Previsión de demanda intermitente con métodos de series de tiempo y redes neuronales artificiales: Estudio de caso
Tipo de contenido
Artículo de revista
Idioma del documento
EspañolFecha de publicación
2017-10-01Resumen
Este artículo tiene como objetivo estudiar la previsión de la demanda intermitente de un tipo específico de pieza de reposición en una industria brasilera de sistemas de refrigeración que comercializa sus productos en el mercado latinoamericano. La demanda es caracterizada en términos de intermitencia y variabilidad. Los resultados son calculados usando métodos clásicos de previsión intermitente fuera de la muestra: Croston, Aproximación Syntetos-Boylan (SBA), Corrección Shale-Boylan-Johnston (SBJ), Algoritmo de Previsión de Agregación Múltiple (MAPA) y modelos basados en Redes Neuronales Artificiales (RNA). El Error Cuadrático Medio (RMSE) y Desvío Medio Absoluto (MAE) son utilizados para efectos de comparación y selección del modelo de previsión. El análisis comparativo de los resultados muestra que las previsiones basadas en modelos RNA simple de tres capas y entrenadas con el algoritmo Resilient Backpropagation presentan mejor desempeño. Los cálculos fueron realizados con el software R, RStudio, bibliotecas “forecast”, “tsintermittent” y “neuralnet”.Resumen
This article aims to study the intermittent demand forecasting for a specific type of spare part of a Brazilian refrigeration industry that commercialize its products in the Latin American market. Demand characterization is performed in terms of their intermittency and variability. Results are obtained with classical intermittent forecasting methods outside the sample: Croston, Syntetos-Boylan Approximation (SBA), Shale-Boylan-Johnston Correction (SBJ), Multiple Aggregation Prediction Algorithm (MAPA) and with Artificial Neural Networks (ANN) based models. Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are used for comparison and selection of forecast model. The comparative analysis results shows that the predictions based on a simple three-layer ANN model trained with the Resilient Backpropagation algorithm present better performance. The calculations were performed using R software with RStudio, "forecast", "tsintermittent" and "neuralnet" libraries.Palabras clave
Colecciones
- Dyna [1620]
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito