• Correo ElectrónicoCorreo Electrónico
  • Dirección Nacional de Información AcadémicaDNINFOA - SIA
  • BibliotecaBibliotecas
  • ConvocatoriasConvocatorias
  • Identidad U.N.Identidad U.N.
Escudo de la República de ColombiaEscudo de la República de Colombia
  • English 
    • español
    • English
    • português (Brasil)
  • Aspirantes
  • Estudiantes
  • Egresados
  • Docentes
  • Administrativos
repositorio.unal.edu.co
Bibliotecas
  • Mapa de sedes
  • Amazonía
  • Bogotá
  • Caribe
  • Manizales
  • Medellín
  • Orinoquía
  • Palmira
Biblioteca Digital
  • Repositorio Institucional
  • Entrega de tesis y publicación en línea
  • Digitalización de documentos
  • Normatividad publicación en línea
  • Portal de Revistas UN
  • Suscripción a contenidos UN
  • Contáctenos
Recursos Bibliográficos
  • Recursos electrónicos
  • Catálogo UN
  • Diccionarios y enciclopedias
  • Herramientas bibliográficas
  • Libros electrónicos
  • Descubridor
  • Índices bibliográficos
  • Adquisicion de material bibliografico
Formación
  • Agenda de formación
  • Solicitud de nuevo taller
  • Guía de autoarchivo de documentos
Acerca de
  • Misión y visión
  • Dirección Nacional de Bibliotecas
  • Convenios y redes
  • Video del Sinab
  • Preguntas frecuentes
Sedes
  • Amazonia
  • Bogotá
  • Caribe
  • De La Paz
  • Manizales
  • Medellín
  • Orinoquia
  • Palmira
  • Tumaco
Servicios
Perfiles
Home
    • español
    • English
    • português (Brasil)
  • Login
View Item 
  •   Institutional Repository of Universidad Nacional
  • 3 - Revistas UN
  • Revista Colombiana de Estadística
  • View Item
  •   Institutional Repository of Universidad Nacional
  • 3 - Revistas UN
  • Revista Colombiana de Estadística
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using an Anchor to Improve Linear Predictions with Application to Predicting Disease Progression

Thumbnail
68535-390955-1-PB.pdf (492.4Kb)
Date published
2018-07-01
Author
Karanevich, Alex G.
He, Jianghua
Gajewski, Byron
Metadata
Show full item record

Summary
Linear models are some of the most straightforward and commonly used modelling approaches. Consider modelling approximately monotonic response data arising from a time-related process. If one has knowledge as to when the process began or ended, then one may be able to leverage additionalassumed data to reduce prediction error. This assumed data, referred to as the anchor, is treated as an additional data-point generated at either the beginning or end of the process. The response value of the anchor is equal to an intelligently selected value of the response (such as the upper bound, lower bound, or 99th percentile of the response, as appropriate). The anchor reduces the variance of prediction at the cost of a possible increase in prediction bias, resulting in a potentially reduced overall mean-square prediction error. This can be extremely eective when few individual data-points are available, allowing one to make linear predictions using as little as a single observed data-point. We develop the mathematics showing the conditions under which an anchor can improve predictions, and also demonstrate using this approach to reduce prediction error when modelling the disease progression of patients with amyotrophic lateral sclerosis.
 
Modelos lineales son los modelos más fáciles de usar y comunes en modelamiento. Si se considera el modelamiento de una respuesta aprosimadamente monótona que surge de un proceso relacionado al tiempo y se sabe cuándo el proceso inició o terminó, es posible asumir datos adicionales como palanca para reducir el error de predicción. Estos datos adicionales son llamados de ``anclaje'' y son datos generados antes del inicion o después del final del proceso. El valor de respuesta del anclaje es igual a un valor de respuesta escogido de manera inteligente (como por ejemplo la cota superior, iferior o el percentil 99, según conveniencia). Este anclaje reduce la varianza de la predicción a costo de un posible sesgo en la misma, lo cual resulta en una reducción potencial del error medio de predicción. Lo anterior puede ser extremadamente efectivo cuando haypocos datos individuales, permitiendo hacer predicciones con muy pocos datos. En este trabajo presentamos en desarrollo matemático demostrando las condiciones bajo las cuales el anclaje puede mejorar predicciones y también demostramos una reducción del error de predicción aplicando el método a la modelación de progresión de enfermedad en pacientes con esclerosis lateral amiotrófica.
 
Subject
Anclaje ; esclerosis lateral amiotrófica ; modelos lineales ; mínimos cuadrados ordinarios ; regresión sesgada ; Anchor ; Amyotrophic lateral sclerosis ; Biased regression ; Linear models ; Ordinary least squares ;
URI
https://repositorio.unal.edu.co/handle/unal/66487
Collections
  • Revista Colombiana de Estadística [524]

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesKnowledge AreasThis CollectionBy Issue DateAuthorsTitlesKnowledge Areas

My Account

LoginRegister

Statistics

View Google Analytics Statistics
Régimen Legal
Talento humano
Contratación
Ofertas de empleo
Rendición de cuentas
Concurso docente
Pago Virtual
Control interno
Calidad
Buzón de notificaciones
Correo institucional
Mapa del sitio
Redes Sociales
FAQ
Quejas y reclamos
Atención en línea
Encuesta
Contáctenos
Estadísticas
Glosario

Contacto página web:
Carrera 45 # 26-85
Edif. Uriel Gutiérrez
Bogotá D.C., ; Colombia
(+57 1) 316 5000

© Copyright 2014
Algunos derechos reservados.
mediosdigitales@unal.edu.co
Acerca de este sitio web

Actualización: 04/10/19

Orgullo UNOrgullo UNAgencia de noticiasAgencia de noticias
Trámites en líneaContaduría General de la República