Emg-based system for basic hand movement recognition
Type
Artículo de revista
Document language
EspañolPublication Date
2012Metadata
Show full item recordSummary
This paper presents a system for the automatic identification of six basic hand movements in healthy subjects based on a steady-state of electromyographic signals. The following basic hand motions were detected: opening, closing, flexion, extension, pronation, and supination, as well as the rest condition. A modular approach of pattern recognition with discrete wavelet transform, principal component analysis, and support vector machines was used to discriminate each movement. Identification was completed off-line every 256 ms with a hardware-software interface composed of a signal acquisition system with two electromyographic differential channels using Matlab® and LabVIEW® software. The system was trained and tested using five subjects of different gender, age, and physical complexion, with identification rates of up to 99.25 %.Keywords
Collections
- Dyna [1620]
