Show simple item record

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorToro-Betancur, Alejandro Octavio
dc.contributor.advisorVélez-Molina, Juan Camilo
dc.contributor.authorVélez Molina, Juan Camilo
dc.description.abstractComposite friction modifiers composed of a vinyl ester matrix reinforced with molybdenum disulphide and carbon nanotubes were developed, and their potential use for wheel-rail contact was studied by means of tribological tests in a twin-disc machine at a contact pressure of 1.1 GPa and different slip values. The samples tested were extracted from rails and wheels used in the Metro de Medellin. The results indicate that adding 0.62 wt-% of carbon nanotubes to the lubricant led to a stable coefficient of friction and lower wear rate of the tribological pair, which is related to the ability of the friction modifier to hinder the mechanisms of rolling contact fatigue.
dc.description.abstractEn este trabajo se desarrollaron compuestos de matriz de resina de vinil éster termoestable reforzados con bisulfuro de molibdeno y nanotubos de carbono para ser usados como lubricantes sólidos para sistemas rueda-riel. Se llevaron a cabo ensayos tribológicos en condiciones rodantes-deslizantes en una máquina discodisco a una presión de contacto de 1.1 GPa y deslizamiento relativo de 0.5%; 1%; 2%; 3% y 5%, usando muestras extraídas de ruedas y rieles pertenecientes al Metro de Medellín. Los resultados mostraron que usando una concentración de 0.62% en peso de nanotubos de carbono en el lubricante el coeficiente de fricción es estable y la tasa de desgaste del material de riel se reduce ostensiblemente debido a la inhibición de los mecanismos asociados a la fatiga de contacto en el material.
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.subject.ddcTecnología (Ciencias aplicadas)
dc.titleResistencia a fatiga de contacto de acero para rieles r400ht en presencia de lubricantes sólidos
dc.title.alternativeResistance to fatigue of steel contact, for r400ht rails in the presence of solid lubricants
dc.rights.spaAcceso abierto
dc.coverage.sucursalUniversidad Nacional de Colombia - Sede Medellín
dc.description.additionalMaestría en Ingeniería - Materiales y Procesos
dc.contributor.researchgroupGRUPO DE TRIBOLOGÍA Y SUPERFICIES
dc.publisher.departmentDepartamento de Materiales y Minerales
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.references[1] Franklin. F.J. G.-J. Weeda, A. Kapoor, E.J.M. Hiensch (2005) “Rolling contact fatigue and wear behaviour of the infracted two-material rail”. Wear vol 258, pp 1048 - 1054.
dc.relation.references[2] Boljanovic S. (2019) “Fatigue performance evaluation for crack-like surface flaws”. International Journal of Fatigue Vol 124, pp 371-379.
dc.relation.references[3] Garnham. J. E., C. L. Davis (2008) “The role of deformed rail microstructure on rolling contact fatigue initiation”. Wear Vol 265 pp 1363 – 1372.
dc.relation.references4] Wilson. L. J. Performance measurements of rail curve lubricants (2006) Thesis Masters of Engineering Science. Queensland University of Technology, Australia.
dc.relation.references[[5] Santa, J.F. (2012) Development of a lubrication system for wear and friction control in wheel/rail interfaces, PhD Thesis. Universidad Nacional de Colombia.
dc.relation.references[6] Shi. J., L. Fang, K. Sun (2018) “Friction and wear reduction via tuning nanoparticle shape under low humidity conditions: A nonequilibrium molecular dynamics simulation”. Computational Materials science Vol 154 pp 499 – 507.
dc.relation.references[[7] Simonovic. K., M. Kalin (2017) “Experimentally derived friction model to evaluate the anti-wear and friction-modifier additives in steel and DLC contacts”. Tribology International Vol 111 pp 116 – 137.
dc.relation.references[8] Sánchez J.C (2014) Comportamiento a la Fricción de un par Rodante-Deslizante bajo condiciones de Sistemas Ferroviarios, Tesis de Maestría, Universidad Nacional de Colombia.
dc.relation.references[9] BUZELIUS. K., D. Mba. (2004) “An initial investigation on the potential applicability of Acoustic emission to rail track fault detection”. NDT & E international Vol 37, No 7, pp 507 – 516
dc.relation.references[10] Grimes.G.A., C.P.L. Barkan (2006) “Cost-Effectiveness of Railway Infrastructure Renewal Maintenance” – ASCE DOI: 10.1061/(ASCE)0733-947X(2006)132:8(601)
dc.relation.references[11] Reddy. V., G. Chattopadhyay, P-O. Larsson, D. J. Hargreaves (2007)” Modelling and analysis of Rail maintenance cost”. Production Economics, Vol 105, pp 475-482. https://doi:10.1016/j.ijpe.2006.03.008
dc.relation.references[12] LEWIS. R., U. OLOFSSON, University of Sheffield, UK; (2009). Royal Institute of Technology (KTH), Sweden, Handbook of the wheel rail interface.
dc.relation.references[13] Popovici R, (2010) Friction in Wheel - Rail Contacts, Ph.D. Thesis, University of Twente Enschede, The Netherlands.
dc.relation.references14] [21] Zhu.Y, et al. (2019). “Study on wear and RCF performance of repaired damage railway wheels: Assessing laser cladding to repair local defects on wheels” Wear 430 – 431 pp 126 – 136 https://doi.org10.1016j.wear.2019.04.028
dc.relation.references[15] Guanda, R, Narala, S. (2017) “Evaluation of friction and wear characteristics of electrostatic solid lubricant at different sliding conditions”. Surface & Coatings Technology. Vol 332 pp 341 – 350.
dc.relation.references[16] Cornelio, J. A. C., Cuervo, P. A., Hoyos-Palacio, L. M., Lara-Romero, J., & Toro, A. (2016). Tribological properties of carbon nanotubes as lubricant additive in oil and water for a wheel–rail system. Journal of Materials Research and Technology, 5(1), 68–76.
dc.relation.references[17] Liu L, Fang Z, Gu A, Guo Z. (2011) “Lubrication effect of the paraffin oil filled with functionalized multiwalled carbon nanotubes for bismaleimide resin”. Tribology Letters, Vol 42 pp 59 - 65. DOI 10.1007/s11249-011-9749-y
dc.relation.references[18] Wang Y, et al. (2004) “Receiving and transmitting light-like radio waves: antenna effect in arrays of aligned carbon nanotubes”. Applied Physics Letters. Vol 85 Number 13. pp 2607–2609. DOI: 10.1063/1.1797559
dc.relation.references[19] Lansdown. A.R. Chapter 1 (1999). “Molybdenum Disulphide Lubrication”. Tribology Series. Vol 35 pp. 1 – 10.
dc.relation.references[20]. Perez J., Beynon J. (1993) “Microstructure and wear resistance of pearlitic rail steels”. Wear pp 173 – 182
dc.subject.proposalFatiga de contacto
dc.subject.proposalRolling contact fatigue
dc.subject.proposalLubricantes sólidos
dc.subject.proposalSolid lubricants
dc.subject.proposalCarbon nanotubes
dc.subject.proposalNanotubos de carbono
dc.subject.proposalContacto rueda-riel
dc.subject.proposalWheel-rail interface

Files in this item


This item appears in the following Collection(s)

Show simple item record

Atribución-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit