dc.relation.references | [AAMAI11] A. Amir, P. Astuti, I. Muchtadi-Alamsyah, and I. Irawati. On maximal orders and
factor rings of Ore extension over a commutative Dedekind domain. Far East J.
Math. Sci., 55(1):21–30, 08 2011. 9
[AHK17] A. Alhevaz, E. Hashemi, and K. Khalilnezhad. (Σ,∆)-compatible skew PBW extension
ring. Kyungpook Math. J, 57(3):401–417, 2017. 14
[AHK19] A. Alhevaz, E. Hashemi, and K. Khalilnezhad. Extensions of rings over 2-primal rings.
Matematiche, LXXIV(I):141–162, 2019. 14
[AL15] J. P. Acosta and O. Lezama. Universal property of skew PBW extensions. Algebra
Discrete Math., 20(1):1–12, 2015. 14
[AM03] E. Akalan and H. Marubayashi. Multiplicative ideal theory in noncommutative rings.
Mathematical Notes, 74(3):401–410, 2003. 36
[Art15] V. A. Artamonov. Derivations of skew PBW extensions. Commun. Math. Stat.,
3(4):449–457, 2015. 14
[BG88] A. Bell and K. Goodearl. Uniform rank over differential operator rings and PoincaréBirkhoff-Witt extensions. Pacific J. Math., 131(1):13–37, 1988. II, 1, 10, 11, 34
[CH80] A. W. Chatters and C. R. Hajarnavis. Rings with chain conditions. Chapman & Hall,
1980. 25
[Cha81] M. Chamarie. Anneaux de Krull noncommutatifs. J. Algebra, 72(1):210–222, 1981. 9,
27, 28
[Coh50] I. S. Cohen. Commutative rings with restricted minimum condition. Duke Math. J.,
17(1):27–42, 1950. 26
[ER70] D. Eisenbud and J. C. Robson. Hereditary Noetherian prime rings. J. Algebra, 16:86–
104, 1970. 28, 36
[Faj19] W. Fajardo. A computational Maple library for skew PBW extensions. Fund. Inform.,
167(3):159–191, 2019. 15
[GHK19] M. Ghadiri, E. Hashemi, and K. Khalilnezhad. Baer and quasi-Baer properties of
skew PBW extensions. J. Algebr. Syst, 7(1):1–24, 2019. 14 [GL11] C. Gallego and O. Lezama. Gröbner bases for ideals of σ-PBW extensions. Comm.
Algebra., 39(1):50–75, 2011. II, 14, 15
[GL16] C. Gallego and O. Lezama. d-Hermite rings and skew PBW extensions. São Paulo J.
Math. Sci., 10(1):60–72, 2016. 14, 15
[GL17] C. Gallego and O. Lezama. Projective modules and Gröbner bases for skew PBW
extensions. Dissertationes Math., 521:1–50, 2017. 15
[HHR19] M. Hamidizadeh, E. Hashemi, and A. Reyes. A classification of ring elements in skew
PBW extensions over compatible rings. 2019. Submitted. 14
[HL72] C. R. Hajarnavis and T. Lenagan. Localisation in Asano Orders. J. Algebra, 21:441–449,
1972. 27
[HMU16] M. Helmi, H. Marubayashi, and A. Ueda. Ore-Rees rings which are maximal orders.
J. Math. Soc. Japan, 68(1):405–423, 2016. II, III, 12, 13
[JL16] H Jiménez and O. Lezama. Gröbner bases for modules over σ-PBW extensions. Acta
Math. Acad. Paedagog. Nyházi. (N.S.), 31(3):39–66, 2016. 15
[JR18] J. Jaramillo and A. Reyes. Symmetry and reversibility properties for quantum algebras and skew Poincaré-Birkhoff-Witt extensions. Ingeniería y Ciencia, 14(27):29–52,
2018. III, 16
[KMU85] Kazuo Kishimoto, Hidetoshi Marubayashi, and Akira Ueda. An Ore extension over a
v-HC order. Math. J. Okayama Univ., 27:107–120, 1985. 23
[Kuz72] J. Kuzmanowich. Localizations of Dedekind prime rings. J. Algebra, 21(3):378–393,
1972. 27
[LAC+13] O. Lezama, J. P. Acosta, C. Chaparro, I. Ojeda, and C. Venegas. Ore and Goldie
theorems for skew PBW extensions. Asian-European J. Math., 06(04):1350061, 2013. 24
[LAR15] O. Lezama, J. P. Acosta, and A. Reyes. Prime ideals of skew PBW extensions. Rev. Un.
Mat. Argentina, 56(2):39–55, 2015. 14, 15, 22
[Lez16] O. Lezama. Cuadernos de Álgebra, No. 9: Álgebra no conmutativa, volume 123.
SAC2, Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá,
Colombia, 2016. http://sites.google.com/a/unal.edu.co/sac2. 29, 30, 31, 32, 33, 34, 35
[Lez19] O. Lezama. Computation of point modules of finitely semi-graded rings. Comm.
Algebra, 2019. https://doi.org/10.1080/00927872.2019.1666404. 14
[LG19] O. Lezama and J. Gómez. Koszulity and point modules of finitely semi-graded rings
and algebras. Symmetry, 11(7):1–22, 2019. 18
[LR11] L Levy and C. Robson. Hereditary Noetherian Prime Rings and Idealizers. American
Mathematical Society, 2011. 9
[LR14] O. Lezama and A. Reyes. Some Homological Properties of Skew PBW Extensions.
Comm. Algebra, 42(3):1200–1230, 2014. II, 14, 16, 17, 18, 19, 20, 22
[LRS15] O. Lezama, A. Reyes, and H. Suárez. Some relations between N-Koszul, ArtinSchelter Regular and Calabi-Yau algebras with skew PBW extensions. Ciencia en
Desarrollo, 6(2):205–213, 2015. 16, 18
[LV17] O. Lezama and H. Venegas. Some homological properties of skew PBW extensions
arising in non-commutative algebraic geometry. Discuss. Math. Gen. Algebra Appl,
37(1):45–57, 2017. 14
[Mar80] H. Marubayashi. Polynomial rings over Krull orders in simple Artinian rings.
Hokkaido Math. J., 9:63–78, 1980. 27
[Mar83] H. Marubayashi. A Krull type generalization of HNP rings with enough invertible
ideals. Comm. Algebra, 11(5):469–499, 1983. 25, 27, 28
[Mar84] H. Marubayashi. A skew polynomial ring over a v-HC order with enough v-invertible
ideals. Comm. Algebra, 12(13):1567–1593, 1984. 24
[McC74] J. McConnell. Representations of solvable Lie algebras and the Gelfand-Kirillov
conjecture. Proc. London Math. Soc., s3-29:453–484, 1974. 10
[Mic69] G. O. Michler. Asano orders. Proc. London Math. Soc., 3:421–423, 1969. 27
[MR01] J. McConnell and J. Robson. Noncommutative Noetherian Rings. American Mathematical Society, 2001. II, 1, 2, 3, 4, 5, 6, 7, 8, 9, 32, 33, 35
[MU17] H. Marubayashi and A. Ueda. Examples of Ore extensions which are maximal orders
whose based rings are not maximal orders. J. Algebra, 479:368–379, 2017. II, III, 9, 10
[MYZ98] H. Marubayashi, P. Yang, and Y Zhang. Some examples of PBW extensions which
are Krull orders. Math. Japonica, 1998. 36
[MZ96] H. Marubayashi and Y. Zhang. Maximality of PBW extensions of orders. Comm.
Algebra, 24(4):1377–1388, 1996. II, III, 10, 11, 21, 22, 23, 24, 25, 26, 28
[NR17] A. Niño and A. Reyes. Some ring theoretical properties of skew Poincaré-BirkhoffWitt extensions. Bol. Mat., 24(2):131–148, 2017. 14, 21
[Ore33] O. Ore. Theory of Non-Commutative Polynomials. Ann. of Math., 34(3):480–508,
1933. II, 8
[Pas87] D. S. Passman. Prime ideals in enveloping rings. Trans. Amer. Math. Soc, 302(2):535–
560, 1987. 11, 17
[Rey13] A. Reyes. Ring and Module Theoretical Properties of skew PBW extensions. PhD
thesis, Universidad Nacional de Colombia, Bogotá., 2013. II, 16, 18
[Rey14] A. Reyes. Uniform dimension over skew PBW extensions. Rev. Col. Mat., 48(1):79–96,
2014. 16, 34
[Rey15] A. Reyes. Skew PBW extensions of Baer, quasi-Baer, p.p. and p.q.-rings. Rev. Integr.
Temas Mat., 33(2):173–189, 2015. 17, 19
[Rin63] G. S. Rinehart. Differential forms on general commutative algebras. Trans. Amer.
Math. Soc., 108(2):195–222, 1963. 10
[RR19] A. Reyes and C. Rodríguez. The McCoy condition on Skew Poincaré-Birkhoff-Witt
Extensions. Commun. Math. Stat, 2019. https://doi.org/10.1007/s40304-019-00184-5. 14
[RS16a] A. Reyes and H. Suárez. Armendariz property for skew PBW extensions and their
classical ring of quotients. Rev. Integr. Temas Mat, 34(2):147–168, 2016. 21
[RS16b] A. Reyes and H. Suárez. A Note on Zip and reversible skew PBW extensions. Bol.
Mat, 23(1):71–79, 2016. 14
[RS16c] A. Reyes and H. Suárez. Some remarks about the cyclic homology of skew PBW
extensions. Ciencia en Desarrollo, 7(2):99–107, 2016. 14
[RS17a] A. Reyes and H. Suárez. Bases for quantum algebras and skew Poincaré-BirkhoffWitt extensions. Momento, 54(1):54–75, 2017. III
[RS17b] A. Reyes and H. Suárez. Enveloping algebra and skew Calabi-Yau algebras over skew
Poincaré-Birkhoff-Witt extensions. Far East J. Math. Sci., 102(2):373–397, 2017. 18, 21
[RS17c] A. Reyes and H. Suárez. PBW bases for some 3-dimensional skew polynomial
algebras. Far East J. Math. Sci. (FJMS), 101(6):1207–1228, 2017. III, 18
[RS17d] A. Reyes and H. Suárez. σ-PBW Extensions of Skew Armendariz Rings. Adv. Appl.
Clifford Algebr., 27(4):3197–3224, 2017. 21
[RS18a] A. Reyes and H. Suárez. A notion of compatibility for Armendariz and Baer properties
over skew PBW extensions. Rev. Un. Mat. Argentina, 59(1):157–178, 2018. 21
[RS18b] A. Reyes and Y. Suárez. On the ACCP in skew Poincaré-Birkhoff-Witt extensions.
Beitr Algebra Geom., 59(4):625–643, 2018. II, 17
[RS19a] A. Reyes and H. Suárez. Radicals and Köthe’s conjecture for skew PBW extensions.
Commun. Math. Stat., 2019. https://doi.org/10.1007/s40304-019-00189-0. 22
[RS19b] A. Reyes and H. Suárez. Skew Poincaré–Birkhoff–Witt extensions over weak zip rings.
Beitr. Algebra Geom., 60(2):197–216, 2019. 14
[SLR17] H. Suárez, O. Lezama, and A. Reyes. Calabi-Yau property for graded skew PBW
extensions. Rev. Colomb. Mat., 51(2):221–239, 2017. II, 14, 18
[SR17] H. Suárez and M. Reyes. A generalized Koszul property for skew PBW extensions.
Far East J. Math. Sci. (FJMS), 101(2):301–320, 2017. 18
[SR19] H. Suárez and A. Reyes. Nakayama automorphism of some skew PBW extensions.
Ingeniería y Ciencia, 15(29):157–177, 2019. 14 |