Desarrollo de un modelo de redes neuronales artificiales para predecir la resistencia a la compresión y la resistividad eléctrica del concreto
Type
Artículo de revista
Document language
EspañolPublication Date
2007Metadata
Show full item recordSummary
En esta investigación se busca obtener un método para predecir la resistencia a la compresión mediante el peso unitario y la velocidad de pulso ultrasónico usando 41 mezclas de concreto diferentes. El estudio ha sido por la necesidad de obtener un método rápido para predecir la resistencia a la compresión del concreto. De la misma manera, la investigación también busca predecir la resistividad eléctrica del concreto mediante el peso unitario, la velocidad de pulso ultrasónico y la resistencia a la compresión. El modelo para predecir se realizó utilizando una regresión simple y un modelo de redes neuronales. Los resultados mostraron que los modelos de redes neuronales para predecir la resistencia a la compresión y la resistividad eléctrica del concreto funcionan adecuadamente.Summary
The present study was conducted for predicting the compressive strength of concrete based on unit weight ultrasonic and pulse velocity (UPV) for 41 different concrete mixtures. This research emerged from the need for a rapid test for predicting concrete’s compressive strength. The research was also conducted for predicting concrete’s electrical resistivity based on unit weight ultrasonic, pulse velocity (UPV) and compressive strength with the same mixes. The prediction was made using simple regression analysis and artificial neural networks. The results revealed that artificial neural networks can be used for effectively predicting compressive strength and electrical resistivity.Keywords
Collections
- Ingeniería e Investigación [1332]
This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit