Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.authorCook, John
dc.contributor.authorFúquene, Jairo
dc.contributor.authorPericchi, Luis
dc.date.accessioned2019-06-28T09:41:33Z
dc.date.available2019-06-28T09:41:33Z
dc.date.issued2011-05-01
dc.identifier.issnISSN: 2389-8976
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/40817
dc.description.abstractEnsayos clínicos bajo un enfoque de estadística Bayesiana están adquiriendo cada vez mayor importancia. Anteriormente se sugirió una idea que ha dado ventaja al uso de previas bayesianas: suponer dos densidades a priori con información muy distinta sobre la efectividad de un nuevo tratamiento: una previa escéptica que refleje pesimismo sobre la superioridad del tratamiento nuevo. Esta es la posición de los organismos reguladores que autorizan o no los nuevos medicamentos que deben ser vendidos en el mercado. También proponen una densidad previa optimista (o “entusiasta”) que refleja la posición de los investigadores y compañías farmacéuticas que proponen el nuevo tratamiento. Esta diversidad de opiniones es sumamente útil y queremos preservarla. En la propuesta original, sin embargo, se supone que la forma funcional de las densidades previas es normal, lo cual es más simple de analizar y asignar. Infortunadamente, la simplicidad exige un precio muy grande. Para que haya acuerdo entre los dos análisis se necesita muchísima información muestral. En este artículo se propone mantener las dos previas que representan puntos de vista adversos, pero con una forma funcional de colas gruesas, como la densidad Cauchy. Las previas robustas permiten una resolución del desacuerdo de forma más rápida y eficiente; por tanto, los ensayos clínicos tienden a ser más cortos. Se asume un concepto de dogmatismo muy preciso: las previas conjugadas afectan las conclusiones en una tasa fija, sin importar si hay conflicto entre la verosimilitud y la densidad previa. Además, las previas robustas de colas gruesas son automáticamente descontadas en presencia de conflicto, por el teorema de Bayes en favor de la información dada por los datos.
dc.description.abstractA useful technique from the subjective Bayesian viewpoint, is to ask the subject matter researchers and other parties involved, such as pharmaceutical companies and regulatory bodies, for reasonable optimistic and pessimistic priors regarding the effectiveness of a new treatment. Up to now, the proposed skeptical and optimistic priors have been limited to conjugate priors, though there is no need for this limitation. The same reasonably adversarial points of view can take with robust priors. Robust priors permit a much faster and efficient resolution of the disagreement between the conclusions based on skeptical and optimistic priors. As a consequence, robust Bayesian clinical trials tend to be shorter. Our proposal in this paper is to use Cauchy and intrinsic robust priors for both skeptical and optimistic priors leading to results more closely related with the sampling data when prior and data are in conflict. In other words, the use of robust priors removes the dogmatism implicit in conjugate priors. Dogmatism here has very precise meaning: Conjugate priors affect the posterior conclusions by a fixed rate, regardless if there is a conflict between prior and data. Robust priors are automatically discounted by Bayes Theorem in the presence of conflict.
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.relationhttp://revistas.unal.edu.co/index.php/estad/article/view/29924
dc.relation.ispartofUniversidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Estadística
dc.relation.ispartofRevista Colombiana de Estadística
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc51 Matemáticas / Mathematics
dc.titleSkeptical and optimistic robust priors for clinical trials
dc.typeArtículo de revista
dc.type.driverinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.eprintshttp://bdigital.unal.edu.co/30914/
dc.relation.referencesCook, John and Fúquene, Jairo and Pericchi, Luis (2011) Skeptical and optimistic robust priors for clinical trials. Revista Colombiana de Estadística. Número especial en aplicaciones en la industria y estadística industrial, 34 (2). pp. 333-345. ISSN 2389-8976
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposaldistribución a priori
dc.subject.proposalensayos clínicos
dc.subject.proposalrobustez bayesiana
dc.subject.proposalClinical trials
dc.subject.proposalBayesian robustness
dc.subject.proposalPrior distribution
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit