Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorPinzón Velasco, Andrés Mauricio
dc.contributor.authorChingaté Barbosa, Edwin Antonio
dc.date.accessioned2020-01-24T15:06:20Z
dc.date.available2020-01-24T15:06:20Z
dc.date.issued2019-10-17
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75517
dc.description.abstractSe desarrolló un modelo de la cámara anódica en una celda de combustible microbiana para mejorar la comprensión de los fenómenos biológicos que suceden al interior de dicho dispositivo. La posibilidad de transferir electrones a un aceptor insoluble en el medio extracelular fue incluida en una reconstrucción metabólica a escala genómica de Geobacter sulfurreducens disponible en la literatura y luego se usó dicha reconstrucción para representar el comportamiento de este microorganismo en un ambiente modificado de la librería BacArena en R. Fue posible reducir el tiempo de cómputo a una milésima del necesario con el código original de BacArena gracias a la aproximación del estado estable presentada en este trabajo. Se logró recrear el comportamiento de la corriente reportado en la literatura, el desarrollo de biopelículas de hasta 48 μm y la identificación de la erosión, el gradiente de concentración y el espacio como los limitantes de la generación de corriente en una celda de combustible microbiana.
dc.description.abstractA model for a microbial fuel cell’s anode chamber was developed in order to improve understanding of biological processes inside this device. A Geobacter sulfurreducens’ genome scale metabolic model from literature was modified by addition of external electron transfer reaction, then it was used in an modified BacArena’s environment as microorganism’s representation. Running time was reduced to a thousandth of BacArena’s original code by integration of steady state approximation. It was possible to recreate current’s behavior reported in literature, development of biofilms up 48 μm and identification of erosion, concentration gradient and space as current generation constraints in a microbial fuel cell
dc.format.extent115
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddcBibliotecología y ciencias de la información
dc.subject.ddcQuímica y ciencias afines
dc.titleSimulación de una cámara anódica y el efecto de su composición sobre la e ciencia de una celda de combustible microbiana
dc.title.alternativeSimulation of an anodic chamber and effect of its composition over microbial fuel cell performance.
dc.typeReporte
dc.rights.spaAcceso abierto
dc.coverage.sucursalUniversidad Nacional de Colombia - Sede Bogotá
dc.type.driverinfo:eu-repo/semantics/workingPaper
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.contributor.corporatenameDepartamento de Ingeniería de Sistemas e Industrial
dc.contributor.researchgroupGrupo de Investigación en Bioinformática y Biología de Sistemas
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbul, A., Zhang, J., Steidl, R., Reguera, G., & Tan, X. (2016). Microbial fuel cells: Control-oriented modeling and experimental validation. In 2016 American Control Conference (pp. 412–417). IEEE.
dc.relation.referencesAkiba, T., Bennetto, H. P., Stirling, J. L., & Tanaka, K. (1987). Electricity production from alkalophilic organisms. Biotechnology Letters, 9(9), 611–616.
dc.relation.referencesAlberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular biology of the cell (4th ed.). New York: Garland Science.
dc.relation.referencesALCALDÍA MAYOR DE BOGOTÁ, D. C. (2018). Por el cual se liquida el Presupuesto Anual de Rentas e Ingresos y de Gastos e iversiones de Bogotá, Distrito Capital, para la vigencia fiscal comprendida entre el 1 de enero y 31 de diciembre de 2019 y se dictan otras disposiciones, en cumplimiento de Ac. Retrieved December 27, 2018, from http://www.desarrolloeconomico .gov.co/sites/default/files/presupuesto/2.\_decreto\_presupuesto\_2019.pdf
dc.relation.referencesAnderson, R. T., Vrionis, H. A., Ortiz-Bernad, I., Resch, C. T., Long, P. E., Dayvault, R., … Lovley, D. R. (2003). Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Applied and Environmental Microbiology, 69(10), 5884–5891.
dc.relation.referencesAnderson, T. R., Hawkins, E., & Jones, P. D. (2016). CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today’s Earth System Models. Endeavour, 40(3), 178–187.
dc.relation.referencesAppleton, A., & Vanbergen, O. (2013). Crash Course: Metabolism and Nutrition (4th ed.). Edinburgh: Mosby Ltd.
dc.relation.referencesAzadi, P., Malina, R., Barrett, S. R. H., & Kraft, M. (2017). The evolution of the biofuel science. Renewable and Sustainable Energy Reviews, 76, 1479–1484.
dc.relation.referencesBard, A. J., & Faulkner, L. R. (2001). Electrochemical methods : fundamentals and applications (2nd ed.). New york: Wiley.
dc.relation.referencesBaron, S. S., & Rowe, J. J. (1981). Antibiotic action of pyocyanin. Antimicrobial Agents and Chemotherapy, 20(6), 814–820.
dc.relation.referencesBatstone, D. J., Keller, J., Angelidaki, I., Kalyuzhnyi, S. V., Pavlostathis, S. G., Rozzi, A., … Vavilin, V. A. (2002). The IWA Anaerobic Digestion Model No 1 (ADM1). Water Science and Technology, 45(10), 65–73.
dc.relation.referencesBauer, E., Zimmermann, J., Baldini, F., Thiele, I., & Kaleta, C. (2017). BacArena: Individual-based metabolic modeling of heterogeneous microbes in complex communities. PLOS Computational Biology, 13(5), e1005544.
dc.relation.referencesBertini, I., Cavallaro, G., & Rosato, A. (2006). Cytochrome c: Occurrence and Functions. Chemical Reviews, 106(1), 90–115.
dc.relation.referencesBond, D. R., Holmes, D. E., Tender, L. M., & Lovley, D. R. (2002). Electrode-reducing microorganisms that harvest energy from marine sediments. Science (New York, N.Y.), 295(5554), 483–485.
dc.relation.referencesBond, D. R., & Lovley, D. R. (2003). Electricity production by Geobacter sulfurreducens attached to electrodes. Applied and Environmental Microbiology, 69(3), 1548–1555.
dc.relation.referencesBourdakos, N., Marsili, E., & Mahadevan, R. (2014). A defined co-culture of Geobacter sulfurreducens and Escherichia coli in a membrane-less microbial fuel cell. Biotechnology and Bioengineering, 111(4), 709–718.
dc.relation.referencesCord-Ruwisch, R., Lovley, D. R., & Schink, B. (1998). Growth of geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Applied and Environmental Microbiology, 64(6), 2232–2236.
dc.relation.referencesCortés, E. (2014). Agua en Bogotá: Especial sobre cómo salvar el Agua de la Capital Colombiana. EL TIEMPO. Retrieved from https://www.eltiempo.com/Multimedia/especiales/salvar\_agua\_bogota/
dc.relation.referencesDu, Z., Li, H., & Gu, T. (2007). A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25(5), 464–482.
dc.relation.referencesEmde, R., Swain, A., & Schink, B. (1989). Anaerobic oxidation of glycerol by Escherichia coli in an amperometric poised-potential culture system. Applied Microbiology and Biotechnology, 32(2), 170–175.
dc.relation.referencesEsteve-Nuñez, A., Rothermich, M., Sharma, M., & Lovley, D. (2005). Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture. Environmental Microbiology, 7(5), 641–648.
dc.relation.referencesFell, D. A., & Small, J. R. (1986). Fat synthesis in adipose tissue. An examination of stoichiometric constraints. Biochemical Journal, 238(3), 781–786.
dc.relation.referencesFranks, A. E., Glaven, R. H., & Lovley, D. R. (2012). Real-Time Spatial Gene Expression Analysis within Current-Producing Biofilms. ChemSusChem, 5(6), 1092–1098.
dc.relation.referencesFranks, A. E., & Nevin, K. P. (2010). Microbial Fuel Cells, A Current Review. Energies, 3(5), 899–919.
dc.relation.referencesFreguia, S., Masuda, M., Tsujimura, S., & Kano, K. (2009). Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone. Bioelectrochemistry, 76(1–2), 14–18.
dc.relation.referencesGajda, I., Greenman, J., & Ieropoulos, I. A. (2018). Recent advancements in real-world microbial fuel cell applications. Current Opinion in Electrochemistry, 11, 78–83.
dc.relation.referencesGeelhoed, J. S., Henstra, A. M., & Stams, A. J. M. (2016). Carboxydotrophic growth of Geobacter sulfurreducens. Applied Microbiology and Biotechnology, 100(2), 997–1007.
dc.relation.referencesGorby, Y. A., Yanina, S., McLean, J. S., Rosso, K. M., Moyles, D., Dohnalkova, A., … Fredrickson, J. K. (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences of the United States of America, 103(30), 11358–11363.
dc.relation.referencesGudmundsson, S., & Thiele, I. (2010). Computationally efficient flux variability analysis. BMC Bioinformatics, 11(1), 489.
dc.relation.referencesHarcombe, W. R., Riehl, W. J., Dukovski, I., Granger, B. R., Betts, A., Lang, A. H., … Segrè, D. (2014). Metabolic Resource Allocation in Individual Microbes Determines Ecosystem Interactions and Spatial Dynamics. Cell Reports, 7(4), 1104–1115.
dc.relation.referencesHarris, D. C. (2007). Quantitative chemical analysis (8th ed.). New york: W.H. Freeman and Co.
dc.relation.referencesHenson, M. A. (2015). Genome-scale modelling of microbial metabolism with temporal and spatial resolution. Biochemical Society Transactions, 43(6), 1164–1171.
dc.relation.referencesHolzman, D. C. (2005). Microbe power! Environmental Health Perspectives, 113(11), A754-7.
dc.relation.referencesHüttemann, M., Pecina, P., Rainbolt, M., Sanderson, T. H., Kagan, V. E., Samavati, L., … Lee, I. (2011). The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: From respiration to apoptosis. Mitochondrion, 11(3), 369–381.
dc.relation.referencesIeropoulos, I., Greenman, J., & Melhuish, C. (2008). Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability. International Journal of Energy Research, 32(13), 1228–1240.
dc.relation.referencesIeropoulos, I., Melhuish, C., Greenman, J., & Horsfield, I. (2005). EcoBot-II: An Artificial Agent with a Natural Metabolism. International Journal of Advanced Robotic Systems, 2(4), 31.
dc.relation.referencesJaeger, K.-E., Ransac, S., Dijkstra, B. W., Colson, C., Heuvel, M., & Misset, O. (1994). Bacterial lipases. FEMS Microbiology Reviews, 15(1), 29–63.
dc.relation.referencesJayasinghe, N., Franks, A., Nevin, K. P., & Mahadevan, R. (2014). Metabolic modeling of spatial heterogeneity of biofilms in microbial fuel cells reveals substrate limitations in electrical current generation. Biotechnology Journal, 9(10), 1350–1361.
dc.relation.referencesKim, B.-C., Leang, C., Ding, Y.-H. R., Glaven, R. H., Coppi, M. V, & Lovley, D. R. (2005). OmcF, a putative c-Type monoheme outer membrane cytochrome required for the expression of other outer membrane cytochromes in Geobacter sulfurreducens. Journal of Bacteriology, 187(13), 4505–4513.
dc.relation.referencesKim, B.-C., Qian, X., Leang, C., Coppi, M. V, & Lovley, D. R. (2006). Two putative c-type multiheme cytochromes required for the expression of OmcB, an outer membrane protein essential for optimal Fe(III) reduction in Geobacter sulfurreducens. Journal of Bacteriology, 188(8), 3138–3142.
dc.relation.referencesKim, J. R., Jung, S. H., Regan, J. M., & Logan, B. E. (2007). Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresource Technology, 98(13), 2568–2577.
dc.relation.referencesKing, Z. A., Lu, J., Dräger, A., Miller, P., Federowicz, S., Lerman, J. A., … Lewis, N. E. (2016). BiGG Models: A platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Research, 44(D1), D515–D522.
dc.relation.referencesKluger, J. (2009). The Electric Microbe - The 50 Best Inventions of 2009 - TIME. Retrieved from http://content.time.com/time/specials/packages/article/0,28804,1934027\_1934003\_1933965,00.html
dc.relation.referencesLevar, C. E., Hoffman, C. L., Dunshee, A. J., Toner, B. M., & Bond, D. R. (2017). Redox potential as a master variable controlling pathways of metal reduction by Geobacter sulfurreducens. ISME Journal.
dc.relation.referencesLloyd, J. R., Blunt-Harris, E. L., & Lovley, D. R. (1999). The periplasmic 9.6-kilodalton c-type cytochrome of Geobacter sulfurreducens is not an electron shuttle to Fe(III). Journal of Bacteriology, 181(24), 7647–7649.
dc.relation.referencesLogan, B. E. (2007). Microbial Fuel Cells (1st ed.). Hoboken, NJ, USA: John Wiley & Sons, Inc.
dc.relation.referencesLovley, D. R., & Phillips, E. J. (1988). Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology, 54(6), 1472–1480.
dc.relation.referencesLovley, D. R. (2006). Bug juice: harvesting electricity with microorganisms. Nature Reviews Microbiology, 4(7), 497–508.
dc.relation.referencesLovley, D. R. (2012). Electromicrobiology. Annual Review of Microbiology, 66(1), 391–409.
dc.relation.referencesLovley, D. R. (2006). Microbial fuel cells: novel microbial physiologies and engineering approaches. Current Opinion in Biotechnology, 17(3), 327–332.
dc.relation.referencesLovley, D. R. (2008). The microbe electric: conversion of organic matter to electricity. Current Opinion in Biotechnology, 19, 564–571.
dc.relation.referencesMagnúsdóttir, S., Heinken, A., Kutt, L., Ravcheev, D. A., Bauer, E., Noronha, A., … Thiele, I. (2016). Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nature Biotechnology, 35(1), 81–89.
dc.relation.referencesMahadevan, R., Bond, D. R., Butler, J. E., Esteve-Nuñez, A., Coppi, M. V., Palsson, B. O., … Lovley, D. R. (2006). Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Applied and Environmental Microbiology, 72(2), 1558–1568.
dc.relation.referencesMahadevan, R., Palsson, B. O., & Lovley, D. R. (2011). In situ to in silico and back: elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling. Nature Reviews Microbiology, 9(1), 39–50.
dc.relation.referencesMajewski, R. A., & Domach, M. M. (1990). Simple constrained-optimization view of acetate overflow inE. coli. Biotechnology and Bioengineering, 35(7), 732–738.
dc.relation.referencesMarcus, A. K., Torres, C. I., & Rittmann, B. E. (2007). Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnology and Bioengineering, 98(6), 1171–1182.
dc.relation.referencesMartins, G., Peixoto, L., Ribeiro, D. C., Parpot, P., Brito, A. G., & Nogueira, R. (2010). Towards implementation of a benthic microbial fuel cell in lake Furnas (Azores): Phylogenetic affiliation and electrochemical activity of sediment bacteria. Bioelectrochemistry, 78(1), 67–71.
dc.relation.referencesMcMurry, J. (2012). Organic chemistry. (Lisa Lockwood, Ed.) (8th ed.). China: Mary Finch.
dc.relation.referencesMethé, B. A., Nelson, K. E., Eisen, J. A., Paulsen, I. T., Nelson, W., Heidelberg, J. F., … Fraser, C. M. (2003). Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science (New York, N.Y.), 302(5652), 1967–1969.
dc.relation.referencesMeyer, T. E., Tsapin, A. I., Vandenberghe, I., De Smet, L., Frishman, D., Nealson, K. H., … Van Beeumen, J. J. (2004). Identification of 42 Possible Cytochrome C Genes in the Shewanella oneidensis Genome and Characterization of Six Soluble Cytochromes. OMICS: A Journal of Integrative Biology, 8(1), 57–77.
dc.relation.referencesMiyamoto, T., & Amrein, H. (2017). Gluconeogenesis: An ancient biochemical pathway with a new twist. Fly, 11(3), 218–223.
dc.relation.referencesMünzner, U., Klipp, E., & Krantz, M. (2018). A comprehensive, mechanistically detailed, and executable model of the Cell Division Cycle in Saccharomyces cerevisiae. BioRxiv, 298745.
dc.relation.referencesOcchipinti, R., Somersalo, E., & Calvetti, D. (2010). Energetics of inhibition: insights with a computational model of the human GABAergic neuron-astrocyte cellular complex. Journal of Cerebral Blood Flow and Metabolism : Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 30(11), 1834–1846.
dc.relation.referencesOliveira, V. B., Simões, M., Melo, L. F., & Pinto, A. M. F. R. (2013). Overview on the developments of microbial fuel cells. Biochemical Engineering Journal, 73(15), 53–64.
dc.relation.referencesOrth, J. D., Palsson, B. O., & Fleming, R. M. T. (2010). Reconstruction and Use of Microbial Metabolic Networks: the Core Escherichia coli Metabolic Model as an Educational Guide. EcoSal Plus, 4(1).
dc.relation.referencesOrth, J. D., Thiele, I., & Palsson, B. Ø. (2010). What is flux balance analysis? Nature Biotechnology, 28(3), 245–248.
dc.relation.referencesOrtiz-Martínez, V. M., Salar-García, M. J., de los Ríos, A. P., Hernández-Fernández, F. J., Egea, J. A., & Lozano, L. J. (2015). Developments in microbial fuel cell modeling. Chemical Engineering Journal, 271(1), 50–60.
dc.relation.referencesPalsson, B. (2015). Systems biology : constraint-based reconstruction and analysis. Chelsea: Cambridge University Press .
dc.relation.referencesPiccolino, M. (1998). Animal electricity and the birth of electrophysiology: the legacy of Luigi Galvani. Brain Research Bulletin, 46(5), 381–407.
dc.relation.referencesPinzon, W., Vega, H., Gonzalez, J., & Pinzon, A. (2018). Mathematical Framework Behind the Reconstruction and Analysis of Genome Scale Metabolic Models. Archives of Computational Methods in Engineering, 1–14.
dc.relation.referencesPotter, M. C. (1911). Electrical Effects Accompanying the Decomposition of Organic Compounds. Proceedings of the Royal Society B: Biological Sciences, 84(571), 260–276.
dc.relation.referencesRabaey, K., Boon, N., Siciliano, S. D., Verhaege, M., & Verstraete, W. (2004). Biofuel cells select for microbial consortia that self-mediate electron transfer. Applied and Environmental Microbiology, 70(9), 5373–5382.
dc.relation.referencesRabaey, K., Girguis, P., & Nielsen, L. K. (2011). Metabolic and practical considerations on microbial electrosynthesis. Current Opinion in Biotechnology, 22(3), 371–377.
dc.relation.referencesRabaey, K., Rodríguez, J., Blackall, L. L., Keller, J., Gross, P., Batstone, D., … Nealson, K. H. (2007). Microbial ecology meets electrochemistry: Electricity-driven and driving communities. ISME Journal, 1(1), 9–18.
dc.relation.referencesRabaey, K., & Verstraete, W. (2005). Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotechnology, 23(6), 291–298.
dc.relation.referencesRabaey, K., Angenent, L., Schröder, U., & Keller, J. (2010). Bioelectrochemical systems : from extracellular electron transfer to biotechnological application. London: IWA Publishing.
dc.relation.referencesRabaey, K., Boon, N., Höfte, M., & Verstraete, W. (2005). Microbial Phenazine Production Enhances Electron Transfer in Biofuel Cells.
dc.relation.referencesRahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., & Oh, S.-E. (2015). Microbial fuel cell as new technology for bioelectricity generation: A review. Alexandria Engineering Journal, 54(3), 745–756.
dc.relation.referencesRahimnejad, M., Najafpour, G. D., Ghoreyshi, A. A., Talebnia, F., Premier, G. C., Bakeri, G., … Oh, S.-E. (2012). Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture. Journal of Microbiology, 50(4), 575–580.
dc.relation.referencesRamirez, A., Gomez, H., Pantevez, C., Barriga, A., Diaz, L., Lopez, C., Diaz, A., & Mendez, J. (2019). INFORME MENSUAL DE ACTIVIDADES FEBRERO 2019. Bogotá: PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES EL SALITRE. Retrieved June 12, 2019, from https://www.acueducto.com.co/wps/html/resources/2019L/PTAR/INFORME\_FINAL\_FEBRERO\_2019.pdf
dc.relation.referencesReguera, G., Nevin, K. P., Nicoll, J. S., Covalla, S. F., Woodard, T. L., & Lovley, D. R. (2006). Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Applied and Environmental Microbiology, 72(11), 7345–7348.
dc.relation.referencesRifkin, J. (2002). The hydrogen economy : the creation of the worldwide energy web and the redistribution of power on earth. New York: J.P. Tarcher/Putnam.
dc.relation.referencesSantoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017). Microbial fuel cells: From fundamentals to applications. A review. Journal of Power Sources, 356, 225–244.
dc.relation.referencesSavinell, J. M., & Palsson, B. O. (1992). Network analysis of intermediary metabolism using linear optimization: II. Interpretation of hybridoma cell metabolism. Journal of Theoretical Biology, 154(4), 455–473.
dc.relation.referencesSeeliger, S., Cord-Ruwisch, R., & Schink, B. (1998). A periplasmic and extracellular c-type cytochrome of Geobacter sulfurreducens acts as a ferric iron reductase and as an electron carrier to other acceptors or to partner bacteria. Journal of Bacteriology, 180(14), 3686–3691.
dc.relation.referencesShi, L., Chen, B., Wang, Z., Elias, D. A., Mayer, M. U., Gorby, Y. A., … Squier, T. C. (2006). Isolation of a High-Affinity Functional Protein Complex between OmcA and MtrC: Two Outer Membrane Decaheme c-Type Cytochromes of Shewanella oneidensis MR-1. Journal of Bacteriology, 188(13), 4705–4714.
dc.relation.referencesStern, M., & Geaby, A. L. (1957). Electrochemical Polarization. Journal of The Electrochemical Society, 104(1), 56.
dc.relation.referencesStratford, J. P., Beecroft, N. J., Slade, R. C. T., Grüning, A., & Avignone-Rossa, C. (2014). Anodic microbial community diversity as a predictor of the power output of microbial fuel cells. Bioresource Technology, 156, 84–91.
dc.relation.referencesSuárez, M. (2011). Electroquímica física e interfacial: una aproximación teórica (1st ed.). Bogotá: Editorial Universidad Nacional de Colombia.
dc.relation.referencesTan, Y., Adhikari, R. Y., Malvankar, N. S., Pi, S., Ward, J. E., Woodard, T. L., … Lovley, D. R. (2016). Synthetic Biological Protein Nanowires with High Conductivity. Small (Weinheim an Der Bergstrasse, Germany), 12(33), 4481–4485.
dc.relation.referencesThauer, R. K., Jungermann, K., & Decker, K. (1977). Energy conservation in chemotrophic anaerobic bacteria. Bacteriology Reviews, 41(1), 100–180.
dc.relation.referencesTreybal, R. (1997). Mass transfer operations (2nd ed.). Bogotá.
dc.relation.referencesTsompanas, M.-A., Adamatzky, A., Ieropoulos, I., Phillips, N., Sirakoulis, G. C., & Greenman, J. (2018). Modelling Microbial Fuel Cells using lattice Boltzmann methods. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1–1.
dc.relation.referencesVarma, A., Boesch, B. W., & Palsson, B. O. (1993). Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Applied and Environmental Microbiology, 59(8), 2465–2473.
dc.relation.referencesVarma, A., & Palsson, B. O. (1994). Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Applied and Environmental Microbiology, 60(10), 3724.
dc.relation.referencesvon Canstein, H., Ogawa, J., Shimizu, S., & Lloyd, J. R. (2008). Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Applied and Environmental Microbiology, 74(3), 615–623.
dc.relation.referencesWalter, X. A., Merino-Jiménez, I., Greenman, J., & Ieropoulos, I. (2018). PEE POWER® urinal II – Urinal scale-up with microbial fuel cell scale-down for improved lighting. Journal of Power Sources, 392, 150–158.
dc.relation.referencesWatnick, P., & Kolter, R. (2000). Biofilm, city of microbes. Journal of Bacteriology, 182(10), 2675–2679.
dc.relation.referencesWelty, J. R., Rorrer, G. L., & Foster, D. G. (2013). Fundamentals of momentum, heat, and mass transfer (6th ed.). New york: Wiley.
dc.relation.referencesXia, C., Zhang, D., Pedrycz, W., Zhu, Y., & Guo, Y. (2018). Models for Microbial Fuel Cells: A critical review. Journal of Power Sources, 373, 119–131.
dc.relation.referencesZhi, W., Ge, Z., He, Z., & Zhang, H. (2014). Methods for understanding microbial community structures and functions in microbial fuel cells: A review. Bioresource Technology, 171, 461–468.
dc.relation.referencesZomorrodi, A. R., & Segrè, D. (2016). Synthetic Ecology of Microbes: Mathematical Models and Applications. Journal of Molecular Biology, 428(5), 837–861.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalReconstrucciones metabólicas a escala genómica; Biopelícula; Análisis de balance de flujo espacio-temporal; Estado estable; Celda de combustible microbiana; Geobacter sulfurreducens
dc.subject.proposalGenome scale metabolic models; Biofilm; Spatio-temporal flux balance analysis; steady state; Microbial fuel cell; Geobacter sulfurreducens
dc.type.coarhttp://purl.org/coar/resource_type/c_8042
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/WP
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit