Numerical quenching solutions of localized semilinear parabolic equation
Type
Artículo de revista
Document language
EspañolPublication Date
2007Metadata
Show full item recordSummary
This paper concerns the study of the numerical approximationfor the following initial-boundary value problem:ut(x; t) = uxx(x; t) + E(1 - u(0; t))-p; (x; t) 2 (-l; l) x (0; T),u(-l; t) = 0; u(l; t) = 0; t in (0; T),u(x; 0) = u0(x) and gt;= 0; x in (-l; l),where p and gt; 1, l = 1/2 and E and gt; 0. Under some assumptions, we prove that the solution of a semidiscrete form of the above problem quenches in a nite time and estimate its semidiscrete quenching time. We also show that the semidiscrete quenching time in certain cases converges to the real one when the mesh size tends to zero. Finally,we give some numerical experiments to illustrate our analysis.Keywords
Collections
- Boletín de Matemáticas [688]
