Evaluación de pronósticos del tipo de cambio utilizando redes neuronales y funciones de pérdida asimétricas
Type
Artículo de revista
Document language
EspañolPublication Date
2007Metadata
Show full item recordSummary
Se comparan especificaciones lineales y no lineales (estas últimas expresadas en redes neuronales artificiales) ajustadas a la variación porcentual diaria del tipo de cambio utilizando para ello funciones de costo tradicionales (simétricas) y funciones de pérdida asimétricas. Los resultados muestran que las redes neuronales permiten obtener mejores pronósticos con ambos tipos de funciones de costos. Sin embargo, es de anotar que cuando se evalúan los pronósticos con funciones asimétricas, el modelo no lineal supera ampliamente a su contraparte lineal.Summary
We compare forecasts obtained via linear vs. non linear specifications. The models are adjusted to the daily percentage change of the exchange rate and the comparison is done using both symmetric and asymmetric cost functions. Results show that the non linear model (which here takes the form of an Artificial Neural Network –ANN) performs better in terms of forecasting ability when evaluated with both types of cost functions. Further more, when using asymmetric costs, the ANN is a much better predictor than its linear counterpart.Keywords
Collections
This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit