Automatic Identification of Calcareous Lithologies Using Support Vector Machines, Borehole Logs and Fractal Dimension of Borehole Electrical Imaging
Type
Artículo de revista
Document language
EspañolPublication Date
2018-04-01Metadata
Show full item recordSummary
In this research algorithms of support vector machine (SVM) and a logic function were applied to identify automatically sections of carbonate rocks in wells located in the former Barco Concession, Catatumbo Basin - Colombia. During training stages the SVMs use neutron, photoelectric factor and gamma ray logs as input; also mean and variance of resistivity acquired for image tool and fractal dimension of resistive images. The first SVM employs in the training stage intervals manually interpreted of fossiliferous limestone, performed by a specialized geologist integrating information of core-logs correlation of a pilot well; afterwards, in classification stages, this SVM automatically recognizes intervals with fossiliferous limestone only using logs data of any well of the field. The second SVM was also trained with nuclear logs, resistivity and fractal dimension, but in this case, with information of intervals composed of calcareous shales interbedded with limestone, recognizing automatically these rock associations during classification stage without interpretations of a geologist as input data. Additionally, a logic function was applied to intervals with photoelectric factor ≥ 4 and all sections not classified by the SVMs were grouped as laminated calcareous rocks. The SVMs and logic function show accuracy of 98.76 %, 94.02 % and 94.60 % respectively in six evaluated wells and might be applied to other wells in the field that have the same dataset. This methodology is highly dependent of the data quality and all intervals affected by bad borehole condition have to be removed prior its application in order to avoid wrong interpretations. Finally, the whole model has to be recalibrated to be applied in other fields of the basin.Summary
En esta investigación algoritmos de máquinas de vector de soporte (MVS) y una función lógica fueron aplicados para identificar automáticamente secciones con rocas carbonáticas en pozos ubicados en la antigua Concesión Barco, Cuenca de Catatumbo - Colombia. Durante las etapas de clasificación las MVS utilizan registros de neutrón, factor fotoeléctrico y rayos gamma como entrada; también media y varianza de la resistividad adquirida por herramientas de imágenes y dimensión fractal de imágenes resistivas. La primera MVS emplea en la etapa de entrenamiento intervalos manualmente interpretados de calizas fosilíferas, realizado por un geólogo especialista integrando información de correlación núcleo-registro de un pozo piloto; posteriormente, en etapas de clasificación, esta MVS automáticamente reconoce intervalos con calizas fosilíferas utilizando solamente datos de registros de cualquier pozo del campo. La segunda MVS fue también entrenada con registros nucleares, resistivos y dimensión fractal, pero en este caso, con información de intervalos compuestos de lutitas calcáreas intercaladas con calizas, reconociendo automáticamente estas asociaciones de rocas durante la etapa de clasificación sin requerir interpretaciones de un geólogo como dato de entrada. Adicionalmente, se aplicó una función lógica a intervalos con factor fotoeléctrico ≥ 4 y todas las secciones no clasificados por las MVS fueron agrupadas como rocas calcáreas laminadas. Las MVS y la función lógica mostraron precisiones de 98.76%, 94.02% y 94.60% respectivamente en seis pozos evaluados y podrían ser aplicado a otros pozos del campo que tengan el mismo conjunto de datos. Esta metodología es altamente dependiente de la calidad de los datos, por consiguiente, todos los intervalos afectados por malas condiciones del pozo tienen que ser removidos antes de ser aplicados para evitar interpretaciones erróneas. Finalmente, todo el modelo debe ser recalibrado para ser aplicado en otros campos de la cuenca.Keywords
aprendizaje de máquinas ; máquinas de soporte vectorial ; registros de pozo ; registro de imágenes ; dimensión fractal ; litologías calcáreas ; Cuenca de Catatumbo. ; machine learning ; support vector machines ; borehole logs ; image logs ; fractal dimension ; calcareous lithologies ; Catatumbo Basin. ;
Collections
