Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributorArias Abad, Camilo
dc.contributor.authorMartínez Madrid, Daniela
dc.date.accessioned2019-07-02T22:20:32Z
dc.date.available2019-07-02T22:20:32Z
dc.date.issued2018
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/63965
dc.description.abstractThe development the theory of characteristic classes allowed Shiing-Shen Chern to generalize the Gauss Bonnet theorem to Riemannian manifolds of arbitrary dimension. The Chern Gauss Bonnet theorem expresses the Euler characteristic as an integral of a polynomial evaluated on the curvature tensor, i.e if K is the curvature form of the Levi-Civita connection, the Chern Gauss Bonnet formula is . In particular, the theorem implies that if the Levi Civita connection is _at, the Euler characteristic is zero.An a_ne structure on a manifold is an atlas whose transition functions are a_ne transformations. The existence of such a structure is equivalent to the existence of a _at torsion free connection on the tangent bundle. Around 1955 Chern conjectured the following: Conjecture. The Euler characteristic of a closed affine manifold is zero. Not all fat torsion free connections on TM admit a compatible metric, and therefore, Chern-Weil theory cannot be used in general to write down the Euler class in terms of the curvature. In 1955, Benzécri [1] proved that a closed affine surface has zero Euler characteristic. Later, in 1958, Milnor [11] proved inequalities which completely characterise those oriented rank two bundles over a surface that admit a fiat connection. These inequalities prove that in case of a surface the condition "be torsion free" in Chern's conjecture is not necessary. In 1975, Kostant and Sullivan [9] proved Chern's conjecture in the case where the manifold is complete. In 1977, Smillie [15] proved that the condition that the connection is torsion free matters. For each even dimension greater than 2, Smillie constructed closed manifolds with non-zero Euler characteristic that admit a _at connection on their tangent bundle. In 2015, Klingler [14] proved the conjecture for special affine manifolds. That is, affine manifolds that admit a parallel volume form.
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Medellín Facultad de Ciencias Instituto de Matemática Pura y Aplicada
dc.relation.ispartofInstituto de Matemática Pura y Aplicada
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc51 Matemáticas / Mathematics
dc.titleOn Chern's conjecture about the Euler characteristic of affine manifolds
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.identifier.eprintshttp://bdigital.unal.edu.co/64628/
dc.description.degreelevelMaestría
dc.relation.referencesMartínez Madrid, Daniela (2018) On Chern's conjecture about the Euler characteristic of affine manifolds. Maestría thesis, Universidad Nacional de Colombia - Sede Medellín.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalTeorema de Chern-Gauss-Bonnet
dc.subject.proposalChern-Gauss-Bonnet theorem
dc.subject.proposalVectores
dc.subject.proposalVectors
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit