Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributorPavas Martínez, Fabio Andrés
dc.contributor.authorSánchez Rosas, Yuber Samir
dc.date.accessioned2019-07-03T07:29:12Z
dc.date.available2019-07-03T07:29:12Z
dc.date.issued2018-06-01
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/68680
dc.description.abstractA través de este proyecto se describe el uso del clasificador del K n-ésimo vecino más cercano KNN y un estimador del kernel con el fin de predecir la potencia eólica del viento. El modelo es capaz de predecir valores de la potencie eólica generada a la salida de la granja con una antelación de hasta 48h. Los datos usados para el estudio de caso tienen una resolución por cada hora. Estos datos fueron obtenidos de 10 granjas ubicadas en Australia, a dos distintas alturas: 10m y 100m. El modelo desarrollado es un modelo de un único paso. En la primera Fase, el KNN es usado para filtrar los datos. Una vez los datos han sido filtrados y normalizados, el modelo predice escenarios de generación a través del estimador del kernel. Finalmente, algunos indicadores de desempeño son usados para medir los resultados obtenidos respecto del valor real, tales como: EM, EMAN, EPMA y DEE.
dc.description.abstractAbstract: This project describes the use of KNN classifier with Kernel Density Estimation (KDE) models to forecasting the wind power. This approach is used to predict hourly values of wind power for horizons of up to 48h. The data used is hourly observation from 10 wind farms at two different heights, 10m and 100m, in Australia. This approached is a one-stage method where first a KNN classifier is applied to the raw data to clean it. Once the dataset has been cleaned and normalized, the forecast of the normalized wind power is calculated using KDE models. MAE, MAPE and SDE performance indices are used to find the performance of this model.
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería Eléctrica y Electrónica Ingeniería Eléctrica
dc.relation.ispartofIngeniería Eléctrica
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc5 Ciencias naturales y matemáticas / Science
dc.subject.ddc62 Ingeniería y operaciones afines / Engineering
dc.titlePredicción probabilística de corto plazo en generación eólica
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.identifier.eprintshttp://bdigital.unal.edu.co/69786/
dc.description.degreelevelMaestría
dc.relation.referencesSánchez Rosas, Yuber Samir (2018) Predicción probabilística de corto plazo en generación eólica. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalPredicción Probabilística
dc.subject.proposalGeneración eólica
dc.subject.proposalEstimador del kernel
dc.subject.proposalPotencia eólica
dc.subject.proposalGeneration Prediction
dc.subject.proposalWind Power
dc.subject.proposalForecasting
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit