• Correo ElectrónicoCorreo Electrónico
  • Dirección Nacional de Información AcadémicaDNINFOA - SIA
  • BibliotecaBibliotecas
  • ConvocatoriasConvocatorias
  • Identidad U.N.Identidad U.N.
Escudo de la República de ColombiaEscudo de la República de Colombia
  • English 
    • español
    • English
    • português (Brasil)
  • Aspirantes
  • Estudiantes
  • Egresados
  • Docentes
  • Administrativos
repositorio.unal.edu.co
Bibliotecas
  • Mapa de sedes
  • Amazonía
  • Bogotá
  • Caribe
  • Manizales
  • Medellín
  • Orinoquía
  • Palmira
Biblioteca Digital
  • Repositorio Institucional
  • Entrega de tesis y publicación en línea
  • Digitalización de documentos
  • Normatividad publicación en línea
  • Portal de Revistas UN
  • Suscripción a contenidos UN
  • Contáctenos
Recursos Bibliográficos
  • Recursos electrónicos
  • Catálogo UN
  • Diccionarios y enciclopedias
  • Herramientas bibliográficas
  • Libros electrónicos
  • Descubridor
  • Índices bibliográficos
  • Adquisicion de material bibliografico
Formación
  • Agenda de formación
  • Solicitud de nuevo taller
  • Guía de autoarchivo de documentos
Acerca de
  • Misión y visión
  • Dirección Nacional de Bibliotecas
  • Convenios y redes
  • Video del Sinab
  • Preguntas frecuentes
Sedes
  • Amazonia
  • Bogotá
  • Caribe
  • De La Paz
  • Manizales
  • Medellín
  • Orinoquia
  • Palmira
  • Tumaco
Servicios
Perfiles
Home
    • español
    • English
    • português (Brasil)
  • Login
View Item 
  •   Institutional Repository of Universidad Nacional
  • 3 - Revistas UN
  • Revista Colombiana de Estadística
  • View Item
  •   Institutional Repository of Universidad Nacional
  • 3 - Revistas UN
  • Revista Colombiana de Estadística
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Kernel Function in Local Linear Peters-Belson Regression

Thumbnail
65654-390959-1-PB.pdf (400.4Kb)
Date published
2018-07-01
Author
Bolbolian Ghalibaf, Mohammad
Metadata
Show full item record

Summary
Determining the extent of a disparity, if any, between groups of people, for example, race or gender, is of interest in many fields, including public health for medical treatment and prevention of disease or in discrimination cases concerning equal pay to estimate the pay disparities between minority and majority employees. An observed difference in the mean outcome between a majority/advantaged group (AG) and minority/disadvantaged group (DG) can be due to differences in the distribution of relevant covariates. The Peters Belson (PB) method fits a regression model with covariates to the AG to predict, for each DG member, their outcome measure as if they had been from the AG. The difference between the mean predicted and the mean observed outcomes of DG members is the (unexplained) disparity of interest. PB regression is a form of statistical matching, akin in spirit to Bhattacharya's band-width matching. In this paper we review the use of PB regression in legal cases from Hikawa et al. (2010b) Parametric and nonparametric approaches to PB regression are described and we show that in nonparametric PB regression choose a kernel function can be better resulted, i.e. by selecting the appropriate kernel function we can reduce bias and variance of estimators, also increase power of test.
 
Determinar el alcance de una disparidad, si la hubiere, entre grupos de personas, por ejemplo, raza o género, es de interés en muchos campos, incluida la salud pública para el tratamiento médico y la prevención de enfermedades o en casos de discriminación en relación con la igualdad salarial para estimar las disparidades salariales entre los empleados minoritarios y mayoritarios. La regresión de Peters Belson (PB) es una forma de coincidencia estadística, similar en espíritu a la coincidencia de ancho de banda de Bhattacharya que se propone para este propósito. En este trabajo, repasamos el uso de la regresión del PB en casos legales de Bura et al. (2012). Se describen los enfoques paramétricos y no paramétricos de la regresión del PB y demostramos que en la regresión no paramétrica del PB una función de kernel adecuada puede mejorar los resultados, es decir, seleccionando la función de kernel apropiada, podemos reducir el sesgo y la varianza de los estimadores, también aumentan el poder de las pruebas.
 
Subject
Kernel Function ; Local Linear Peters-Belson Regression ; Majority Group ; Minority Group ; Welch's Approximation. ; Aproximación de Welch ; función kernel ; regresión lineal local ;
URI
https://repositorio.unal.edu.co/handle/unal/66486
Collections
  • Revista Colombiana de Estadística [524]

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesKnowledge AreasThis CollectionBy Issue DateAuthorsTitlesKnowledge Areas

My Account

LoginRegister

Statistics

View Google Analytics Statistics
Régimen Legal
Talento humano
Contratación
Ofertas de empleo
Rendición de cuentas
Concurso docente
Pago Virtual
Control interno
Calidad
Buzón de notificaciones
Correo institucional
Mapa del sitio
Redes Sociales
FAQ
Quejas y reclamos
Atención en línea
Encuesta
Contáctenos
Estadísticas
Glosario

Contacto página web:
Carrera 45 # 26-85
Edif. Uriel Gutiérrez
Bogotá D.C., ; Colombia
(+57 1) 316 5000

© Copyright 2014
Algunos derechos reservados.
mediosdigitales@unal.edu.co
Acerca de este sitio web

Actualización: 04/10/19

Orgullo UNOrgullo UNAgencia de noticiasAgencia de noticias
Trámites en líneaContaduría General de la República