Diseños experimentales secuenciales para modelos logísticos de regresión
Author
Type
Artículo de revista
Document language
EspañolPublication Date
2008Metadata
Show full item recordSummary
Cuando los supuestos habituales de normalidad y varianza constante no se cumplen (e.g. en procesos de Bernoulli o binomiales), el problema de la elección de diseños adecuados ocasiona cierta dificultad a los experimentadores, especialmente cuando lo que se persigue es una exploración secuencial del proceso. Este artículo está basado en De Zan (2006), en donde se proponen dos criterios para evaluar estrategias de diseño. Una de ellas toma en cuenta la cantidad de información contenida en el modelo ajustado, mientras que la otra explora la información contenida en las mejores condiciones de experimentación encontradas en el modelo ajustado. Se desarrolla un ejemplo simulado con el paquete R acerca de cómo funcionan estas estrategias.Summary
When the usual hypotheses of normality and constant variance do not hold (e.g. in binomial or Bernoulli processes), the problem of choosing appropriate designs creates problems to researches when pursuing a sequential exploration of process. This paper is based on De Zan (2006), where the author proposes two criteria to evaluate design strategies, that take the amount of information as the main evaluation tool. One into account the information of the fitted model, and the other explores the information that is contained on the approximation of a set of the best conditions of factors found on a fitted model. An example of how these strategies work is also given through a simulation using R software.Keywords
diseño factorial ; metodología de superficie de respuesta ; diseño de experimentos secuenciales ; modelo lineal generalizado ; regresión logística ; matriz de información de Fisher ; Factorial Design ; Response Surface Design ; Sequential Design of Experiments ; Generalized Linear Model ; Logistic Regression ; Fisher Information Matrix ;
Collections
