Show simple item record

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorOlaya Flórez, Jhon Jairo
dc.contributor.advisorObando Baquero, Johnny Franklin
dc.contributor.authorMartínez Aldana, José Helmer
dc.date.accessioned2020-02-19T16:49:00Z
dc.date.available2020-02-19T16:49:00Z
dc.date.issued2019
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75648
dc.description.abstractGeneralmente, las herramientas de corte presentan problemas en su vida útil, (desgaste en el flanco, fisura y fractura), durante el maquinado en condiciones como herramientas de aceros rápidos utilizados principalmente en la industria metalmecánica. Los recubrimientos ofrecen excelentes propiedades mecánicas para ser usados sobre insertos de corte de acero fabricados para herramientas. En esta tesis, se produjeron recubrimientos de carburos de niobio y vanadio sobre insertos fabricados de acero herramienta AISI M2 mediante la técnica de deposición por difusión termoreactiva (TRD), con la mezcla de sales de bórax pentahidratado a temperaturas hasta los 1050°C durante 4 horas, en un horno industrial. Se realizó tratamiento térmico de templado a insertos fabricados sin recubrir a temperatura de 1050°C por cinco minutos y revenido a 540°C por 10 minutos. Los recubrimientos se caracterizaron mediante difracción de rayos x (DRX), espectroscopia de rayos X de energía dispersiva (EDS) y microscopia electrónica por barrido (MEB), con el fin de estudiar la formación de fases-estructura cristalina, la composición química y la morfología del recubrimiento, respectivamente. Se evaluaron las condiciones de desgaste del inserto recubierto a revenidos de 540°C durante 10 minutos y 1 hora en parámetros de velocidad de corte (Vc) por fresado de 20, 30, 40 y 60 m/min con el maquinado de platinas de acero AISI 4140 y AISI 1045. En insertos sin recubrir con revenido 540°C por 10 minutos se maquino material de trabajo acero AISI 4140. Los resultados por DRX mostraron la formación de carburos de niobio-vanadio con una estructura FCC. Mediante MEB, se observó una morfología atacada con granos equiaxiales y columnares, con capa homogénea de carburos binarios de NbC-VC con regularidad de espesor de 9,86±0.08μm. La microdureza HV0.25 promedio del recubrimiento fue de 2103 Vickers. Después de los ensayos de maquinado, los insertos con revenido de 10 minutos presentaron un desgaste en el flanco de corte VB de 0.255 mm a una Vc de 60 m/min en acero AISI 4140. Aunque Los insertos con revenido por 1 hora evidenciaron bajo desempeño al corte con mayor desgaste en el flanco, esto se debe a la disminución de su dureza. Sin embargo en los insertos sin recubrir mostraron un mayor desgaste y poca eficiencia en el corte con el maquinado de acero AISI 4140.
dc.description.abstractGenerally, the cutting tools present problems in their useful life, (wear in the flank, fissure and fracture), during the machining in conditions as tools of fast steels used mainly in the metalworking industry. Coatings offer excellent mechanical properties to be used on cutting steel inserts. This thesis proposes the fabrication of coatings of niobium and vanadium carbides were produced on inserts made of AISI tool steel by the thermoreactive diffusion deposition (TRD) technique, with the mixture of borax salts pentahydrate at temperatures up to 1050 ° C for 4 hours, in an industrial furnace. The coatings produced were used on AISI M2 tool steel. Hardening heat treatment was performed on inserts manufactured without coating at a temperature of 1050°C for five minutes and tempered at 540°C for 10 minutes. The coatings were characterized by X-ray diffraction (DRX), dispersive energy X-ray spectroscopy (EDS) and scanning electron microscopy (SEM), to study the formation of the crystalline phases-structure, chemical composition and coating morphology, respectively. The wear conditions were evaluated for the insert tempered at 540°C for 10 minutes and 1 hour in parameters of cutting speed (Vc) by milling of 20, 30, 40 and 60 m / min with the machining of AISI 4140 and AISI 1045 steel plates. In inserts uncoated with tempering 540 ° C for 10 minutes, AISI 4140 steel work material was machined. The results by XRD showed the formation of niobium-vanadium carbides with an FCC structure, while the SEM showed a morphology attacked with equiaxate and columnar grains, with a homogeneous layer of binary carbides of NbC-VC with a regular thickness of 9.86 ± 0.08μm, average HV0.25 microhardness of the coating was 2103 Vickers. After the machining tests, the ten-minute tempered inserts showed wear on the VB cutting edge of 0.255 mm at Vc of 60 m / min in AISI 4140 steel. However, inserts tempered for 1 hour showed low cutting performance with greater flank wear, due to the decrease in their hardness. However, the uncoated inserts showed greater wear and poor cutting efficiency with the AISI 4140 steel machining.
dc.format.extent157
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleDesempeño de una herramienta de corte con recubrimientos de carburos de Nb – V obtenidos por la técnica TRD
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalMagíster en Ingeniería – Ingeniería Mecánica. Línea de Investigación: Ingeniería de Superficies.
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.contributor.researchgroupGRUPO DE INVESTIGACIÓN AFIS (ANÁLISIS DE FALLAS, INTEGRIDAD Y SUPERFICIES)
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[1] F. E. Nieto Castillejo, “Recubrimientos de Carburos Ternarios Depositados con la Técnica TRD.,” Universidad Nacional de Colombia, Medellin, 2013. [2] M. A. Ramírez ramos, J. J. Olaya flores, and V. J. Trava-airoldi, “Evaluación tribológica de recubrimientos de NbV y VC sobre acero AISI D2 producidos por la técnica deposición difusión termo-reactiva,” Ing. Investig. y Tecnol., vol. 16, no. 2, pp. 287–294, 2015. [3] A. de LLodio, Tratamientos termicos de herramientas de acero. Bilbao (españa): Bilbo: Urmo, 1978. [4] Palvít, “Catalogo de herramientas de fresado-Inserto SPKN 1203 EDTR.,” Catalogo general inserto de corte fresado, 2017. [Online]. Available: https://www.palbit.pt/catalog/files_en/assets/basic-html/page20.html. [5] Bholer, “acero AISI 4140 -V 320,” Manual de acero especiales, 2011. [Online]. Available: https://www.constantinodelgado.com/catalogosgratis/acerosbohler/ aceros-bohler-0053. [6] Bholer, “Acero AISI 1045- V 945,” Manual de acero especiales, 2011. [Online]. Available: https://www.constantinodelgado.com/catalogosgratis/acerosbohler/ aceros-bohler-0055. [7] C. Zoller, “Zoller Smille BRSMI03-ES,” 2016. [Online]. Available: https://vdocuments.site/zoller-smile-brsmi03-es.html. [8] M. Aghaie-Khafri and F. . Fazlalipour, “Kinetics of V ( N , C ) coating produced by a duplex surface treatment,” Surfaces Coatings Technol., vol. 202, pp. 4107–4113, 2008. [9] J. R. Davis, Surface engineering for corrosion and wear resistance. Ohio, USA: ASM International, 2001. [10] ASM International Handbook Committee, Heat Treating, vol. 4. Ohio: Metals Park, 1991. [11] M. A. Ramírez Ramos, “evaluación de la resistencia al desgaste de recubrimientos de carburos de niobio (NbC), carburos de vanadio (VC) y carburos ternarios de niobio y vanadio (NbVC) producidos por la técnica de deposición por difusión termo-reactiva (TRD),” Universidad Nacional de Colombia, Bogota, 2013. [12] E. Abakay, S. Sen, and U. Sen, “Effect of Aluminum Addition to Nb-Al-C-N Coatings on AISI M2 Steel Obtained by Thermo-Reactive Deposition Technique,” Acta Phys. Pol. A, vol. 129, no. 4, pp. 653–655, 2016. [13] C. K. N. Oliveira, R. M. Muñoz Riofano, and L. C. Casteletti, “Micro-abrasive wear test of niobium carbide layers produced on AISI H13 and M2 steels,” Surf. Coat. Tecnol., vol. 200, pp. 5140–5144, 2006. [14] U. Sen, S. S. Pazarlioglu, and S. Sen, “Niobium boride coating on AISI M2 steel by boro-niobizing treatment,” Mater. Lett., vol. 62, no. 16, pp. 2444–2446, 2008. [15] I. Hacisalihoglu, F. Yildiz, and A. Alsaran, “Wear performance of different nitridebased coatings on plasma nitrided AISI M2 tool steel in dry and lubricated conditions,” Wear, vol. 384–385, pp. 159–168, 2017. [16] F. E. Castillejo Nieto and J. J. Olaya Flórez, “VC and NbC coatings produced by TRD – an environmentally clean, inexpensive and effective technology,” Cienc. E Ing. Neogranadina, vol. 22, pp. 95–105, 2012. [17] D. B. Varas, F. Castillejo, and D. Marulanda, “Deposición de Carburo de Niobio por la Técnica de Deposición / Difusión Termorreactiva ( TRD ) en Aceros de Bajo Carbono,” ingecuan, no. Cim, pp. 56–58, 2011. [18] F. E. Castillejo Nieto, J. J. Olaya-Florez, and J. E. Alfonso, “Wear resistance of vanadium-niobium carbide layers grown via TRD,” Dyna, vol. 82, no. 193, pp. 104– 109, 2015. [19] F. E. Castillejo, D. Marulanda, O. Rodriguez, and J. Olaya, “Electrical furnace for producing carbide coatings using the thermoreactive deposition/diffusion technique.,” Dyna, vol. 78, no. 170, pp. 192–197, 2011. [20] F. E. Castillejo, “Production of vanadium carbides and chromium carbides on steels AISI D2 using the TRD technique,” Cienc. Desarro. Innov. Univ. St. Tomas, pp. 27– 30, 2015. [21] F. E. Castillejo, D. M. Marulanda, J. J. Olaya, and J. E. Alfonso, “Wear and corrosion resistance of niobium-chromium carbide coatings on AISI D2 produced through TRD,” Surf. Coatings Technol., vol. 254, pp. 104–111, 2014. [22] F. E. Castillejo, D. Marulanda, and J. J. Olaya, “Estudio de recubrimientos de carburos ternarios de niobio-vanadio producidos sobre acero D2 usando la técnica de deposición por difusión termorreactiva.,” LatinAm.Metal.Mat., vol. 2, no. 2, pp. 134–137, 2011. [23] F. A. Orjuela Guerrero, “Resistencia a la corrosión en recubrimientos de carburo de vanadio y carburo de niobio depositados con la técnica TRD,” Universidad Nacional de Colombia, Bogota, 2013. [24] A. Orjuela G and R. Rincon R, “Recubrimientos de carburos de metales de transición obtenidos por difusión termo-reactiva,” Tecnoesufa, p. 6, 2015. [25] A. Orjuela G, R. Rincón, and J. J. Olaya, “Corrosion resistance of niobium carbide coatings produced on AISI 1045 steel via thermo-reactive diffusion deposition,” Surf. Coatings Technol., vol. 259, no. PC, pp. 667–675, 2014. [26] S. A. Castro Hermosa, “Resistencia a la corrosión de recubrimientos bicapa VXNbYCZ/BiXTiYOZ depositados sobre acero para herramientas,” Universidad Nacional de Colombia, Bogota, 2014. [27] S. Castro, J. edgar Alfonso, and J. jairo Olaya, “Electro chemical characterization of VXNbYCZ - BiXTiYOZ coatings produced through thermo-reactive diffusion and the sputtering technique,” Rev. Mex. Fis., vol. 62, pp. 138–143, 2016. [28] D. Toro, D. M. Marulanda, J. J. Olaya, B. A. Páez-Sierra, and F. E. Castillejo, “Properties and in-service performance of components reated with thermo reactive deposition/diffusion,” Ingeniare. Rev. Chil. Ing., vol. 26, no. 3, pp. 440–447, 2018. [29] D. A. Toro Gil, “Evaluacion de desempeño en servicio de elementos de corte recubiertos con carburo de niobio depositado usando la tecnica de deposito usado la tecnica de deposición difusión termorreactiva,” Universidad Antonio Nariño, 2014. [30] T. Arai, “Tool materials and surface treatments,” J. Mater. Process. Technol., vol. 35, no. 3–4, pp. 515–528, Oct. 1992. [31] M. P. de andres Saenz, El diagrama hierro-carbono y los fundamentos de los tratamientos térmicos. Madrid: Montecorvo, 1962. [32] F. S. Chen, P. Y. Lee, and M. C. Yeh, “Thermal reactive deposition coating of chromium carbide on die steel in a fluidized bed furnace,” Mater. Chem. Phys., vol. 53, no. 1, pp. 19–27, 1998. [33] R. Soltani, M. H. Sohi, M. Ansari, A. Haghighi, H. M. Ghasemi, and F. Haftlang, “Evaluation of niobium carbide coatings produced on AISI L2 steel via thermoreactive diffusion technique,” Vaccum, vol. 146, pp. 44–51, 2017. [34] ASTM International, Standard Specification for Tool Steel High Speed A600-92a, vol. i, no. Reapproved 2016. Annual Book of ASTM Standards, 2017. [35] H. H. Suarez Soler, “Evaluacion del comportamiento en condiciones de operación de aceros de baja y media aleacion, con recubrimiento superficial por el proceso deposición difusión termorreactiva (TRD),” Universidad Nacional de Colombia, Bogota, 2003. [36] BÖHLER, “Acero rapido S600-M2- ficha tecnica,” 2016. [Online]. Available: http://www.bohlercolombia.com/media/productdb/downloads/S600DE.pdf. [37] SISA, “Ficha tecnica acero rapido M2,” 2012. [Online]. Available: http://sisa1.com.mx/pdf/Acero SISA M2.pdf. [38] A. Cuervo, J. E. Muñoz, F. F. Vallejo Bastidas, and J. J. Olaya, “Recubrimientos de carburos Nb-V-Cr depositados mediante el proceso de difusion Termo-reactiva (TRD),” Cienc. E Ing. Neogranadina, vol. 25–2, pp. 5–20, 2015. [39] A. A. Amaya Avila, O. E. Piamba Tulcan, and J. J. Olaya-Florez, “Vanadium carbide coatings produced on gray cast iron using the thermo-reactive deposition / diffusion technique,” Ing. mecánica, Tecnol. y Desarro., vol. 5, no. 3, pp. 333–338, 2015. [40] T. Arai, “Behavior of nucleation and growth of carbide layers on alloyed carbide particles in substrates in salt bath carbide coating,” Thin Solid Films, vol. 229, no. 2, pp. 171–179, 1993. [41] K. Cheng, Machining Dynamics Fundamentals, Applications and Practices. London: Springer, 2010. [42] O. I. Carrero Sandoval and J. M. Rincon Cepeda, “Obtención de recubrimientos de carburos ternarios y cuaternarios por medio de la tecnica de difusion termoreactiva (TRD), y caracterización de la resistencia al desgaste frente a un recubrimiento de diamante policristalino conforme a la tecnica de pin o,” Fundacion Universitaria los Libertadores, 2016. [43] M. Biesuz and V. M. Sglavo, “Chromium and vanadium carbide and nitride coatings obtained by TRD techniques on UNI 42CrMoS4 (AISI 4140) steel,” Surf. Coatings Technol., vol. 286, no. Aisi 4140, pp. 319–326, 2016. [44] C. Marin Villar, “Tantalio y Niobio : Metales Refractarios,” Met. ACTUAL, vol. 16, pp. 16–23, 2010. [45] G. J. Simandl and R. O. Burr, “Tantalum and Niobium: Deposits, Resources, Exploration Methods and Market – A Primer for Geoscientists,” Geosci. Canada, vol. 45, pp. 85–94, 2018. [46] metales y minerales Acomet, “Ferro niobio - FeNb,” 2018. [Online]. Available: http://www.acomet.es/index.php/ferroniobio. [47] metales y minerales Acomet, “Ferrovanadio - FeV,” 