using the LPC technique, also carry out the reduction of the vector containing waveform data. For the detection and classification processing-phases are used ANN type Multi-Layer Perceptron (MLP). Among the advantages of this methodology are the possibility of detect seismic events with emergent arrives, short duration or low energetic level. The application of this method shows near to 100 % of good choices for to distinguish between signal and noise level (detection phase); 92% of good choices for classification between LP and VT events; and near to 100 % for TRE-type seismicity detection.
Subject
Sismos volcánicos ; detección automática ; clasificación automática ; predicción lineal ; redes neuronales artificiales / volcanic seismicity ; automatic detection ; automatic classification ; linear prediction coding ; artificial neural networks ;
URI
https://repositorio.unal.edu.co/handle/unal/10561
Collections
  • Departamento de Geociencias [207]

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesKnowledge AreasThis CollectionBy Issue DateAuthorsTitlesKnowledge Areas

My Account

LoginRegister

Statistics

View Google Analytics Statistics
Régimen Legal
Talento humano
Contratación
Ofertas de empleo
Rendición de cuentas
Concurso docente
Pago Virtual
Control interno
Calidad
Buzón de notificaciones
Correo institucional
Mapa del sitio
Redes Sociales
FAQ
Quejas y reclamos
Atención en línea
Encuesta
Contáctenos
Estadísticas
Glosario

Contacto página web:
Carrera 45 # 26-85
Edif. Uriel Gutiérrez
Bogotá D.C., ; Colombia
(+57 1) 316 5000

© Copyright 2014
Algunos derechos reservados.
mediosdigitales@unal.edu.co
Acerca de este sitio web

Actualización: 04/10/19

Orgullo UNOrgullo UNAgencia de noticiasAgencia de noticias
Trámites en líneaContaduría General de la República