• Correo ElectrónicoCorreo Electrónico
  • Dirección Nacional de Información AcadémicaDNINFOA - SIA
  • BibliotecaBibliotecas
  • ConvocatoriasConvocatorias
  • Identidad U.N.Identidad U.N.
Escudo de la República de ColombiaEscudo de la República de Colombia
  • English 
    • español
    • English
    • português (Brasil)
  • Aspirantes
  • Estudiantes
  • Egresados
  • Docentes
  • Administrativos
repositorio.unal.edu.co
Bibliotecas
  • Mapa de sedes
  • Amazonía
  • Bogotá
  • Caribe
  • Manizales
  • Medellín
  • Orinoquía
  • Palmira
Biblioteca Digital
  • Repositorio Institucional
  • Entrega de tesis y publicación en línea
  • Digitalización de documentos
  • Normatividad publicación en línea
  • Portal de Revistas UN
  • Suscripción a contenidos UN
  • Contáctenos
Recursos Bibliográficos
  • Recursos electrónicos
  • Catálogo UN
  • Diccionarios y enciclopedias
  • Herramientas bibliográficas
  • Libros electrónicos
  • Descubridor
  • Índices bibliográficos
  • Adquisicion de material bibliografico
Formación
  • Agenda de formación
  • Solicitud de nuevo taller
  • Guía de autoarchivo de documentos
Acerca de
  • Misión y visión
  • Dirección Nacional de Bibliotecas
  • Convenios y redes
  • Video del Sinab
  • Preguntas frecuentes
Sedes
  • Amazonia
  • Bogotá
  • Caribe
  • De La Paz
  • Manizales
  • Medellín
  • Orinoquia
  • Palmira
  • Tumaco
Servicios
Perfiles
Home
    • español
    • English
    • português (Brasil)
  • Login
View Item 
  •   Institutional Repository of Universidad Nacional
  • 3 - Revistas UN
  • Dyna
  • View Item
  •   Institutional Repository of Universidad Nacional
  • 3 - Revistas UN
  • Dyna
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nonlinear time series forecasting using mars

Thumbnail
39699-199781-1-PB.pdf (422.2Kb)
Date published
2014-04-21
Author
Velásquez Henao, Juan David
Franco Cardona, Carlos Jaime
Camacho, Paula Andrea
Metadata
Show full item record

Summary
One of the most important uses of artificial neural networks is to forecast non-linear time series, although model-building issues, such as input selection, model complexity and parameters estimation, remain without a satisfactory solution. More of research efforts are devoted to solve these issues. However, other models emerged from statistics would be more appropriated than neural networks for forecasting, in the sense that the process of model specification is based entirely on statistical criteria. Multivariate adaptive regression splines (MARS) is a statistical model commonly used for solving nonlinear regression problems, and it is possible to use it for forecasting time series. Nonetheless, there is a lack of studies comparing the results obtained using MARS and neural network models, with the aim of determinate which model is better. In this paper, we forecast four nonlinear time series using MARS and we compare the obtained results against the reported results in the technical literature when artificial neural networks and the ARIMA approach are used. The main finding in this research, it is that for all considered cases, the forecasts obtained with MARS are lower in accuracy in relation to the other approaches.
Subject
Artificial neural networks ; comparative studies ; ARIMA models ; nonparametric methods. ;
URI
https://repositorio.unal.edu.co/handle/unal/73262
Collections
  • Dyna [1614]

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesKnowledge AreasThis CollectionBy Issue DateAuthorsTitlesKnowledge Areas

My Account

LoginRegister

Statistics

View Google Analytics Statistics
Régimen Legal
Talento humano
Contratación
Ofertas de empleo
Rendición de cuentas
Concurso docente
Pago Virtual
Control interno
Calidad
Buzón de notificaciones
Correo institucional
Mapa del sitio
Redes Sociales
FAQ
Quejas y reclamos
Atención en línea
Encuesta
Contáctenos
Estadísticas
Glosario

Contacto página web:
Carrera 45 # 26-85
Edif. Uriel Gutiérrez
Bogotá D.C., ; Colombia
(+57 1) 316 5000

© Copyright 2014
Algunos derechos reservados.
mediosdigitales@unal.edu.co
Acerca de este sitio web

Actualización: 04/10/19

Orgullo UNOrgullo UNAgencia de noticiasAgencia de noticias
Trámites en líneaContaduría General de la República