2018. [Online]. Available: http://www.acomet.es/index.php/ferrovanadio. [48] D. H. Mesa Grajales, Principios de tribologia con enfasis en desgaste. Colombia, Pereira: Universidad Tecnologica del Pereira, 2007. [49] K. Heinz Zum Gahr, Microstructure and wear of materials. Netherlands: Elsevier B.V., 1987. [50] K. Holmberg and A. Matthesws, Coatings Tribology Properties, Mechanisms, Techniques and aplications in surface Engineering. Amsterdam: Elsevier B.V., 2009. [51] D. M. Devia Narvaez, “Mecanismos de desgaste en herramientas de conformado con recubrimientos de TiAlN por medio de sistemas PAPVD,” Universidad Nacional de Colombia, 2012. [52] A. D. Sarkar, Desgaste de metales. Mexico D.F.: Limusa, 1999. [53] ASTM International, “G4TM0-17 Standard Terminology Relating to Wear and Erosion.” ASTM, United States, pp. 1–9, 2016. [54] G. Stachowiak W and B. W. Andrew, Engieering Tribology, vol. 3. United States of America: Elsevier B.V., 2005. [55] Y. Altintas, Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design, 2nd ed. USA: Cambridge University Press, 2012. [56] P. K. Wright and E. M. Trent, Metal Cutting, 4th ed. Boston: Butterworth- Heinemann, 2000. [57] M. C. Shaw, Metal cutting principles, 2nd ed. New York: Oxford University Press, 2005. [58] American Society for Metals, Metals Handbook, Machining, Ninth., vol. 16. Ohio, USA: Metals Park, 1989. [59] Sandvik, “Fresado hacia abajo vs. fresado hacia arriba,” Fresado, 2019. [Online]. Available: https://www.sandvik.coromant.com/es-es/knowledge/milling/pages/upmilling- vs-down-milling.aspx. [60] E. M. Trent, Metal Cutting, 2nd ed. Butterworth - Heinemann: Elsevier B.V., 1991. [61] S. Chinchanikar and S. K. Choudhury, “Machine Tools & Manufacture Machining of hardened steel — Experimental investigations , performance modeling and cooling techniques : A review,” Int. J. Mach. Tools Manuf., vol. 89, pp. 95–109, 2015. [62] F. F. Vallejo Bastidas, “Erosión Corrosión de recubrimientos ternarios de carburos de Vanadio- Niobio depositados mediante la técnica TRD sobre aceros AISI H13 y AISI D2,” Universidad Nacional de colombia, 2014. [63] B. D. Cullity, Elements X-Ray Difraction. London: Addison - Wesley Publishing Company, 1956. [64] W. F. Smith, Fundamentos de la ciencia e ingenieria de materiales, 5th ed. Distrito federal: McGraw-Hill Interamericana, 2014. [65] B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, Third. Harlow: Pearson, 2014. [66] ASTM International, “E112-13 Standard Test Methods for Determining Avarage Grain Size.” ASTM, United States of America, p. 28, 2014. [67] B. D. Cullity, Elements of X-ray difraccion, 2nd ed. Addison - Wesley Publishing Company, 1978. [68] M. Faraldos and S. Perez, “Difracción De Rayos X,” in Técnicas de análisis y caracterización de materiales, 2nd ed., CSIC, Ed. Madrid: Consejo superior de investigaciones científicas, 2009, pp. 465–549. [69] Ray F. Egerton, Physical principles of electron microscopy An Introduction to TEM, SEM, and AEM, vol. 8, no. 12. Edmonton, Alberta, Canada: Springer, 2005. [70] Universidad ECCI, “Microscopio electrónico de barrido SEM ProX.” Bogota, 2018. [71] Phenom-WorldBV, “Specification SEM Phenom ProX,” 2015. [Online]. Available: https://www.phenom-world.com/downloads/specification_sheets/Product- SpecSheet_PROX_LR.pdf. [72] A. R. Clarke and C. N. Eberhardt, Microscopy techniques for materials science. USA: CRC Pres LLC, 2002. [73] S. Amelinckx, D. Van Dyck, J. Van Landuyt, and G. Van Tendeloo, Handbook of Microscopy, Methods II. Weinheim: VCH Verlagsgesellschaft mbH, 1997. [74] D. B. Murphy, Fundamentals of light Microscopy and Electronic Imaging, vol. 83, no. 991. Canada: Wiley-Liss, 2001. [75] frederick J. Bueche and D. A. Jerde, Fundamentos de física, II. Mexico, D.F.: McGraw Hill, 1997. [76] Konrad.Hermann, Hardness Testing. Principles and aplications, vol. 94, no. 8. Ohio: ASM International, 2012. [77] ASTM Standards International, E92 -17 Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials. United States, 2009, p. 27. [78] K. Mills, Metallography and Microstructures - Metals Handbook., 9th ed., vol. 9. ASM International, 1985. [79] K. Geels, W. Kopp, and M. Ruckert, Metallographic and Materialographic Specimen Preparation, Light Microscopy, Image Analysis and Hardness Testing. West Conshohocken: ASTM International, 2007. [80] ASTM International, E407-07 Standard Practice for Microetching Metals and Alloys, vol. 07. United States, 2015, pp. 1–22. [81] ASTM International, Standard Guide for Preparation of Metallographic Specimens E3-11, vol. 11. United States, 2017, p. 12. [82] D. A. Stephenson and J. S. Agapiou, Metal Cutting Theory and Practice, Third. Boca Raton: Taylor & Francis nc, 2016. [83] C. Escobar, M. Villareal, W. Aperador, and P. Prieto, “Tribological and wear behavior of HfN / VN nano-multilayer coated cutting tools,” Ing. E Investig., vol. 34, no. 1, pp. 22–28, 2014. [84] A. Altin, M. Nalbant, and A. Taskesen, “The effects of cutting speed on tool wear and tool life when machining Inconel 718 with ceramic tools,” Mater. Des., vol. 28, no. 9, pp. 2518–2522, 2007. [85] Y. S. Liao and R. H. Shiue, “Carbide tool wear mechanism in turning of Inconel 718 superalloy,” Wear-Elsevier, vol. 193, pp. 16–24, 1996. [86] B. Denkena, J. Köhler, B. Breidenstein, A. M. Abrão, and C. E. H. Ventura, “Influence of the cutting edge preparation method on characteristics and performance of PVD coated carbide inserts in hard turning,” Surf. Coat. Technol., vol. 254, pp. 447–454, 2014. [87] P. Montenegro, J. Gomes, R. Rego, and A. Borille, “Potential of niobium carbide application as the hard phase in cutting tool substrate,” Int. J. Refract. Metals Hard Mater., vol. 70, no. May 2017, pp. 116–123, 2018. [88] H. Takeyama and R. Murata, “Basic Investigation of Tool Wear,” ASME, no. 5, p. 5, 1963. [89] O. Standardization International, Tool Life Testing in Milling ISO 8688 part-2. Geneva, 1989. [90] C. Wang, W. Ming, and M. Chen, “Milling tool’s flank wear prediction by temperature dependent wear mechanism determination when machining Inconel 182 overlays,” Tribiology Int., vol. 104, pp. 140–156, 2016. [91] ISO, Tool Life Testing in Milling ISO 8688 part-1. Geneva: International Organization for Standardization, 1989. [92] M. Alauddin, M. A. El Baradie, and M. S. J. Hashmi, “Tool-life testing in the end milling of Inconel 718,” Mater. Process. Technol., pp. 321–330, 1995. [93] M. P. Groover, Fundamentos de manufactura moderna, vol. 3, no. 9. 