Modelo computacional para caracterización de células escamosas de citologías cérvico-uterinas
Type
Artículo de revista
Document language
EspañolPublication Date
2005Metadata
Show full item recordSummary
El trabajo se realizó entre el Grupo de Investigación en Ingeniería Biomédica (GIIB) y el Grupo de Investigación en Patología Estructural, Funcional y Clínica de la Universidad Industrial de Santander (UIS), junto con la Facultad de Medicina de la Universidad Autónoma de Bucaramanga (UNAB); el objetivo principal es construir un modelo computacional que permita caracterizar las células presentes en una citología cérvico uterina, con el propósito de clasificarlas como normales o displásicas. Las láminas que contenían las muestras celulares las recolectaron los patólogos y se tomaron fotografías digitales por medio de una cámara de video acoplada a un microscopio y conectada a un dispositivo de adquisición. En la segmentación de las imágenes se utilizaron tres algoritmos de binarización que permitieron detectar los núcleos celulares; debido a que estos algoritmos presentaron fallas en la detección del citoplasma, se utilizó binarización manual. La descripción de la textura celular se logró con la distribución del histograma, en cada uno de los planos de color, y en los bordes se emplearon descriptores de Fourier. Se presentan los resultados de la primera fase, implementados en la clasificación e identificación de células normales. En las fases posteriores se aplicará la caracterización de cada uno de los estadios de las células clasificadas inicialmente como displásicas, para lograr discriminar las reactivas de las que realmente tienen cambios de lesión. Palabras clave: tratamiento de imágenes, morfología matemática, citología cérvico uterina, displasia, cáncer de cérvix.Summary
The main goal of the work done by the Biomedical Engineering Research Group (GIIB), and the Structural, Functional and Clinical Pathology Research Group of the Industrial University of Santander (UIS), with Autonomous University of Bucaramanga (UNAB), was to construct a computational model allowing squamous cells characterization of cervical smear cytology to classify them as being either normal or abnormal cells. Slides containing the cell samples were colleted by the pathologist and the images were digitalized by a video-camera coupled to a microscope and connected to a frame acquisition device. Three thresholding algorithms were used, in image segmentation, allowing cell nuclei detection; manual thresholding was used when these algorithms failed to detect cytoplasm. Cell texture was described by the distribution of histogram in each color level, and the borders using Fourier descriptors. The results of the first phase are presented, implementing them in classifying and identifying normal cells. Later stages will involve characterizing each cells stage initially classified as presenting some reactive change or due to infection, to distinguish the reactive cells of intraepithelial lesion cells. Key words: image processing, mathematical morphology, cervical smear cytology, dysplasia, cancer of cervix.Keywords
Collections
This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit