Show simple item record

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorLopera Castro, Sergio Hernando
dc.contributor.advisorPabón Gelves, Elizabeth
dc.contributor.authorRodríguez-Arturo, Yuber
dc.date.accessioned2020-02-07T21:14:07Z
dc.date.available2020-02-07T21:14:07Z
dc.date.issued2019-09-12
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75566
dc.description.abstractLos tensoactivos son agentes de superficie activa que, debido a su capacidad emulsificante, son ampliamente utilizados en diferentes industrias como la farmacéutica, textil, cosmética, hidrocarburos, entre otras. En la industria del petróleo, la inyección de tensoactivos es una técnica de recobro químico empleada para la recuperación mejorada de petróleo, su propósito es reducir la tensión interfacial del sistema agua-petróleo, para mejorar la movilidad de los fluidos a través de la formación. Sin embargo, una de las limitantes es que los surfactantes comerciales son productos químicos de alto costo; por lo tanto, es necesario buscar nuevas alternativas, que sean económicamente viables y que generen menores impactos ambientales. En este sentido, se evaluó el desempeño de tensoactivos naturales obtenidos a partir del jaboncillo (Sapindus saponaria), friega-platos (Solanum torvum) y fique (Furcreae sp) en procesos de recuperación mejorada de petróleo. Se realizó la obtención del tensoactivo natural por el método del solvente; posteriormente, se determinaron las propiedades estructurales, tensoactivas, y térmicas del tensoactivo obtenido y finalmente, se evaluó su efecto en procesos de recobro mejorado, a partir de análisis de las pruebas de desplazamiento en medios porosos a condiciones de yacimiento. Los resultados experimentales evidencian que los tensoactivos naturales tienen características similares a las de un tensoactivo convencional, reducen la tensión interfacial entre el 40 y 50% del sistema agua-aceite, alteran la humectabilidad del medio poroso y generan factores de recobro incremental entre el 20 y el 50%, convirtiéndose en una alternativa promisoria para esta aplicación.
dc.description.abstractSurfactant are active surface agents that have been implemented in different industries such as pharmaceutical, textile, cosmetic, oil and, among others, to emulsify immiscible phases. In the oil industry, surfactant flooding is one of the techniques used for enhanced oil recovery, the goal is to reduce the interfacial tension of the water-oil system for improving the mobility of the fluids through the formation. However, the surfactants are high-cost chemicals; therefore, it is necessary the development of technologies economical and environmentally viable. In this sense, performance of natural surfactants obtained from jaboncillo (Sapindus saponaria), friega-platos (Solanum torvum) and fique (Furcreae sp) for improved oil recovery processes were evaluated. The natural surfactants were obtained by the solvent method; subsequently, physicochemical and thermal properties were determined and finally, the effect on improved recovery processes was evaluated by displacement tests in porous media at reservoir conditions. Results showed the ability of natural surfactants to reduce the interfacial tension between 40 and 50% in water-oil system, alter the porous medium wettability and generate an incremental recovery factor between 20 and 50%, converting in a promising alternative in this application
dc.format.extent76
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddcQuímica y ciencias afines
dc.titleObtención y evaluación de un ecotensoactivo como alternativa para procesos de recobro mejorado de petróleo.
dc.typeLibro
dc.rights.spaAcceso abierto
dc.description.additionalMaestría en Ciencias - Química
dc.type.driverinfo:eu-repo/semantics/book
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.contributor.researchgroupYacimientos de Hidrocarburos
dc.description.degreelevelMaestría
dc.publisher.departmentEscuela de química
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesV. K. Baskaran, K. C. Dani, K. P. Kumar, and A. M. Urkude, “Implementation of Enhanced oil Recovery Techniques in India : New Challenges and Technologies,” SPE EOR Conf. Oil Gas, no. SPE-169680-MS, pp. 1–16, 2014.
dc.relation.referencesJ. C. Echeverry, “Recobro Mejorado: El camino para la transformación de la industría del petróleo,” Bogotá, 2015.
dc.relation.referencesJ. J. Sheng, “Surfactant Flooding,” in Modern Chemical Enhanced Oil Recovery, 1a Edición., 2011, pp. 239–335.
dc.relation.referencesM. Pordel Shahri, S. R. Shadizadeh, and M. Jamialahmadi, “Applicability test of new surfactant produced from Zizyphus Spina-Christi leaves for enhanced oil recovery in carbonate reservoirs,” J. Japan Pet. Inst., vol. 55, no. 1, pp. 27–32, 2012.
dc.relation.referencesA. B. Chhetri, K. C. Watts, M. S. Rahman, and M. R. Islam, “Soapnut Extract as a Natural Surfactant for Enhanced Oil Recovery,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 31, no. 20, pp. 1893–1903, 2009
dc.relation.referencesH. C. Huang, S. C. Liao, F. R. Chang, Y. H. Kuo, and Y. C. Wu, “Molluscicidal saponins from Sapindus mukorossi, inhibitory agents of golden apple snails, Pomacea canaliculata,” J. Agric. Food Chem., vol. 51, no. 17, pp. 4916–4919, 2003
dc.relation.referencesA. Lebron-Paler, “Solution and Interfacial Characterization of Rhamnolipid Biosurfactant from Pseudomonas aeruginosa ATCC 9027,” Universidad de Arizona, 2008.
dc.relation.referencesM. Chakraborty, C. Bhattacharya, and S. Datta, Emulsion liquid membranes: Definitions and classification, theories, module design, applications, new directions and perspectives, 1st ed. Elsevier B.V., 2010.
dc.relation.referencesM. Amirpour, S. R. Shadizadeh, H. Esfandyari, and S. Ahmadi, “Experimental investigation of wettability alteration on residual oil saturation using nonionic surfactants: Capillary pressure measurement,” Petroleum, vol. 1, no. 4, pp. 289– 299, 2015.
dc.relation.referencesA. M. Alamooti and F. K. Malekabadi, “An Introduction to Enhanced Oil Recovery,” in Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs, A. B. T.-F. of E. O. and G. R. from C. and U. R. Bahadori, Ed. Gulf Professional Publishing, 2018, pp. 1–40.
dc.relation.referencesF. Ameli, A. Alashkar, and A. Hemmati-sarapardeh, “Thermal Recovery Processes,” in Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs, Elsevier Inc., 2018, pp. 139–186.
dc.relation.referencesH. Perozo, A. Mendoza, J. Teixeira, A. Alvarez, J. Márquez, and P. Ortega, “The In situ Combustion Pilot Project in Bare field , Orinoco Oil Belt , Venezuela,” SPE Enhanc. Oil Recover. Conf., no. July, pp. 1–15, 2011.
dc.relation.referencesS. Ghedan, “Global Laboratory Experience of CO2-EOR Flooding,” Soc. Pet. Eng., vol. 1, no. October, pp. 19–21, 2009.
dc.relation.referencesS. Behzadi and B. Towler, “A new EOR method,” SPE Annu. Tech. Conf. Exhib., no. October, pp. 4–7, 2009.
dc.relation.referencesI. Lakatos, J. Lakatos-Szabó, and Z. Bedo, “Application of Nonionic Tenside Homologues in IOR / EOR and Oilfield Chemistry : Fundamental and Engineering Aspects,” Soc. Pet. Eng., 2003.
dc.relation.referencesA. A. Olajire, “Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges,” Energy, vol. 77, pp. 963–982, 2014.
dc.relation.referencesM. S. Kamal, I. A. Hussein, and A. S. Sultan, “Review on Surfactant Flooding: Phase Behavior, Retention, IFT, and Field Applications,” Energy and Fuels, vol. 31, no. 8, pp. 7701–7720, 2017.
dc.relation.referencesM. A. Hegazy, A. Y. El-Etre, M. El-Shafaie, and K. M. Berry, “Novel cationic surfactants for corrosion inhibition of carbon steel pipelines in oil and gas wells applications,” J. Mol. Liq., vol. 214, pp. 347–356, 2015.
dc.relation.referencesA. Badakhshan and P. Bakes, “The Influence of temperature and surfactant concentration on Interfacial Tension of Saline Water and Hydrocarbon Systems in Relation to Enhanced Oil Recovery by Chemical Flooding,” SPE, 1990.
dc.relation.referencesS. Banerjee, R. Kumar, a. Mandal, and T. K. Naiya, “Use of a Novel Natural Surfactant for Improving Flowability of Indian Heavy Crude Oil,” Pet. Sci. Technol., vol. 33, no. 7, pp. 819–826, 2015
dc.relation.referencesS. S. Shadizadeh and R. Kharrat, “Experimental investigation of matricaria chamomilla extract effect on oil-water interfacial tension: Usable for chemical enhanced oil recovery,” Pet. Sci. Technol., vol. 33, no. 8, pp. 901–907, 2015.
dc.relation.referencesJ. A. Buitrago Sánchez and L. J. Herrera Silva, “Estudio silvicultural de la especie Sapindus Saponaria L.(jaboncillo) como base para su aprovechamiento silvoindustrial,” Colomb. For., vol. 11, no. 1, pp. 71–82, 2008.
dc.relation.referencesM. Wójciak-Kosior, I. Sowa, R. Kocjan, and R. Nowak, “Effect of different extraction techniques on quantification of oleanolic and ursolic acid in Lamii albi flos,” Ind. Crops Prod., vol. 44, pp. 373–377, 2013.
dc.relation.referencesJ. Giraldo, P. Benjumea, S. Lopera, F. B. Cortés, and M. A. Ruiz, “Wettability alteration of sandstone cores by alumina-based nanofluids,” Energy and Fuels, vol. 27, no. 7, pp. 3659–3665, 2013
dc.relation.referencesF. A. de Freitas, D. Keils, E. R. Lachter, C. E. B. Maia, M. I. Pais da Silva, and R. S. Veiga Nascimento, “Synthesis and evaluation of the potential of nonionic surfactants/mesoporous silica systems as nanocarriers for surfactant controlled release in enhanced oil recovery,” Fuel, vol. 241, no. December 2018, pp. 1184–1194, 2019.
dc.relation.referencesL. J. Giraldo, J. Gallego, J. P. Villegas, C. A. Franco, and F. B. Cortés, “Enhanced waterflooding with NiO/SiO2 0-D Janus nanoparticles at low concentration,” J. Pet. Sci. Eng., vol. 174, no. October 2018, pp. 40–48, 2019.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalTensoactivo natural,
dc.subject.proposalInyección de tensoactivo
dc.subject.proposalRecuperación mejorada de petróleo
dc.type.coarhttp://purl.org/coar/resource_type/c_2f33
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/LIB
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit