Saliency-based characterization of group differences for magnetic resonance disease classification
Type
Artículo de revista
Document language
EspañolPublication Date
2013Metadata
Show full item recordSummary
Anatomical variability of patient's brains limits the statistical analyses about presence or absence of a pathology. In this paper, we present an approach for classification of brain Magnetic Resonance (MR) images from healthy and diseased subjects. The approach builds up a saliency map, which extract regions of relative change in three different dimensions: intensity, orientation and edges. The obtained regions of interest are used as suitable patterns for subject classification using support vector machines. The strategy’s performance was assessed on a set of 198 MR images extracted from the OASIS database and divided into four groups, reporting an average accuracy rate of 74.54% and an average Equal Error Rate of 0.725.Keywords
Collections
- Dyna [1620]