2019. [94] S. Kalpakjian and S. R. Schmid, “Manufacturing Engineering and Techonology,” p. 1180, 209AD. [95] N. Michailidis, “Variations in the cutting performance of PVD-coated tools in milling Ti6Al4V , explained through temperature-dependent coating properties,” Surf. Coat. Technol., vol. 304, pp. 325–329, 2016. [96] G. T. Smith, Cutting Tool Technology: Industrial Handbook. London: Springer, 2008. [97] Zoller, “>>Smile<<The Universal Presetting and Measuring Machine for Standard Tools.,” Zoller expect great measures, 2019. [Online]. Available: https://www.zoller.info/us/products/presetting-measuring/verticaldevices/ smile.html. [98] C. Martini and A. Morri, “Face milling of the EN AB-43300 aluminum alloy by PVDand CVD-coated cemented carbide inserts,” Int . J. Refract. Met. Hard Mater., vol. 29, no. 6, pp. 662–673, 2011. [99] V. N. Gaitonde et al., “Machinability Evaluation in Hard Milling of AISI D2 Steel,” vol. 19, no. 2, pp. 360–369, 2016. [100] V. P. Astakhov, Triblogy of metal cutting. Oxford: Elsevier, 2006. [101] M. Alauddin, “End Milling Machinability Studies for Steel, a Nickel-base Alloy (Inconel 718) and a Metal Matrix Composite,” Dublin City University, 1993. [102] Sandvik coromant, “Proceso de fresado,” Fórmulas y definiciones de mecanizado, 2019. [Online]. Available: https://www.sandvik.coromant.com/eses/ knowledge/machining-formulas-definitions/pages/milling.aspx?Country=co. [103] R. Abarephor, “Manual Mufla De Laboratorio Modelo 1200-110,” 2015. [Online]. Available: http://www.abarephor.com/. [104] A. G. Maquinaria, “Acero grado maquinaria AISI 4140,” SUMITEC. [Online]. Available: http://www.sumiteccr.com/acero/maquinaria/AM04.pdf. [105] Mctools Industrial supply, “Fresa planeadora 3″ 75 grados FMA 25.4 Ref_ FP-3-I – Vertex –,” 2019. [Online]. Available: http://mctools.co/tienda_virtual/tienda/accesorios-y-herramientas/fresa-planeadora- 3-75-grados-fma-25-4-ref-fp-3-i-vertex/. [106] J. H. Martinez Aldana, “Machining of VC and NbC coatings deposited via TRD.” XI International Conference on Surfaces, Materials and Vacuum, mexico, playa de carmen, 2018. [107] X. S. Fan, Z. G. Yang, Z. X. Xia, C. Zhang, and H. Q. Che, “The microstructure evolution of VC coatings on AISI H13 and 9Cr18 steel by thermo-reactive deposition process,” J. Alloys Compd., vol. 505, no. 1, pp. 15–18, 2010. [108] T. Arai and S. Moriyama, “Growth behavior of chromium carbide and niobium carbide layers on steel substrate, obtained by salt bath immersion coating process,” Thin Solid Films, vol. 259, no. 2, pp. 174–180, 1995. [109] T. Arai and S. Moriyama, “Growth behavior of vanadium carbide coatings on steel substrates by a salt bath immersion coating process,” Thin Solid Films, vol. 249, no. 1, pp. 54–61, 1994. [110] X. S. Fan, Z. G. Yang, C. Zhang, Y. D. Zhang, and H. Q. Che, “Evaluation of vanadium carbide coatings on AISI H13 obtained by thermo-reactive deposition/diffusion technique,” Surf. Coatings Technol., vol. 205, no. 2, pp. 641– 646, Oct. 2010. [111] ASM Handbook Committee, “Metallography and Microstructures of Refractory Metals and Alloys,” in Metallography and Microstructures, vol. 9, ASM International, 2004, pp. 877–888. [112] A. Ghadi, M. Soltanieh, H. Saghafian, and Z. G. Yang, “Growth kinetics and microstructure of composite coatings on H13 by thermal reactive diffusion,” Surf. Coatings Technol., vol. 325, pp. 318–326, 2017. [113] B. Matijevi and M. Stupnisek, “Improvements in Thermoreactive Deposition of Carbide Layers,” BHM Berg- und Hüttenmännische Monatshefte, vol. 151, no. 3, pp. 113–117, 2006. [114] C. Sun, Q. Xue, J. Zhang, S. Wan, A. K. Tieu, and B. H. Tran, “Growth behavior and mechanical properties of Cr-V composite surface layer on AISI D3 steel by thermal reactive deposition,” Vacuum, vol. 148, pp. 158–167, 2018. [115] A. Ghadi, M. Soltanieh, H. Saghafian, and Z. G. Yang, “Investigation of chromium and vanadium carbide composite coatings on CK45 steel by Thermal Reactive Diffusion,” Surf. Coatings Technol., vol. 289, pp. 1–10, Mar. 2016. [116] M. A. Benavidez C, “Evolución de las herramientas de corte y procesos para mejorar su rendimiento.,” Inf. Tec., vol. 35, pp. 9–16, 1988. [117] J. L. Cantero, J. Diaz Alvarrez, M. H. Miguelez, and N. C. Marin, “Analysis of tool wear patterns in finishing turning of Inconel 718,” Wear, vol. 297, pp. 1–2, 2013. [118] A. Devillez, F. Schneider, S. Dominiak, D. Dudzinski, and D. Larrouquere, “Cutting forces and wear in dry machining of Inconel 718 with coated carbide tools,” Wear, vol. 262, no. 7–8, pp. 931–942, 2007. [119] K. S. Murthy and I. Rajendran, “Optimization of end milling parameters under minimum quantity lubrication using principal component analysis and grey relational analysis,” J. Brazilian Soc. Mech. Sci. Eng., vol. 34, no. 3, pp. 253–261, 2012. [120] S. Koseki, K. Inoue, and H. Usuki, “Damage of physical vapor deposition coatings of cutting tools during alloy 718 turning,” Precis. Eng., vol. 44, pp. 41–54, 2016. [121] Y. Xing, J. Deng, K. Zhang, X. Wang, Y. Lian, and Y. Zhou, “Fabrication and dry cutting performance of Si3N4/TiC ceramic tools reinforced with the PVD WS2/Zr soft-coatings,” Ceram. Int., vol. 41, no. 8, pp. 10261–10271, 2015. [122] L. H. Moreno, J. C. Caicedo, G. B. Gaitan, F. Martínez, and P. P. Pulido, “Desempeño de insertos de WC recubiertos con nanomulticapas de [TiN/TiAlN] en el mecanizado del acero endurecido AISI 4340,” Rev. Fac. Ing. Univ. Antioquia, no. 58, pp. 85–94, 2011.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalDeposición por difusión termoreactiva (TRD)
dc.subject.proposalDiffusion termoreactiva deposition TRD
dc.subject.proposalCarburo de niobio (NbC)
dc.subject.proposalNiobium carbide (NbC)
dc.subject.proposalCarburo de vanadio (VC)
dc.subject.proposalVanadium carbide (VC)
dc.subject.proposalHard coating
dc.subject.proposalRecubrimientos Duros
dc.subject.proposalInserto
dc.subject.proposalInsert
dc.subject.proposalMachining
dc.subject.proposalMecanizado
dc.subject.proposalDesgaste
dc.subject.proposalWear
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit