Show simple item record

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorDelgado Fernández, Tatiana
dc.contributor.advisorPeña Reyes, José Ismael
dc.contributor.authorCangrejo Aljure, Libia Denise
dc.date.accessioned2020-01-24T17:10:00Z
dc.date.available2020-01-24T17:10:00Z
dc.date.issued2019-12-10
dc.date.issued2019-12
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75520
dc.description.abstractThe exponential growth of connected devices is radically changing modern society. This phenomenon, also known as the Internet of Things, is conditioning an unprecedented technological and data revolution. Among the diverse technologies and conceptual fields that underlie the Internet of Things, IoT, are ubiquitous or pervasive computing, context awareness and semantics, which are complemented by sensor networks, embedded systems and wireless communication to grant devices or "things" the ability to measure information, interconnect and transfer it. The need to efficiently manage data collected in an IoT environment in order to adequately address problems arising from heterogeneity, dynamism and data size poses challenges to the scientific community. Some of these challenges are associated with the tasks of representation, interpretation and reasoning of data coming from sensors as well as its semantic integration with other open data on the Web. To face these challenges, this thesis presents the Semantic Context Model Extended with Linked Open Data for the Internet of Things, XSCM_4_IoT, supported by a 4-layer architecture and ontological context network CO_NET. XSCM_4_IoT, in addition to being semantic and extensible, is open, interoperable and user-centered. The semantic enrichment of contextual data using the Linked Open Data project, starting with the publishing of the ontological data and resources of CO_NET, is a distinctive feature of the model. The validation of XSCM_4_IoT in the setting of a Smart Campus permits the verification of its viability to manage context-sensitive data in an IoT environment.
dc.description.abstractEl crecimiento exponencial de dispositivos conectados está cambiando radicalmente la sociedad moderna. Este fenómeno, también conocido como Internet de las Cosas, está condicionando una revolución tecnológica y de datos sin precedentes. Entre las diversas tecnologías y campos conceptuales que subyacen en Internet de las Cosas, IoT por sus siglas en inglés, sobresalen la computación ubicua o pervasiva, la sensibilidad al contexto y la semántica, que se complementan con redes de sensores, sistemas embebidos y comunicación inalámbrica, para conceder a los dispositivos o “cosas” la capacidad de medir información, interconectarse y transferirla. La necesidad de gestionar eficientemente los datos recolectados en un entorno IoT, para afrontar adecuadamente los problemas que surgen de la heterogeneidad, el dinamismo y el tamaño de los datos, plantea retos a la comunidad científica. Algunos de esos retos están asociados con las tareas de representación, interpretación y razonamiento de los datos provenientes de sensores; así como, su integración semántica con otros datos abiertos en la Web. Para enfrentar estos desafíos, en esta tesis se diseña el Modelo Semántico de Contexto Extendido con Linked Open Data para Internet de las Cosas, XSCM_4_IoT, el cual se soporta en una arquitectura de 4 capas y en la red ontológica de contexto CO_NET. XSCM_4_IoT se caracteriza por ser, además de semántico y extensible, abierto, interoperable y centrado en el usuario. El enriquecimiento semántico de datos contextuales usando el proyecto Linked Open Data, a partir de la publicación de los datos y recursos ontológicos de CO_NET, es un rasgo distintivo del modelo. La validación de XSCM_4_IoT en un escenario del Smart Campus, permite comprobar la viabilidad del mismo para gestionar datos de contexto en un entorno IoT.
dc.format.extent135
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddcIngeniería de Sistemas y Computación
dc.titleModelo semántico de contexto extendido con Linked Open Data para IoT
dc.title.alternativeSemantic Context Model, extended with Linked Open Data for IoT
dc.typeDocumento de trabajo
dc.rights.spaAcceso abierto
dc.coverage.sucursalUniversidad Nacional de Colombia - Sede Bogotá
dc.description.additionalDoctora en Ingeniería – Sistemas y Computación.
dc.type.driverinfo:eu-repo/semantics/workingPaper
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.contributor.researchgroupANGeoSc
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAchilleos, A., Yang, K., & Georgalas, N. (2010). Context modelling and a context-aware framework for pervasive service creation: A model-driven approach. Pervasive and Mobile Computing, 6(2), 281–296. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S1574119209000625 Aguilar, J., Jerez, M., & Rodríguez, T. (2017). CAMeOnto: Context awareness meta ontology modeling. Applied Computing and Informatics. https://doi.org/10.1016/j.aci.2017.08.001 Ahmed, B., Abdelouahed, G., & Kazar, O. (2017). Semantic-based Approach to Context Management in Ubiquitous Environment. Procedia Computer Science, 109, 592–599. https://doi.org/10.1016/j.procs.2017.05.361 Al-Shargabi, A. A. Q., Siewe, F., & Zahary, A. T. (2017). Quality of Context in Context-Aware Systems. EAI Endorsed Transactions on Context-Aware Systems and Applications, 4(12), 152761. https://doi.org/10.4108/eai.6-7-2017.152761 Alegre, U., Carlos Augusto, J., & Clark, T. (2016). Engineering Context-Aware Systems and Applications: A survey. Journal of Systems and Software, 117, 55–83. https://doi.org/10.1016/j.jss.2016.02.010 Alghamdi, A., & Shetty, S. (2016). Survey toward a smart campus using the internet of things. Proceedings - 2016 IEEE 4th International Conference on Future Internet of Things and Cloud, FiCloud 2016, 235–239. https://doi.org/10.1109/FiCloud.2016.41 Ali, S., Khusro, S., Ullah, I., Khan, A., & Khan, I. (2017a). SmartOntoSensor: Ontology for Semantic Interpretation of Smartphone Sensors Data for Context-Aware Applications. Journal of Sensors, 2017, 1–26. https://doi.org/10.1155/2017/8790198 Ali, S., Khusro, S., Ullah, I., Khan, A., & Khan, I. (2017b). SmartOntoSensor: Ontology for Semantic Interpretation of Smartphone Sensors Data for Context-Aware Applications. Journal of Sensors, (February). https://doi.org/http://dx.doi.org/10.1155/2017/8790198 Almeida, F. (2018). Strategies To Perform a Mixed Methods Study. European Journal of Education Studies, 5(1), 137–151. https://doi.org/10.5281/zenodo.1406214 Amja, A. M., Obaid, A., Mili, H., & Valtchev, P. (2016). Linking relational concept analysis and variability model within context modeling of context-Aware applications. ISSE 2016 - 2016 International Symposium on Systems Engineering - Proceedings Papers. https://doi.org/10.1109/SysEng.2016.7753184 Anya, O., Tawfik, H., & Nagar, A. (2011). Cross-boundary knowledge-based decision support in e-health. 2011 International Conference on Innovations in Information Technology, IIT 2011, 150–155. https://doi.org/10.1109/INNOVATIONS.2011.5893807 Atzori, L., Iera, A., & Morabito, G. (2017). Understanding the Internet of Things : definition , potentials , and societal role of a fast evolving paradigm. Ad Hoc Networks, 56, 122–140. https://doi.org/10.1016/j.adhoc.2016.12.004 Bakillah, M., Liang, S. H. L., Zipf, A., & Mostafavi, M. A. (2012). A dynamic and context-aware semantic mediation service for discovering and fusion of heterogeneous sensor data. Journal of Spatial Information Science, 6(6), Accepted, subject to final revisions. https://doi.org/10.5311/josis.v0i0.104 Baldauf, M. (2007). A survey on context-aware systems. Int. J. Ad Hoc and Ubiquitous Computing, 2(4), 15. Bandara, K. Y., Wang, M., & Pahl, C. (2009). Context modeling and constraints binding in web service business processes, 29. https://doi.org/10.1145/1595768.1595780 Bandara, K. Y., Wang, M. X., & Pahl, C. (2015). An extended ontology-based context model and manipulation calculus for dynamic Web service processes. Service Oriented Computing and Applications, 9(2), 87–106. https://doi.org/10.1007/s11761-013-0145-3 Benazzouz, Y., Beaune, P., Ramparany, F., & Chotard, L. (2009). Context data-driven approach for ubiquitous computing applications. 4th International Conference on Digital Information Management, ICDIM 2009, 234–239. https://doi.org/10.1109/ICDIM.2009.5356771 Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities. Scientific American, 284(5), 1–5. Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., & Riboni, D. (2010a). A survey of context modelling and reasoning techniques. Pervasive and Mobile Computing, 6(2), 161–180. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S1574119209000510 Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., & Riboni, D. (2010b). A survey of context modelling and reasoning techniques. Pervasive and Mobile Computing, 6(2), 161–180. https://doi.org/10.1016/j.pmcj.2009.06.002 Bezerra, C., Freitas, F., & Santana, F. (2013). Evaluating ontologies with Competency Questions. Proceedings - 2013 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology - Workshops, WI-IATW 2013, 3, 284–285. https://doi.org/10.1109/WI-IAT.2013.199 Bhargava, P., Krishnamoorthy, S., & Agrawala, A. (2012). An ontological context model for representing a situation and the design of an intelligent context-aware middleware, 1016. https://doi.org/10.1145/2370216.2370436 Biamino, G. (2011). So Smart - Modeling social contexts to improve smart objects awareness in pervasive computing environments. 2011 IEEE International Conference on Pervasive Computing and Communications Workshops, PERCOM Workshops 2011, 393–394. https://doi.org/10.1109/PERCOMW.2011.5766916 Biamino, G., & Cena, F. (2011). Social awareness and user modeling to improve objects intelligence. Proceedings - 2011 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology - Workshops, WI-IAT 2011, 3, 118–121. https://doi.org/10.1109/WI-IAT.2011.260 Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data-the story so far. International Journal on Semantic Web and Information Systems, 5(3), 1–22. https://doi.org/10.4018/jswis.2009081901 Bolchini, C., Curino, C. A., Quintarelli, E., Schreiber, F. A., & Tanca, L. (2007). A data-oriented survey of context models. ACM SIGMOD Record. https://doi.org/10.1145/1361348.1361353 Bonte, P., Ongenae, F., De Backere, F., Schaballie, J., Arndt, D., Verstichel, S., … De Turck, F. (2017). The MASSIF platform: a modular and semantic platform for the development of flexible IoT services. Knowledge and Information Systems, 51(1), 89–126. https://doi.org/10.1007/s10115-016-0969-1 Boudaa, B., Hammoudi, S., & Chikh, M. A. (2013). ODM-based modeling for user-centered context-aware mobile applications. 3rd International Conference on Information Technology and E-Services, ICITeS 2013. https://doi.org/10.1109/ICITeS.2013.6624068 Bravo, M., Reyes-Ortiz, J. A., Cruz-Ruiz, I., Gutiérrez-Rosales, A., & Padilla-Cuevas, J. (2018). Ontology for academic context reasoning. Procedia Computer Science, 141, 175–182. https://doi.org/10.1016/j.procs.2018.10.165 Brusa, G., Caliusco, M. L., & Chiotti, O. (2006). Process for Building a Domain Ontology: an Experience in Developing a Government Budgetary Ontology BT - Second Australasian Ontology Workshop (AOW 2006), 72(May 2014), 7–15. Retrieved from http://crpit.com/confpapers/CRPITV72Brusa.pdf Cabrera, O., Franch, X., & Marco, J. (2017a). 3LConOnt: a three-level ontology for context modelling in context-aware computing. Software and Systems Modeling, 1–34. https://doi.org/10.1007/s10270-017-0611-z Cabrera, O., Franch, X., & Marco, J. (2017b). Ontology-based context modeling in service-oriented computing: A systematic mapping. Data and Knowledge Engineering, 110(February), 24–53. https://doi.org/10.1016/j.datak.2017.03.008 Campos Motta, R., Marcal De Oliveira, K., & Horta Travassos, G. (2017). Characterizing interoperability in context-aware software systems. Brazilian Symposium on Computing System Engineering, SBESC, 203–208. https://doi.org/10.1109/SBESC.2016.039 Cao, Y., Klamma, R., Hou, M., & Jarke, M. (2008). Follow me, follow you - Spatiotemporal community context modeling and adaptation for mobile information systems. Proceedings - IEEE International Conference on Mobile Data Management, 108–115. https://doi.org/10.1109/MDM.2008.30 Capuano, N., Gaeta, M., Salerno, S., & Mangione, G. R. (2011). An ontology-based approach for context-aware e-learning. Proceedings - 3rd IEEE International Conference on Intelligent Networking and Collaborative Systems, INCoS 2011, 789–794. https://doi.org/10.1109/INCoS.2011.53 Caro, D. A. (2005). Revisiones sistemáticas de la literatura. Rev. Colombiana de Gastroenterología, 20(1), 60–69. https://doi.org/10.5944/educxx1.17.1.10708 Castañer, M., Oleguer, C., & Anguera, M. (2013). Métodos mixtos en la investigación de las ciencias de la actividad fisica y el deporte. Apuntes de Educación Física y Deportes, 2(112), 31–36. https://doi.org/10.5672/apunts.2014-0983.es.(2013/2).112.01 Chaari, T., Ejigu, D., Laforest, F., & Scuturici, V.-M. (2006). Modeling and Using Context in Adapting Applications to Pervasive Environments. 2006 ACS/IEEE International Conference on Pervasive Services, 111–120. https://doi.org/10.1109/PERSER.2006.1652214 Chaari, T., Ejigu, D., Laforest, F., & Scuturici, V.-M. (2007). A comprehensive approach to model and use context for adapting applications in pervasive environments. Journal of Systems and Software, 80(12), 1973–1992. https://doi.org/10.1016/j.jss.2007.03.010 Changboka, Chang, H., Ahn, H., & Choi, E. (2011). Efficient context modeling using OWL in mobile cloud computing. Energy Procedia, 16(PART B), 1312–1317. https://doi.org/10.1016/j.egypro.2012.01.210 Chen, G., & Kotz, D. (2000). A survey of context-aware mobile computing research. Technical Report TR2000-381, Dept. of Computer Science, Dartmouth College, 1(2), 1–16. https://doi.org/10.1.1.117.4330 Chen, Y., Zhou, J., & Guo, M. (2016). A context-aware search system for Internet of Things based on hierarchical context model. Telecommunication Systems, 62(1), 77–91. https://doi.org/10.1007/s11235-015-9984-x Choi, S. K. (2015). An ontological model to support communications of situation-aware vehicles. Transportation Research Part C: Emerging Technologies, 53, 112–133. https://doi.org/10.1016/j.trc.2015.02.009 Choi, Y. (2019). Ontolgy-based mashup model for context-aware services in internet of things application environments. Journal of Theoretical and Applied Information Technology, 97(4), 1174–1188. Christopoulou, E., Goumopoulos, C., & Kameas, A. (2006). An ontology-based context management and reasoning process for UbiComp applications, (october), 265. https://doi.org/10.1145/1107548.1107613 Chung-Seong Hong, Hyun Kim, Hyoung-Sun Kim, & Hyun-Chan Lee. (2006). An Approach for Configuring Ontology-based Application Context Model, 337–340. https://doi.org/10.1109/perser.2006.1652257 Creswell, J. W., & Garrett, A. L. (2008a). The “ movement ” of mixed methods research and the role of educators. South African Journal of Education, 28(3), 321–333. Creswell, J. W., & Garrett, A. L. (2008b). The “ movement ” of mixed methods research and the role of educators. South African Journal of Education, 28(3), 321–333. Retrieved from http://ajol.info/index.php/saje/article/view/25155 Crowley, J. L., Coutaz, J., Rey, G., & Reignier, P. (2002). Perceptual Components for Context Aware Computing. Context, 2498, 117–134. https://doi.org/10.1007/3-540-45809-3_9 Da, K., Roose, P., Dalmau, M., Nevado, J., & Karchoud, R. (2014). Kali2Much, 25–30. https://doi.org/10.1145/2676743.2676748 Del Pozo, I., & Cangrejo Aljure, D. (2018). Creating Smart Environments: Analysis of Improving Security on Smart Homes. Proceedings - 2018 IEEE 6th International Conference on Future Internet of Things and Cloud, FiCloud 2018, 303–310. https://doi.org/10.1109/FiCloud.2018.00051 Devaraju, A., & Hoh, S. (2008). Ontology-based context modeling for user-centered context-aware services platform. Proceedings - International Symposium on Information Technology 2008, ITSim, 2. https://doi.org/10.1109/ITSIM.2008.4631719 Dey, A., Abowd, G., & Salber, D. (2001). A Conceptual Framework and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications. Human-Computer Interaction, 16(2), 97–166. https://doi.org/10.1207/S15327051HCI16234_02 Dey, A. K. (2001). Understanding and using context. Personal and Ubiquitous Computing, 5(1), 4–7. https://doi.org/10.1007/s007790170019 Dey, A. K., & Abowd, G. D. (1999). Towards a Better Understanding of Context and Context-Awareness. HUC ’99 Proceedings of the 1st International Symposium on Handheld and Ubiquitous Computing, 12. Dong, X., Kong, X., Zhang, F., Chen, Z., & Kang, J. (2016). OnCampus: a mobile platform towards a smart campus. SpringerPlus, 5(1). https://doi.org/10.1186/s40064-016-2608-4 Dransch, D. (2005). Activity and Context-A Conceptual Framework for Mobile Geoservices. Map-Based Mobile Services: Theories, Methods, and Implementations, 31–42. Du, S., Meng, F., & Gao, B. (2017). Research on the application system of smart campus in the context of smart city. Proceedings - 2016 8th International Conference on Information Technology in Medicine and Education, ITME 2016, 714–718. https://doi.org/10.1109/ITME.2016.0166 Ejigu, D., Scuturici, M., & Brunie, L. (2007). Semantic approach to context management and reasoning in ubiquitous context-aware systems. 2007 2nd International Conference on Digital Information Management, ICDIM, 1, 1–6. https://doi.org/10.1109/ICDIM.2007.4444272 Erfani, M., Rilling, J., & Keivanloo, I. (2014). Towards an Ontology-Based Context-Aware Meta-model for the Software Domain. IEEE 38th International Computer Software and Applications Conference Workshops, 696–701. https://doi.org/10.1109/COMPSACW.2014.117 Erfani, M., Zandi, M., Rilling, J., & Keivanloo, I. (2016). Context-awareness in the software domain—A semantic web enabled modeling approach. Journal of Systems and Software, 0. https://doi.org/http://dx.doi.org/10.1016/j.jss.2016.02.023 Fahimnia, B., Sarkis, J., & Davarzani, H. (2015). Green supply chain management: A review and bibliometric analysis. International Journal of Production Economics, 162, 101–114. https://doi.org/10.1016/j.ijpe.2015.01.003 Fenza, G., Furno, D., & Loia, V. (2012). Hybrid approach for context-aware service discovery in healthcare domain. Journal of Computer and System Sciences, 78(4), 1232–1247. https://doi.org/10.1016/j.jcss.2011.10.011 Fernandes, P. C. B., Guizzardi, R. S. S., & Guizzardi, G. (2011). Using Goal Modeling to Capture Competency Questions in Ontology-based Systems. Journal of Information and Data Management, 2(3), 527–540. Retrieved from https://seer.ufmg.br/index.php/jidm/article/view/145 Feruzan, A. (2007). Context Modeling and Reasoning using Ontologies. Feruzan Ay, University of Technology Berlin, (July), 1–9. Retrieved from http://namcub.accela-labs.com/stories/pdf/cmaruo.pdf Fissaa, T., Guermah, H., Hafiddi, H., Nassar, M., & Kriouile, A. (2013). Ontology based context modeler for context-aware systems. Proceedings - IEEE 6th International Conference on Service-Oriented Computing and Applications, SOCA 2013, 43–47. https://doi.org/10.1109/SOCA.2013.58 Freitas, R. De, & Campos, M. D. graca. (2005). Toward a Domain-Independent Semantic Model for Context-Aware Computing Institute of Mathematical Sciences and Computing. Friedewald, M., & Raabe, O. (2011). Ubiquitous computing: An overview of technology impacts. Telematics and Informatics, 28(2), 55–65. https://doi.org/10.1016/j.tele.2010.09.001 Gahlaut, S., & Seeja, K. R. (2019). IoT based smart campus. International Conference on Innovations in Control, Communication and Information Systems, ICICCI 2017, 1–4. https://doi.org/10.1109/ICICCIS.2017.8660956 Gandon, F. (2018a). A survey of the first 20 years of research on semantic web and linked data. Ingenierie Des Systemes d’Information, 23(3–4), 11–56. https://doi.org/10.3166/ISI.23.3-4.11-56 Gandon, F. (2018b). A Survey of the First 20 Years of Research on Semantic Web and Linked Data. https://doi.org/10.3166/ISI.23.3-4.11-56 Gao, Q., & Dong, X. (2016). A Context-awareness Based Dynamic Personalized Hierarchical Ontology Modeling Approach. Procedia Computer Science, 94(Charms), 380–385. https://doi.org/10.1016/j.procs.2016.08.058 Gasparic, M., Murphy, G. C., & Ricci, F. (2017). A context model for IDE-based recommendation systems. Journal of Systems and Software, 128, 200–219. https://doi.org/10.1016/j.jss.2016.09.012 Ghannem, A., Hamdi, M. S., Abdelmoez, W., & Ammar, H. H. (2015). A context model development process for smart city operations. 10th IEEE Int. Conf. on Service Operations and Logistics, and Informatics, SOLI 2015 - In Conjunction with ICT4ALL 2015, 122–127. https://doi.org/10.1109/SOLI.2015.7367605 Giustozzi, F., Saunier, J., & Zanni-Merk, C. (2018). Context Modeling for Industry 4.0: an Ontology-Based Proposal. Procedia Computer Science, 126, 675–684. https://doi.org/10.1016/j.procs.2018.08.001 Gómez-Pérez, A., Fernández-López, M., Corcho, O., & Gomez-Perez, a. (2004). Ontological Engeenering. with examples from the areas of knowledge management, e-commerce and the Semantic Web. Retrieved from http://delicias.dia.fi.upm.es/wiki/images/a/aa/1._Intro-Sweb.pdf%5Cnhttp://books.google.com/books?id=UjS0N1W7GSEC Gómez-Pérez, Baonza, M. D. F., & Villazón, B. (2008). Neon methodology for building ontology networks: Ontology specification. Methodology, (February), 1–18. https://doi.org/10.1016/j.landurbplan.2011.04.007 Gong, R., Ning, K., Li, Q., O’Sullivan, D., Chen, Y., & Decker, S. (2009). Context modeling and measuring for proactive resource recommendation in business collaboration. Computers and Industrial Engineering, 57(1), 27–36. https://doi.org/10.1016/j.cie.2008.07.003 Gong, T., Hu, Z., Liu, H. F., Lin, F., Zhou, D., & Tian, H. (2012). A context-aware computing mediated dynamic service composition and reconfiguration for ubiquitous environment. Proceedings of 2012 International Conference on the Internet of Things, IOT 2012, 16–23. https://doi.org/10.1109/IOT.2012.6402299 Guermah, H., Fissaa, T., Hafiddi, H., & Nassar, M. (2014). A Semantic Approach for Service Adaptation in Context-Aware Environment. Procedia - Procedia Computer Science, 34, 587–592. https://doi.org/10.1016/j.procs.2014.07.077 Guermah, H., Fissaa, T., Hafiddi, H., Nassar, M., & Kriouile, A. (2013a). Context modeling and reasoning for building context aware services. Proceedings of IEEE/ACS International Conference on Computer Systems and Applications, AICCSA. https://doi.org/10.1109/AICCSA.2013.6616439 Guermah, H., Fissaa, T., Hafiddi, H., Nassar, M., & Kriouile, A. (2013b). Ontology based context aware e-learning system. 2013 3rd International Symposium ISKO-Maghreb. https://doi.org/10.1109/ISKO-Maghreb.2013.6728134 Gupta, S., Padhy, A., Adhikari, A., & Dutta, A. (2016). A semantic web and linked data based framework for Smart City data management. 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 1–6. https://doi.org/10.1109/ECTICon.2016.7561378 Haase, P., Rudolph, S., Wang, Y., Brockmans, S., & Palma, R. (2006). NeOn: Lifecycle Support for Networked Ontologies Integrated Project (IST-2005-027595) — “Semantic-based knowledge and content systems” D1.1.1 Networked Ontology Model Deliverable Co-ordinator, 1–60. Hamdeh, N. A., & Ma, S. (2008). A semantic context-based policy modeling approach for secure adaptability in Ubicomp. Proceedings - The 2nd International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies, UBICOMM 2008, 451–456. https://doi.org/10.1109/UBICOMM.2008.80 Haque, H. M. U., & Khan, S. U. (2018). A context-Aware reasoning framework for heterogeneous systems. In 2018 International Conference on Advancements in Computational Sciences, ICACS 2018 (Vol. 2018-Janua, pp. 1–9). https://doi.org/10.1109/ICACS.2018.8333493 Harchay, A., Cheniti-Belcadhi, L., & Braham, R. (2014). A Context-Aware Framework to Provide Personalized Mobile Assessment. Interaction Design and Architecture, 82–97. Henricksen, K., & Indulska, J. (2006). Developing context-aware pervasive computing applications: Models and approach. Pervasive and Mobile Computing, 2(1), 37–64. https://doi.org/10.1016/j.pmcj.2005.07.003 Henricksen, K., Livingstone, S., & Indulska, J. (2004). Towards a hybrid approach to context modelling, reasoning and interoperation. Advanced Context Modelling, Reasoning And Management, 54–61. Retrieved from http://henricksen.id.au/publications/UbiCompWorkshop04.pdf Hervás, R. (2010). A Context Model based on Ontological Languages : a Proposal for Information Visualization. Computer, 16(12), 1539–1555. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-77957102473&partnerID=40&md5=59fcc2999e87ad4a22ed23f823a835fd Hervás, R., & Bravo, J. (2011). Towards the ubiquitous visualization: Adaptive user-interfaces based on the Semantic Web. Interacting with Computers, 23(1), 40–56. https://doi.org/10.1016/j.intcom.2010.08.002 Hoareau, C., & Satoh, I. (2009). Modeling and Processing Information for Context-Aware Computing: A Survey. New Generation Computing, 27(3), 177–196. Retrieved from http://dx.doi.org/10.1007/s00354-009-0060-5 Hu, Bin, Moore, P., & Chen, H. H. (2007). A semantic context model for location-based cooperative mobile computing. IEEE International Conference on Communications, 326–331. https://doi.org/10.1109/ICC.2007.61 Hu, Bo, Wang, Z. X., & Dong, Q. C. (2013). A novel context-aware modeling and reasoning method based on OWL. Journal of Computers (Finland), 8(4), 943–950. https://doi.org/10.4304/jcp.8.4.943-950 Hu, Y. H. Y., & Li, X. L. X. (2009). An Ontology Based Context-Aware Model for Semantic Web Services. 2009 Second International Symposium on Knowledge Acquisition and Modeling, 1, 426–429. https://doi.org/10.1109/KAM.2009.62 Huang, W., Webster, D., Wood, D., & Ishaya, T. (2006). An intelligent semantic e-learning framework using context-aware Semantic Web technologies. British Journal of Educational Technology, 37(3), 351–373. https://doi.org/10.1111/j.1467-8535.2006.00610.x Hwang, Z., Uhm, Y., Lee, M., Kim, Y., Kim, G., & Park, S. (2007). A context model by ontology and rule for offering the user-centric services in ubiquitous computing. 2007 International Conference on Convergence Information Technology, ICCIT 2007, 77–82. https://doi.org/10.1109/ICCIT.2007.4420240 IERC. (2015). IoT Semantic Interoperability: Research Challenges, Best Practices, Recommendations and Next Steps. Isabwe, G. M. N., Reichert, F., & Konnestad, M. (2012). A novel approach to the application of semantic web technologies to student centred learning. Proceedings of the IADIS International Conference Mobile Learning 2012, ML 2012, 296–301. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-84944104843&partnerID=40&md5=6acbd06cef1d32b6773e9078697c514b Jaroucheh, Z., Liu, X., & Smith, S. (2012). An approach to domain-based scalable context management architecture in pervasive environments. Personal and Ubiquitous Computing, 16(6), 741–755. https://doi.org/10.1007/s00779-011-0422-0 Johnson, R., & Onwuegbuzie, A. (2004). Mixed methods research: A research paradigm whose time has come. Educational Researcher, 33(7), 14–26. https://doi.org/10.2307/3700093 Jun, L., Yi, B. Y., Xun, C. S., Ping, T. X., & Jian, L. (2004). FollowMe: On Research of Pluggable Infrastructure for Context-Awareness. 20th International Conference on Advanced Information Networking and Applications - Volume 1 (AINA’06), 199–204. https://doi.org/10.1109/AINA.2006.182 Jung, E., Lee, H. J., & Lee, J. W. (2007). Ontology-based context modeling and reasoning for U-HealthCare.pdf.crdownload, (8), 1262–1270. Jung, H., Yoo, S., & Park, S. (2012). Context Modelling Using Semantic Web Technologies, 21(2). Katsumata, M. (2014). Task context-aware e-mail platform for collaborative tasks. Human-Centric Computing and Information Sciences, 4(1), 1–10. https://doi.org/10.1186/s13673-014-0017-7 Kayes, A. S. M., Han, J., & Colman, A. (2014). OntCAAC: An Ontology-Based Approach to Context-Aware Access Control for Software Services. Computer Journal, 58(11), 3000–3034. https://doi.org/10.1093/comjnl/bxv034 Khan, M. T., & Zia, K. (2006). Future Context-aware Pervasive Learning Environment: Smart Campus. COMSATS Institute of Information Technology, Abbottabad, Pakistan, 17. Kitchenham, B., & Brereton, P. (2013). A systematic review of systematic review process research in software engineering. Information and Software Technology, 55(12), 2049–2075. https://doi.org/10.1016/j.infsof.2013.07.010 Kitchenham, B., & Charters, S. (2007). Guidelines for performing Systematic Literature reviews in Software Engineering Version 2.3. Engineering, 45(4ve), 1051. https://doi.org/10.1145/1134285.1134500 Ko, K. E., & Sim, K. B. (2008). Development of context aware system based on Bayesian network driven context reasoning method and ontology context modeling. 2008 International Conference on Control, Automation and Systems, ICCAS 2008, 2309–2313. https://doi.org/10.1109/ICCAS.2008.4694191 Koç, H., Hennig, E., Jastram, S., & Starke, C. (2014). State of the Art in Context Modelling, (Asdenca), 53–64. Krummenacher, R., & Strang, T. (2007). Ontology-Based Context Modeling. Ieice Transactions On Information And Systems, E90-D(8), 1262–1270. https://doi.org/10.1093/ietisy/e90-d.8.1262 L, Y. A., Hidalgo-delgado, Y., & Silega, N. (2018). Un Método Práctico para la Evaluación de Ontologías. In 3rd International Workshop on Semantic Web. Lamsfus, C., & Alzua-Sorzabal, A. (2009). Entorno CIC Computación Contextual basada en Tecnologías Semánticas en el marco de la Movilidad Humana. Entorno CIC - Proyectos de Investigación Articulado Dentro de Este Marco, El Presente Artículo Se Centra En Proporcionar Algunas Mejoras Conseguidas En La Investigación Asociada a La Semántica y La Computación Contextual En El Ámbito de Las Personas En Mo, 50. Li, G., Zou, H., & Yang, F. (2011). User Preference Based Service Personalization Using iXCS⋆, 12(60821001), 2301–2313. Retrieved from http://www.joics.com/publishedpapers/2011_8_12_2301_2313.pdf LI, P.-S., Liu, A., & Zhou, P.-C. (2014). Context Reasoning for Smart Homes using Case-Based Reasoning. Ieee, 6–7. Lim, G. H., Chung, J., Ryu, G. G., & Kim, J. B. (n.d.). Ontological Representation of Vision-based 3D Spatio-Temporal Context for Mobile Robot Applications Sang Hyoung Lee , Sanghoon Lee , and Il Hong Suh College of Information and Communications Hanyang University , Seoul , 133-791 , Korea Jung Hwa Choi and Y. Lim, S. S., Park, D. W., & Kwon, H. C. (2007). Ontology-based semantic representation of context in port supply chain. Proceedings - ALPIT 2007 6th International Conference on Advanced Language Processing and Web Information Technology, 446–451. https://doi.org/10.1109/ALPIT.2007.42 Lin, X., Li, S., Yang, Z., & Shi, W. (2005). Application-oriented context modeling and reasoning in pervasive computing. Proceedings - Fifth International Conference on Computer and Information Technology, CIT 2005, 2005(60473052), 495–499. https://doi.org/10.1109/CIT.2005.77 Liu, Y., Seet, B.-C., & Al-Anbuky, A. (2013). An Ontology-Based Context Model for Wireless Sensor Network (WSN) Management in the Internet of Things. Journal of Sensor and Actuator Networks, 2(4), 653–674. https://doi.org/10.3390/jsan2040653 Machado, R. da S., Almeida, R. B., da Rosa, D. Y. L., Lopes, J. L. B., Pernas, A. M., & Yamin, A. C. (2017). EXEHDA-HM: A compositional approach to explore contextual information on hybrid models. Future Generation Computer Systems, 73, 1–12. https://doi.org/10.1016/j.future.2017.03.005 Machado, R. S., Almeida, R. B., Pernas, A. M., & Yamin, A. C. (2019). State of the art in hybrid strategies for context reasoning: A systematic literature review. Information and Software Technology, 111(January), 122–130. https://doi.org/10.1016/j.infsof.2019.01.010 Madkour, M., & Maach, A. (2011). Ontology-based context modeling for vehicle context-aware services. Journal of Theoretical and Applied Information Technology, 34(2), 158–166. Majeed, A., & Ali, M. (2018). How Internet-of-Things (IoT) making the university campuses smart? QA higher education (QAHE) perspective. 2018 IEEE 8th Annual Computing and Communication Workshop and Conference, CCWC 2018, 2018-Janua, 646–648. https://doi.org/10.1109/CCWC.2018.8301774 Malik, S., & Jain, S. (2018). Ontology based context aware model. ICCIDS 2017 - International Conference on Computational Intelligence in Data Science, Proceedings, 2018-Janua, 1–6. https://doi.org/10.1109/ICCIDS.2017.8272632 Manosalva Barrera, N. E., & Cangrejo Aljure, L. D. (2018). Arquitectura tecnológica loT para la trazabilidad de productos frescos. Revista Cubana de Ciencias Informáticas, 12(1), 28–42. Manzoor, A., Truong, H. L., & Dustdar, S. (2014). Quality of context: Models and applications for context-aware systems in pervasive environments. Knowledge Engineering Review, 29(2), 154–170. https://doi.org/10.1017/S0269888914000034 Maran, V., Machado, G. M., Machado, A., Augustin, I., & de Oliveira, J. P. M. (2018). UPCaD: A methodology of integration between ontology-based context-awareness modeling and relational domain data. Information (Switzerland), 9(2). https://doi.org/10.3390/info9020030 Mcheick, H. (2014). Modeling Context Aware Features for Pervasive Computing. Procedia Computer Science, 37, 135–142. https://doi.org/10.1016/j.procs.2014.08.022 Mcheick, H. (2016). Survey of Health Care Context models; prototyping of healthcare context framework, 370–377. https://doi.org/10.22360/summersim.2016.scsc.072 McHeick, H. (2016). Ubiquitous Computing and Context-aware Applications: Survey and Contributions. Proceedings - 2016 IEEE 1st International Conference on Connected Health: Applications, Systems and Engineering Technologies, CHASE 2016, (June), 394–397. https://doi.org/10.1109/CHASE.2016.80 Meditskos, G., Dasiopoulou, S., Efstathiou, V., & Kompatsiaris, I. (2013). SP-ACT: A hybrid framework for complex activity recognition combining OWL and SPARQL rules. 2013 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2013, (March), 25–30. https://doi.org/10.1109/PerComW.2013.6529451 Mejia, Maria; Lobo, J. (2015). Definiciones del Marco de Referencia de Arquitectura Empresarial. Arquitectura TI Colombia, MINTIC. Meng, Z. (2018). Architecture support for context-aware adaptation of rich sensing smartphone applications. KSII Transactions on Internet and Information Systems, 12(1), 248–268. https://doi.org/10.3837/tiis.2018.01.012 Miraoui, M. (2017). Ontology-based context modeling and reasoning for U-HealthCare.pdf.crdownload. Transactions on Engineering Technologies, (8), 245–258. Retrieved from http://link.springer.com/10.1007/978-981-10-2717-8_18 Mishra, S. (2014). Semantic Web Representation and Reasoning of Data using Ontology ’ s, 3(3), 83–91. Mok, J., & Min, H. (2016). Ontology-based context-aware model by applying Bayesian network. 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2015, 2660–2664. https://doi.org/10.1109/FSKD.2015.7382377 Moore, P., Hu, B., & Wan, J. (2010). Smart-context: A context ontology for pervasive mobile computing. Computer Journal, 53(2), 191–207. https://doi.org/10.1093/comjnl/bxm104 Moore, P., Hu, B., Zhu, X., Campbell, W., & Ratcliffe, M. (2007a). A Survey of Context Modeling for Pervasive Cooperative Learning. 2007 First IEEE International Symposium on Information Technologies and Applications in Education, K5-1-K5-6. https://doi.org/10.1109/ISITAE.2007.4409367 Moore, P., Hu, B., Zhu, X., Campbell, W., & Ratcliffe, M. (2007b). A Survey of Context Modelling for Pervasive Cooperative Computing. Graphical Models, 1–6. Myrhaug, H., Whitehead, N., Goker, A., Faegri, T. E., & Lech, T. C. (2004). Ambiesense - a system and reference architecture for personalised context-sensitive information services for mobile users. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3295, 327–338. https://doi.org/10.1007/978-3-540-30473-9_31 Nadoveza, D., & Kiritsis, D. (2014). Ontology-based approach for context modeling in enterprise applications. Computers in Industry, 65(9), 1218–1231. https://doi.org/10.1016/j.compind.2014.07.007 Najar, S., Saidani, O., Kirsch-Pinheiro, M., Souveyet, C., & Nurcan, S. (2009). Semantic Representation of Context Models: A Framework for Analyzing and Understanding. Proceedings of the 1st Workshop on Context, Information and Ontologies, 1–10. https://doi.org/10.1145/1552262.1552268 Neskovic, S., & Matic, R. (2015). Context modeling based on feature models expressed as views on ontologies via mappings. Computer Science and Information Systems, 12(3), 961–977. https://doi.org/10.2298/csis141031035n Neto, R. F. B., Kudo, T. N., & da Graça Pimentel, M. (2007). Using a software process for ontology-based context-aware computing, (January), 61. https://doi.org/10.1145/1186595.1186604 Niaraki, A. S., & Kim, K. (2009). Ontology based personalized route planning system using a multi-criteria decision making approach. Expert Systems with Applications, 36(2), 2250–2259. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S0957417407006902 Ochoa, A., Cangrejo Aljure, D., & Delgado, T. (2018). Alternativa Open Source en la implementación de un sistema IoT para la medición de la calidad del aire . Open Source alternative in the implementation of an IoT system for the measurement of air quality ., 12(1), 189–204. Oliveira, P., & Rocha, J. (2013). Semantic annotation tools survey. Proceedings of the 2013 IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2013 - 2013 IEEE Symposium Series on Computational Intelligence, SSCI 2013, 301–307. https://doi.org/10.1109/CIDM.2013.6597251 Paganelli, F., & Giuli, D. (2007). An ontology-based context model for home health monitoring and alerting in chronic patient care networks. Proceedings - 21st International Conference on Advanced Information Networking and Applications Workshops/Symposia, AINAW’07, 1(Iccc), 838–845. https://doi.org/10.1109/AINAW.2007.90 Paganelli, Federica, & Giuli, D. (2011). An ontology-based system for context-aware and configurable services to support home-based continuous care. IEEE Transactions on Information Technology in Biomedicine, 15(2), 324–333. https://doi.org/10.1109/TITB.2010.2091649 Perera, C., Member, S., Zaslavsky, A., & Christen, P. (2014). Context Aware Computing for The Internet of Things : A Survey. IEEE COMMUNICATIONS SURVEYS & TUTORIALS, X(X), 1–41. Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Context Aware Computing for The Internet of Things. IEEE Communications Surveys & Tutorials, 16(1), 414–454. https://doi.org/10.1109/SURV.2013.042313.00197 T4 - A Survey M4 - Citavi Petcovici, A., & Stroulia, E. (2017). Location-based services on a smart campus: A system and a study. 2016 IEEE 3rd World Forum on Internet of Things, WF-IoT 2016, 94–99. https://doi.org/10.1109/WF-IoT.2016.7845406 Petticrew, Mark and Roberts, H. (2006). Beelmann, Petticrew, Roberts - 2006 - Systematic reviews in the social sciences. A practical guide. https://doi.org/10.1027/1016-9040.11.3.244 Poveda-Villalón, M., Suárez-Figueroa, M. C., & García-Castro, R. (2010). A Context Ontology for Mobile Environments. Context, 15. Retrieved from http://oa.upm.es/5414/ Poveda-Villalón, M., Suárez-Figueroa, M. C., García-Castro, R., & Gómez-Pérez, A. (2010). A context ontology for mobile environments. CEUR Workshop Proceedings, 626. Poveda Villalón, M. (2010). Metodología NeOn Aplicada a la Representación del Contexto, 168. Pradeep, P., & Krishnamoorthy, S. (2019). The MOM of Context-Aware Systems : A Survey. Computer Communications, 137(November 2018), 44–69. https://doi.org/10.1016/j.comcom.2019.02.002 Qin, W., Shi, Y., & Suo, Y. (2007). Ontology-Based Context-Aware Middleware for Smart Spaces. Tsinghua Science and Technology, 12(6), 707–713. https://doi.org/10.1016/S1007-0214(07)70179-7 Qiqi, Y., Qing, X., Minxia, L., & Kan, Z. (2012). Ontology-based context model of turret. IEEE International Conference on Industrial Engineering and Engineering Management, 861–865. https://doi.org/10.1109/IEEM.2012.6837862 Qiu, L., Cao, Y., Zhao, X., & Yang, G. (2009). Promoting Adaptation of Semantic Web Service Composition Using Context Information, 652–656. https://doi.org/10.1109/iscsct.2008.325 Rakib, A., & Uddin, I. (2019). An Efficient Rule-Based Distributed Reasoning Framework for Resource-bounded Systems. Mobile Networks and Applications, 24(1), 82–99. https://doi.org/10.1007/s11036-018-1140-x Ray, P. P. (2016). Generic Internet of Things architecture for smart sports. 2015 International Conference on Control Instrumentation Communication and Computational Technologies, ICCICCT 2015, 405–410. https://doi.org/10.1109/ICCICCT.2015.7475313 Razzaq, M. A., Villalonga, C., Lee, S., Akhtar, U., Ali, M., Kim, E. S., … Khan, W. A. (2017). mlCAF: Multi-level cross-domain semantic context fusioning for behavior identification. Sensors (Switzerland), 17(10), 1–25. https://doi.org/10.3390/s17102433 Riahi, I., & Moussa, F. (2015). A formal approach for modeling context-aware Human–Computer System. Computers & Electrical Engineering, 44, 241–261. https://doi.org/10.1016/j.compeleceng.2015.03.001 Ricquebourg, V., Durand, D., Menga, D., Marhic, B., Delahoche, L., Logé, C., & Jolly-Desodt, A. M. (2007). Context inferring in the smart home: An SWRL approach. Proceedings - 21st International Conference on Advanced Information Networking and Applications Workshops/Symposia, AINAW’07, 1(iv), 290–295. https://doi.org/10.1109/AINAW.2007.130 Robiul Hoque, M., Humayun Kabir, M., Thapa, K., & Yang, S. H. (2015). Ontology-based context modeling to facilitate reasoning in a context-aware system: A case study for the smart home. International Journal of Smart Home, 9(9), 151–156. https://doi.org/10.14257/ijsh.2015.9.9.16 Roussaki, I., Strimpakou, M., Pils, C., Kalatzis, N., & Anagnostou, M. (2006a). Hybrid context modeling: A location-based scheme using ontologies. Proceedings - Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2006, 2006, 2–7. https://doi.org/10.1109/PERCOMW.2006.65 Roussaki, I., Strimpakou, M., Pils, C., Kalatzis, N., & Anagnostou, M. (2006b). Hybrid context modelling: A location-based scheme using ontologies. Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOMW�06), 1, 6. Saeedi, S., El-Sheimy, N., Malek, M. R., & Samany, N. N. (2010). an Ontology Based Context Modelling Approach for Mobile Touring and Navigation System. 2010 Canadian Geomatics Conference and Symposium of Commission I, Isprs Convergence in Geomatics - Shaping Canada’S Competitive Landscape, 38(1). Sagaya Priya, K. S., & Kalpana, Y. (2016). A review on context modelling techniques in context awarecomputing. International Journal of Engineering and Technology, 8(1), 429–433. Santofimia, M. J., Fahlman, S. E., Del Toro, X., Moya, F., & Lopez, J. C. (2011). A semantic model for actions and events in ambient intelligence. Engineering Applications of Artificial Intelligence, 24(8), 1432–1445. https://doi.org/10.1016/j.engappai.2011.05.008 Sastra, N. P., & Wiharta, D. M. (2017). Environmental monitoring as an IoT application in building smart campus of Universitas Udayana. 2016 International Conference on Smart Green Technology in Electrical and Information Systems: Advancing Smart and Green Technology to Build Smart Society, ICSGTEIS 2016 - Proceedings, (October), 85–88. https://doi.org/10.1109/ICSGTEIS.2016.7885771 Schilit, B., Adams, N., & Want, R. (1994). Context-aware computing applications. IEEE Workshop on Mobile Computing Systems and Applications, 85–90. https://doi.org/10.1109/MCSA.1994.512740 Schilit, B. N., Theimer, M. M., & Welch, B. B. (1993). Customizing Mobile Applications. USENIX Symp Osium on Mobile & Lo Cation-Independent Computing, 1–9. https://doi.org/10.1.1.31.2550 Scuturici, V.-M., Ejigu, D., Chaari, T., & Laforest, F. (2007). A comprehensive approach to model and use context for adapting applications in pervasive environments. Journal of Systems and Software, 80(12), 1973–1992. https://doi.org/10.1016/j.jss.2007.03.010 Shaikh, Z. A., Shaikh, N. A., Islam, N., & Sciences, E. (2010). An Integrated Framework to Develop Context-Aware Sensor Grid for Agriculture. Australian Journal of Basic and Applied Sciences, 4(5), 922–931. Shao-Yi, W., & Xiu, S. (2008). Context modeling approach for Geospatial information service. Proceedings - 2008 International Symposium on Knowledge Acquisition and Modeling, KAM 2008, (1), 9–13. https://doi.org/10.1109/KAM.2008.10 Siolas, G., Caridakis, G., Mylonas, P., Kollias, S., & Stafylopatis, A. (2013). Context-Aware User Modeling and Semantic Interoperability in Smart Home Environments. 2013 8th International Workshop on Semantic and Social Media Adaptation and Personalization, 27–32. https://doi.org/10.1109/SMAP.2013.19 Sivanathan, A., Sherratt, D., Gharakheili, H. H., Radford, A., Wijenayake, C., Vishwanath, A., & Sivaraman, V. (2017). Characterizing and classifying IoT traffic in smart cities and campuses. 2017 IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2017, 559–564. https://doi.org/10.1109/INFCOMW.2017.8116438 Sladić, G., Milosavljević, B., & Konjović, Z. (2012). Modeling context for access control systems. 2012 IEEE 10th Jubilee International Symposium on Intelligent Systems and Informatics, SISY 2012, 37–42. https://doi.org/10.1109/SISY.2012.6339572 Smirnov, A., Levashova, T., Shilov, N., & Sandkuhl, K. (2014). Ontology for cyber-physical-social systems self-organisation. Conference of Open Innovation Association, FRUCT, 2014-Decem, 101–107. https://doi.org/10.1109/FRUCT.2014.7000933 Sorici, A., Picard, G., Boissier, O., Zimmermann, A., & Florea, A. (2015). CONSERT: Applying semantic web technologies to context modeling in ambient intelligence. Computers & Electrical Engineering, 44, 280–306. https://doi.org/10.1016/j.compeleceng.2015.03.012 Strang, T., & Linnhoff-Popien, C. (2004). A context modeling survey. Workshop on Advanced Context Modelling Reasoning and Management as Part of UbiComp (2004), 1–8. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.2060%5Cnhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.2060&rep=rep1&type=pdf Suárez-Figueroa. (2008). Neon methodology for building ontology networks: Ontology specification. Methodology, (February), 1–18. https://doi.org/10.1016/j.landurbplan.2011.04.007 Suárez-figueroa, M. C., Upm, B. V., & Yufei, Z. (2008). NeOn-project.org, 1–150. Subbaraj, R. Venkatraman, N. (2015). A systematic Literature Review on ontology based context management system. Advances in Intelligent Systems and Computing, 338, V–VI. https://doi.org/10.1007/978-3-319-13731-5 Subbaraj; Venkatraman; (2015). A Systematic Literature Review on Ontology Based Context Management System. Advances in Intelligent Systems and Computing, 338, V–VI. Sui, D., Elwood, S., & Goodchild, M. (2013). Crowdsourcing geographic Knowledge: Volunteered geographic information (VGI) in theory and practice. Crowdsourcing Geographic Knowledge: Volunteered Geographic Information (VGI) in Theory and Practice, 9789400745(Elwood 2008), 1–396. https://doi.org/10.1007/978-94-007-4587-2 Suraci, V; Mignanti, S; Aiuto, A. (2007). Context aware semantic service discovery. 2007 16th IST Mobile and Wireless Communications Summit, 1–8. https://doi.org/10.1109/ISTMWC.2007.4299110 Tan, P. S., Goh, A. E. S., & Lee, S. S. G. (2010). An ontology to support context-aware B2B services. Proceedings - 2010 IEEE 7th International Conference on Services Computing, SCC 2010, 586–593. https://doi.org/10.1109/SCC.2010.43 Tan, R., Gu, J., Zhong, Z., & Chen, P. (2012). SOCOM: Multi-sensor oriented context model based on ontologies. Proceedings - 8th International Conference on Intelligent Environments, IE 2012, 236–242. https://doi.org/10.1109/IE.2012.12 Tobi, H., & Kampen, J. K. (2018). Research design: the methodology for interdisciplinary research framework. Quality and Quantity, 52(3), 1209–1225. https://doi.org/10.1007/s11135-017-0513-8 Truong, B. A., Lee, Y. K., & Lee, S. Y. (2005). Modeling and reasoning about uncertainty in context-aware systems. Proceedings - ICEBE 2005: IEEE International Conference on e-Business Engineering, 2005, 102–109. https://doi.org/10.1109/ICEBE.2005.90 Uddin, M. K., Puttonen, J., Scholze, S., Dvoryanchikova, A., & Martinez Lastra, J. L. (2012). Ontology-Dased context-Sensitive computing for FMS optimization. Assembly Automation, 32(2), 163–174. https://doi.org/10.1108/01445151211212316 Villegas, N. M., Sánchez, C., Díaz-cely, J., & Tamura, G. (2018). Knowle dge-Base d Systems Characterizing context-aware recommender systems : A systematic literature review. Knowledge-Based Systems, 140, 173–200. https://doi.org/10.1016/j.knosys.2017.11.003 Villegas, N. M., Sánchez, C., Díaz-Cely, J., & Tamura, G. (2018). Characterizing context-aware recommender systems: A systematic literature review. Knowledge-Based Systems, 140, 173–200. https://doi.org/10.1016/j.knosys.2017.11.003 Wang, G., Jiang, J., & Shi, M. (2006). A context model for collaborative environment. Proceedings - 2006 10th International Conference on Computer Supported Cooperative Work in Design, CSCWD 2006, 77–82. https://doi.org/10.1109/CSCWD.2006.253138 Wang, X. H., Da Qing Zhang, Tao Gu, & Pung, H. K. (2004). Ontology based context modeling and reasoning using OWL. IEEE Annual Conference on Pervasive Computing and Communications Workshops, 2004. Proceedings of the Second, 18–22. https://doi.org/10.1109/PERCOMW.2004.1276898 Wei, Q., & Jin, Z. (2013). Service discovery for internet of things, 1–6. https://doi.org/10.1145/2430475.2430500 Winograd, T. (2001). Architectures for Context. Human-Computer Interaction, 16(2), 401–419. https://doi.org/10.1207/S15327051HCI16234_18 Wusheng, W., Weiping, L., Zhonghai, W., Weijie, C., & Tong, M. (2011). An Ontology-Based Context Model for Building Context-Aware Services. 2011 Second International Conference on Intelligent Systems, Modelling and Simulation, 296–299. https://doi.org/10.1109/ISMS.2011.52 Xiao, H., & Zou, Y. (2010). An Approach for Context-aware Service Discovery and Recommendation. {IEEE} International Conference on Web Services. Retrieved from http://www.computer.org/portal/web/csdl/doi/10.1109/ICWS.2010.95 Xiao Hang Wang, Da Qing Zhang, Tao Gu, & Hung Keng Pung. (2004). Ontology based context modeling and reasoning using OWL, 18–22. https://doi.org/10.1109/percomw.2004.1276898 Xu, J., & Dong, W. (2012). Object-oriented and ontology context-aware modeling based on XML. Proceedings of 2nd International Conference on Computer Science and Network Technology, ICCSNT 2012, 1795–1800. https://doi.org/10.1109/ICCSNT.2012.6526268 Yang, S. J. H., Zhang, J., & Chen, I. Y. L. (2008). A JESS-enabled context elicitation system for providing context-aware Web services. Expert Systems with Applications, 34(4), 2254–2266. https://doi.org/10.1016/j.eswa.2007.03.008 Ye, J., Coyle, L., Dobson, S., & Nixon, P. (2007). Ontology-based models in pervasive computing systems. The Knowledge Engineering Review, 22(04), 315–347. https://doi.org/10.1017/S0269888907001208 Ying, X., & Fu-yuan, X. (2006). Research on Context Modeling Based on Ontology. 2006 International Conference on Computational Inteligence for Modelling Control and Automation and International Conference on Intelligent Agents Web Technologies and International Commerce (CIMCA’06), 188–188. https://doi.org/10.1109/CIMCA.2006.181 Younes, O. (2006). Context Aware Services. itkthse. Retrieved from http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/060125-Younes_Oukhay-with-cover.pdf Yu, Z., Zhou, X., Yu, Z., Park, J. H., & Ma, J. (2008). iMuseum: A scalable context-aware intelligent museum system. Computer Communications, 31(18), 4376–4382. https://doi.org/10.1016/j.comcom.2008.05.004 Zhang, D., Huang, H., Lai, C. F., Liang, X., Zou, Q., & Guo, M. (2011). Survey on context-awareness in ubiquitous media. Multimedia Tools and Applications, 67(1), 179–211. https://doi.org/10.1007/s11042-011-0940-9 Zhang, X., Hu, B., Chen, J., & Moore, P. (2013). Ontology-based context modeling for emotion recognition in an intelligent web. World Wide Web, 16(4), 497–513. https://doi.org/10.1007/s11280-012-0181-5 Zhou, H., Wang, Y., & Cao, K. (2013). Fuzzy D-S theory based fuzzy ontology context modeling and similarity based reasoning. Proceedings - 9th International Conference on Computational Intelligence and Security, CIS 2013, 707–711. https://doi.org/10.1109/CIS.2013.154 Zhou, J., & Riekki, J. (2010). Context-Aware Pervasive Service Composition. International Conference on Intelligent Systems, Modelling and Simulation. Retrieved from http://ieeexplore.ieee.org/Xplore/login.jsp?url=http://ieeexplore.ieee.org/iel5/5415926/5416031/05416052.pdf?arnumber=5416052&authDecision=-203
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalContext modeling; Semantic; Ontology; Linked Open Data; Context awareness; Internet of Things
dc.subject.proposalModelado de contextom; Semántica; Ontología, Linked Open Data, Sensibilidad al contexto, Internet de las Cosas, IoT
dc.type.coarhttp://purl.org/coar/resource_type/c_8042
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/WP
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit