Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorCalderón-Villanueva, Sergio Alejandro
dc.contributor.authorOrdoñez-Callamand, Daniel
dc.date.accessioned2020-01-21T15:32:55Z
dc.date.available2020-01-21T15:32:55Z
dc.date.issued2019-09-16
dc.date.issued2019-09-16
dc.identifier.citationBattaglia, F. and Orfei, L. (2005). Outlier detection and estimation in nonlinear time series. Journal of Time Series Analysis, 26(1):107–121.
dc.identifier.citationChan, K. and Tong, H. (1990). On likelihood ratio tests for threshold autoregression. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 52(3):469–476.
dc.identifier.citationChan, W.-S. and Cheung, S.-H. (1994). On robust estimation of threshold autoregressions. Journal of Forecasting, 13(1):37–49.
dc.identifier.citationChan, W.-S. and Ng, M.-W. (2004). Robustness of alternative non- linearity tests for setar models. Journal of Forecasting, 23(3):215–231.
dc.identifier.citationChen, C. and Liu, L.-M. (1993). Joint estimation of model parame- ters and outlier effects in time series. Journal of the American Statistical Association, 88(421):284–297.
dc.identifier.citationDavies, L. and Gather, U. (1993). The identification of multiple outliers. Journal of the American Statistical Association, 88(423):782–792.
dc.identifier.citationDenby, L. and Martin, R. D. (1979). Robust estimation of the first-order autoregressive parameter. Journal of the American Statistical Association, 74(365):140–146.
dc.identifier.citationFranses, P. H., Van Dijk, D., et al. (2000). Non-linear time series models in empirical finance. Cambridge University Press.
dc.identifier.citationGiordani, P. (2006). A cautionary note on outlier robust estimation of threshold models. Journal of Forecasting, 25(1):37–47.
dc.identifier.citationGranger, C. and Terasvirta, T. (1993). Modelling Non-Linear Economic Relationships. Oxford University Press.
dc.identifier.citationHampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Stahel, W. A. (1986). Robust statistics: the approach based on influence functions, volume 196. John Wiley & Sons.
dc.identifier.citationHansen, B. E. (2011). Threshold autoregression in economics. Statistics and its Interface, 4(2):123–127.
dc.identifier.citationHoaglin, D., Mosteller, F., and Tukey, J. W. (1983). Understanding Robust and Exploratory Data Analysis. Wiley Interscience.
dc.identifier.citationHung, K. C., Cheung, S. H., Chan, W.-S., and Zhang, L.-X. (2009). On a robust test for setar-type nonlinearity in time series analysis. Journal of forecasting, 28(5):445–464.
dc.identifier.citationLeBaron, B. (1992). Some relations between volatility and serial correlations in stock market returns. Journal of Business, pages 199–219.
dc.identifier.citationLucas, A. (1996). Outlier Robust Unit Root Analysis. PhD thesis, Erasmus Universiteit.
dc.identifier.citationLuukkonen, R., Saikkonen, P., and Terasvirta, T. (1988). Testing linearity against smooth transition autoregressive models. Biometrika, 75(3):491–499.
dc.identifier.citationMaronna, R. A., Martin, D. R., and Yohai, V. J. (2006). Robust Statistics: Theory and Methods. John Wiley and Sons.
dc.identifier.citationMohammadi, H. and Jahan-Parvar, M. R. (2012). Oil prices and exchange rates in oil-exporting countries: evidence from tar and m-tar models. Journal of Economics and Finance, 36(3):766–779
dc.identifier.citationPetruccelli, J. and Davies, N. (1986). A portmanteau test for self-exciting threshold autoregressive-type nonlinearity in time series. Biometrika, 73(3):687–694.
dc.identifier.citationRousseeuw, P. J. (1984). Least median of squares regression. Journal of the American statistical association, 79(388):871–880.
dc.identifier.citationRousseeuw, P. J. and Van Zomeren, B. C. (1990). Un- masking multivariate outliers and leverage points. Journal of the American Statistical association, 85(411):633–639.
dc.identifier.citationShapiro, S. S. and Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4):591–611.
dc.identifier.citationSin, C.-y. and White, H. (1996). Information criteria for selecting possibly misspecified parametric models. Journal of Econometrics, 71(1-2):207–225.
dc.identifier.citationTiao, G. C. and Tsay, R. S. (1994). Some advances in non-linear and adaptive modelling in time-series. Journal of Forecasting, 13(2):109–131.
dc.identifier.citationTsay, R. and Chen, R. (2019). Nonlinear Time Series Analysis. Wiley Interscience.
dc.identifier.citationTsay, R. S. (1988). Outliers, level shifts, and variance changes in time series. Journal of forecasting, 7(1):1–20.
dc.identifier.citationTong, H. (1978). On a threshold model. Pattern Recognition and Signal Processing.
dc.identifier.citationTong, H. (1993). Non-linear Time Series: A Dynamical System Approach. Dynamical System Approach. Clarendon Press.
dc.identifier.citationTsay, R. S. (1989). Testing and modeling threshold autoregressive processes. Journal of the American statistical association, 84(405):231–240.
dc.identifier.citationVargas, H. (2011). Monetary policy and the exchange rate in Colombia. In for International Settlements, B., editor, Capital flows, commodity price movements and foreign exchange intervention, volume 57 of BIS Papers, pages 129–153. Bank for International Settlements.
dc.identifier.citationZhang, L.-X., Chan, W.-S., Cheung, S.-H., and Hung, K.-C. (2009). A note on the consistency of a robust estimator for threshold autoregressive processes. Statistics & Probability Letters, 79(6):807–813.
dc.identifier.citationPetruccelli, J. (1990). A comparison of tests for setar-type non-linearity in time series. Journal of Forecasting, 9(1):25–36.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75500
dc.description.abstractThe effect of additive outliers is studied on an adapted nonlinearity test and a robust estimation method for autoregresive coefficients in TAR (threshold autoregressive) models. Through a Monte Carlo experiment, the power and size of the nonlinearity test is studied. Regarding the estimation method, the bias and ratio of mean squared error is compared between the robust estimator and least squares. Simulation exercises are carried out for different percentages of contamination and proportion of observations on each regime of the model. Furthermore, the approximation of the univariate normal distribution to the empirical distribution of estimated coefficients is analyzed along with the coverage level of asymptotic confidence intervals for the parameters. Results show that the adapted nonlinearity test does not have size distortions and it has a superior power than its least squares counterpart when additive outliers are present. On the other hand, the robust estimation method for the autoregresive coefficients has a better mean squared error than least squares when this type of observations are present. Lastly, the use of the nonlinearity test and the estimation method are illustrated through an actual example.
dc.description.abstractSe investiga el efecto de observaciones atípicas aditivas en la adaptación de una prueba de no linealidad y un método de estimación robusto para los coeficientes autoregresivos en modelos TAR (threshold autoregressive). A través de un experimento de Monte Carlo se estudia la potencia y el tamaño de la prueba de no linealidad. Respecto a la estimación, se compara el sesgo y la razón de error cuadrático medio entre el estimador robusto y el de mínimos cuadrados. Adicionalmente, se llevan a cabo ejercicios de simulación para diferentes porcentajes de contaminación, proporción de observaciones en cada régimen del modelo y se evalúa la aproximación de la distribución empírica de los coeficientes estimados por medio de la distribución normal univariada junto a los niveles de cobertura de los intervalos de confianza asintóticos para los parámetros. Los resultados indican que la prueba de no linealidad adaptada presenta una potencia superior a la basada en mínimos cuadrados y no presenta distorsiones en el tamaño bajo la presencia de datos atípicos aditivos. Por otro lado, el método de estimación robusto para los coeficientes autoregresivos supera al de mínimos cuadrados en términos de error cuadrático medio bajo la presencia de este tipo de observaciones. Finalmente, se ilustra a través de un ejemplo real el uso de la prueba de no linealidad y el método de estimación en la práctica.
dc.format.extent107
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddcMatemáticas
dc.titleDesarrollo de la prueba de no linealidad y estimación de los coeficientes autoregresivos en modelos TAR bajo la presencia de datos atípicos aditivos
dc.typeTrabajo de grado - Maestría
dc.rights.spaAcceso abierto
dc.coverage.sucursalUniversidad Nacional de Colombia - Sede Bogotá
dc.description.additionalMagíster en Estadística. Línea de Investigación: Series de Tiempo.
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.departmentDepartamento de Estadística
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesRousseeuw, P. J. and Van Zomeren, B. C. (1990). Un- masking multivariate outliers and leverage points. Journal of the American Statistical
dc.relation.referencesBattaglia, F. and Orfei, L. (2005). Outlier detection and estimation in nonlinear time series. Journal of Time Series Analysis, 26(1):107–121.
dc.relation.referencesChan, K. and Tong, H. (1990). On likelihood ratio tests for threshold autoregression. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 52(3):469–476.
dc.relation.referencesassociation, 85(411):633–639.
dc.relation.referencesChan, W.-S. and Cheung, S.-H. (1994). On robust estimation of threshold autoregressions. Journal of Forecasting, 13(1):37–49.
dc.relation.referencesChan, W.-S. and Ng, M.-W. (2004). Robustness of alternative non- linearity tests for setar models. Journal of Forecasting, 23(3):215–231.
dc.relation.referencesChen, C. and Liu, L.-M. (1993). Joint estimation of model parame- ters and outlier effects in time series. Journal of the American Statistical Association, 88(421):284–297.
dc.relation.referencesDavies, L. and Gather, U. (1993). The identification of multiple outliers. Journal of the American Statistical Association, 88(423):782–792.
dc.relation.referencesDenby, L. and Martin, R. D. (1979). Robust estimation of the first-order autoregressive parameter. Journal of the American Statistical Association, 74(365):140–146.
dc.relation.referencesFranses, P. H., Van Dijk, D., et al. (2000). Non-linear time series models in empirical finance. Cambridge University Press.
dc.relation.referencesGiordani, P. (2006). A cautionary note on outlier robust estimation of threshold models. Journal of Forecasting, 25(1):37–47.
dc.relation.referencesGranger, C. and Terasvirta, T. (1993). Modelling Non-Linear Economic Relationships. Oxford University Press.
dc.relation.referencesHampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Stahel, W. A. (1986). Robust statistics: the approach based on influence functions, volume 196. John Wiley & Sons.
dc.relation.referencesHansen, B. E. (2011). Threshold autoregression in economics. Statistics and its Interface, 4(2):123–127.
dc.relation.referencesHoaglin, D., Mosteller, F., and Tukey, J. W. (1983). Understanding Robust and Exploratory Data Analysis. Wiley Interscience.
dc.relation.referencesHung, K. C., Cheung, S. H., Chan, W.-S., and Zhang, L.-X. (2009). On a robust test for setar-type nonlinearity in time series analysis. Journal of forecasting, 28(5):445–464.
dc.relation.referencesLeBaron, B. (1992). Some relations between volatility and serial correlations in stock market returns. Journal of Business, pages 199–219.
dc.relation.referencesLucas, A. (1996). Outlier Robust Unit Root Analysis. PhD thesis, Erasmus Universiteit.
dc.relation.referencesMaronna, R. A., Martin, D. R., and Yohai, V. J. (2006). Robust Statistics: Theory and Methods. John Wiley and Sons.
dc.relation.referencesMohammadi, H. and Jahan-Parvar, M. R. (2012). Oil prices and exchange rates in oil-exporting countries: evidence from tar and m-tar models. Journal of Economics and Finance, 36(3):766–779.
dc.relation.referencesPetruccelli, J. and Davies, N. (1986). A portmanteau test for self-exciting threshold autoregressive-type nonlinearity in time series. Biometrika, 73(3):687–694.
dc.relation.referencesRousseeuw, P. J. (1984). Least median of squares regression. Journal of the American statistical association, 79(388):871–880.
dc.relation.referencesShapiro, S. S. and Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4):591–611.
dc.relation.referencesSin, C.-y. and White, H. (1996). Information criteria for selecting possibly misspecified parametric models. Journal of Econometrics, 71(1-2):207–225.
dc.relation.referencesTiao, G. C. and Tsay, R. S. (1994). Some advances in non-linear and adaptive modelling in time-series. Journal of Forecasting, 13(2):109–131.
dc.relation.referencesTsay, R. and Chen, R. (2019). Nonlinear Time Series Analysis. Wiley Interscience.
dc.relation.referencesTsay, R. S. (1988). Outliers, level shifts, and variance changes in time series. Journal of forecasting, 7(1):1–20.
dc.relation.referencesTong, H. (1978). On a threshold model. Pattern Recognition and Signal Processing.
dc.relation.referencesTong, H. (1993). Non-linear Time Series: A Dynamical System Approach. Dynamical System Approach. Clarendon Press.
dc.relation.referencesTsay, R. S. (1989). Testing and modeling threshold autoregressive processes. Journal of the American statistical association, 84(405):231–240.
dc.relation.referencesVargas, H. (2011). Monetary policy and the exchange rate in Colombia. In for International Settlements, B., editor, Capital flows, commodity price movements and foreign exchange intervention, volume 57 of BIS Papers, pages 129–153. Bank for International Settlements.
dc.relation.referencesZhang, L.-X., Chan, W.-S., Cheung, S.-H., and Hung, K.-C. (2009). A note on the consistency of a robust estimator for threshold autoregressive processes. Statistics & Probability Letters, 79(6):807–813.
dc.relation.referencesLuukkonen, R., Saikkonen, P., and Terasvirta, T. (1988). Testing linearity against smooth transition autoregressive models. Biometrika, 75(3):491–499.
dc.relation.referencesPetruccelli, J. (1990). A comparison of tests for setar-type non-linearity in time series. Journal of Forecasting, 9(1):25–36.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalAdditive outliers
dc.subject.proposalDatos atípicos aditivos
dc.subject.proposalTAR models
dc.subject.proposalModelos TAR
dc.subject.proposalEstimadores GM
dc.subject.proposalGM estimator
dc.subject.proposalSeries de tiempo no lineales
dc.subject.proposalNonlinear time series
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit