dc.relation.references | Arisue, N., Hashimoto, T., Kawai, S., Honma, H., Kume, K., and Horii, T. (2019). Apicoplast
phylogeny reveals the position of Plasmodium vivax basal to the asian primate malaria
parasite clade. Scientific reports, 9(1):7274.
Arisue, N., Hashimoto, T., Mitsui, H., Palacpac, N. M., Kaneko, A., Kawai, S., Hasegawa,
M., Tanabe, K., and Horii, T. (2012). The Plasmodium apicoplast genome: conserved
structure and close relationship of P. ovale to rodent malaria parasites. Molecular biology
and evolution, 29(9):2095–2099.
Bahl, A., Brunk, B., Crabtree, J., Fraunholz, M. J., Gajria, B., Grant, G. R., Ginsburg, H.,
Gupta, D., Kissinger, J. C., Labo, P., et al. (2003). Plasmodb: the Plasmodium genome
resource. A database integrating experimental and computational data. Nucleic acids
research, 31(1):212–215.
Bennett, G., Garnham, P., and Fallis, A. (1965). On the status of the genera Leucocytozoon ziemann, 1898 and haemoproteus kruse, 1890 (Haemosporidiida: Leucocytozoidae
and Haemoproteidae). Canadian Journal of Zoology, 43(6):927–932.
Bensch, S., Canbäck, B., DeBarry, J. D., Johansson, T., Hellgren, O., Kissinger, J. C., Palinauskas, V., Videvall, E., and Valki¯unas, G. (2016). The Genome of Haemoproteus tartakovskyi and its relationship to human malaria parasites. Genome biology and evolution,
8(5):1361–1373.
Bensch, S., Hellgren, O., and Pérez-Tris, J. (2009). Malavi: a public database of malaria
parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome
b lineages. Molecular Ecology Resources, 9(5):1353–1358.
Böhme, U., Otto, T. D., Cotton, J. A., Steinbiss, S., Sanders, M., Oyola, S. O., Nicot, A.,
Gandon, S., Patra, K. P., Herd, C., et al. (2018). Complete avian malaria parasite genomes
reveal features associated with lineage-specific evolution in birds and mammals. Genome
research, 28(4):547–560.
Bukauskait˙e, D., Žiegyt˙e, R., Palinauskas, V., Iezhova, T. A., Dimitrov, D., Ilg¯unas, M.,
Bernotien˙e, R., Markovets, M. Y., and Valki¯unas, G. (2015). Biting midges (culicoides,
diptera) transmit Haemoproteus parasites of owls: evidence from sporogony and molecular
phylogeny. Parasites & vectors, 8(1):303.
Bukauskaité, D., B. R. I. T. and Valki¯unas, G. (2016). Mechanisms of mortality in culicoides
biting midges due to Haemoproteus infection. Parasitology, 143(13):1748–1754.
Cepeda, A. S., Lotta, I. A., Pinto Osorio, D. F., Macías Zapata, J., Valki¯unas, G., Barato,
P., and Matta, N. E. (2019a). The experimental characterization of complete life cycle
of Haemoproteus columbae, with description of natural host-parasite system to study this
infection. International Journal for Parasitology, accepted.
Cepeda, A. S., Pacheco, M. A., Escalante, A. A., Alzate, J. F., and Matta, N. E. (2019b).
Haemoproteus columbae apigenome: as an approach for evolutionary and phylogenetic
studies of the apicoplast. In preparation.
Field, J. T., Weinberg, J., Bensch, S., Matta, N. E., Valki¯unas, G., and Sehgal, R. N. (2018).
Delineation of the genera haemoproteus and plasmodium using rna-seq and multi-gene
phylogenetics. Journal of molecular evolution, 86(9):646–654.
Hellgren, O., Waldenström, J., and Bensch, S. (2004). A new pcr assay for simultaneous
studies of LeucocytozoonI, Plasmodium, and Haemoproteus from avian blood. Journal of
Parasitology, 90(4):797–803.
Imura, T., Sato, S., Sato, Y., Sakamoto, D., Isobe, T., Murata, K., Holder, A. A., and Yukawa,
M. (2014). The apicoplast genome of Leucocytozoon caulleryi, a pathogenic apicomplexan
parasite of the chicken. Parasitology research, 113(3):823–828.
Kimura, M. (2008). Understanding avian plasmodium distribution: the role of vector and
host.
LaPointe, D. A., Goff, M. L., and Atkinson, C. T. (2005). Comparative susceptibility of
introduced forest-dwelling mosquitoes in hawai’i to avian malaria, plasmodium relictum.
Journal of Parasitology, 91(4):843–850.
Levin, I., Zwiers, P., Deem, S., Geest, E., Higashiguchi, J., Iezhova, T., Jiménez-Uzcátegui,
G., Kim, D., Morton, J., Perlut, N., et al. (2013). Multiple lineages of avian malaria
parasites (plasmodium) in the galapagos islands and evidence for arrival via migratory
birds. Conservation Biology, 27(6):1366–1377.
Martinsen, E. S., Perkins, S. L., and Schall, J. J. (2008). A three-genome phylogeny of
malaria parasites (Plasmodium and closely related genera): evolution of life-history traits
and host switches. Molecular phylogenetics and evolution, 47(1):261–273.
Pacheco, M. A., Matta, N. E., Valki¯unas, G., Parker, P. G., Mello, B., Stanley Jr, C. E.,
Lentino, M., Garcia-Amado, M. A., Cranfield, M., Kosakovsky Pond, S. L., et al. (2018).
Mode and rate of evolution of haemosporidian mitochondrial genomes: timing the radiation
of avian parasites. Molecular biology and evolution, 35(2):383–403.
Valki¯unas, G. (2005). Avian malaria parasites and other haemosporidia CRC press. Florida,
Boca Raton.
Valki¯unas, G., Zehtindjiev, P., Dimitrov, D., Križanauskien˙e, A., Iezhova, T. A., and Bensch,
S. (2008). Polymerase chain reaction-based identification of Plasmodium (Huffia) elongatum, with remarks on species identity of haemosporidian lineages deposited in genbank.
Parasitology research, 102(6):1185–1193.
Valki¯unas, G., Žiegyt˙e, R., Palinauskas, V., Bernotien˙e, R., Bukauskait˙e, D., Ilg¯unas, M.,
Dimitrov, D., and Iezhova, T. A. (2015). Complete sporogony of Plasmodium relictum
(lineage pgrw4) in mosquitoes culex pipiens pipiens, with implications on avian malaria
epidemiology. Parasitology research, 114(8):3075–3085.
van Riper, C., van Riper, S. G., Goff, M. L., and Laird, M. (1986). The epizootiology and
ecological significance of malaria in hawaiian land birds. Ecological monographs, 56(4):327–
344.
Videvall, E. (2019). Genomic advances in avian malaria research. Trends in parasitology.
Adl, S. M., Simpson, A. G., Lane, C. E., Lukeš, J., Bass, D., Bowser, S. S., Brown, M. W.,
Burki, F., Dunthorn, M., Hampl, V., et al. (2012). The revised classification of eukaryotes.
Journal of Eukaryotic Microbiology, 59(5):429–514.
Bennett, G., Garnham, P., and Fallis, A. (1965). On the status of the genera Leucocytozoon ziemann, 1898 and haemoproteus kruse, 1890 (Haemosporidiida: Leucocytozoidae
and Haemoproteidae). Canadian Journal of Zoology, 43(6):927–932.
Bensch, S., Canbäck, B., DeBarry, J. D., Johansson, T., Hellgren, O., Kissinger, J. C., Palinauskas, V., Videvall, E., and Valki¯unas, G. (2016). The Genome of Haemoproteus tartakovskyi and its relationship to human malaria parasites. Genome biology and evolution,
8(5):1361–1373.
Böhme, U., Otto, T. D., Cotton, J. A., Steinbiss, S., Sanders, M., Oyola, S. O., Nicot, A.,
Gandon, S., Patra, K. P., Herd, C., et al. (2018). Complete avian malaria parasite genomes
reveal features associated with lineage-specific evolution in birds and mammals. Genome
research, 28(4):547–560.
Brown, T. (2008). Genomas/Genome. Ed. Médica Panamericana.
Carlton, J. M., Das, A., and Escalante, A. A. (2013). Genomics, population genetics and
evolutionary history of plasmodium vivax. Adv Parasitol, 81:203–222.
Compeau, P. E., Pevzner, P. A., and Tesler, G. (2011). How to apply de bruijn graphs to
genome assembly. Nature biotechnology, 29(11):987–991.
Coral, A. A., Valki¯unas, G., González, A. D., and Matta, N. E. (2015). In vitro development of
Haemoproteus columbae (haemosporida: Haemoproteidae), with perspectives for genomic
studies of avian haemosporidian parasites. Experimental parasitology, 157:163–169.
Ekblom, R. and Wolf, J. B. (2014). A field guide to whole-genome sequencing, assembly and
annotation. Evolutionary applications, 7(9):1026–1042.
El-Metwally, S., Ouda, O. M., and Helmy, M. (2014). Next generation sequencing technologies
and challenges in sequence assembly, volume 7. Springer Science & Business.
Ferrell, S. T., Snowden, K., Marlar, A. B., Garner, M., and Lung, N. P. (2007). Fatal
hemoprotozoal infections in multiple avian species in a zoological park. Journal of Zoo
and Wildlife Medicine, 38(2):309–316.
Iezhova, T. A., Dodge, M., Sehgal, R. N., Smith, T. B., and Valki¯unas, G. (2011). New
avian haemoproteus species (haemosporida: Haemoproteidae) from african birds, with a
critique of the use of host taxonomic information in hemoproteid classification. Journal
of Parasitology, 97(4):682–694.
Islam, M. S., Alim, M. A., Das, S., Ghosh, K. K., Pervin, S., Lipi, A., Siddiki, A. Z., Masuduzzaman, M., and Hossain, M. A. (2014). Prevalence of haemoproteus sp in domestic
pigeon at chittagong and khulna district in bangladesh. J Adv Parasitol, 1:24–26.
Kissinger, J. C. and DeBarry, J. (2011). Genome cartography: charting the apicomplexan
genome. Trends in parasitology, 27(8):345–354.
Levin, I. I., Valki¯unas, G., Iezhova, T. A., O’brien, S. L., and Parker, P. G. (2012). Novel
Haemoproteus species (haemosporida: Haemoproteidae) from the swallow-tailed gull (lariidae), with remarks on the host range of hippoboscid-transmitted avian hemoproteids.
The Journal of parasitology, pages 847–854.
Levin, I. I., Valki¯unas, G., Santiago-Alarcon, D., Cruz, L. L., Iezhova, T. A., O’Brien, S. L.,
Hailer, F., Dearborn, D., Schreiber, E., Fleischer, R. C., et al. (2011). Hippoboscidtransmitted haemoproteus parasites (haemosporida) infect galapagos pelecaniform birds:
Evidence from molecular and morphological studies, with a description of haemoproteus
iwa. International Journal for Parasitology, 41(10):1019–1027.
Martinsen, E. S., Perkins, S. L., and Schall, J. J. (2008). A three-genome phylogeny of
malaria parasites (Plasmodium and closely related genera): evolution of life-history traits
and host switches. Molecular phylogenetics and evolution, 47(1):261–273.
Miller, J. R., Koren, S., and Sutton, G. (2010). Assembly algorithms for next-generation
sequencing data. Genomics, 95(6):315–327.
Møller, A. P. and Nielsen, J. T. (2007). Malaria and risk of predation: a comparative study
of birds. Ecology, 88(4):871–881.
Oakgrove, K. S., Harrigan, R. J., Loiseau, C., Guers, S., Seppi, B., and Sehgal, R. N. (2014).
Distribution, diversity and drivers of blood-borne parasite co-infections in alaskan bird
populations. International journal for parasitology, 44(10):717–727.
Olias, P., Wegelin, M., Zenker, W., Freter, S., Gruber, A. D., and Klopfleisch, R. (2011).
Avian malaria deaths in parrots, europe. Emerging Infectious Diseases, 17(5):950.
Rouzé, P., Pavy, N., and Rombauts, S. (1999). Genome annotation: which tools do we have
for it? Current opinion in plant biology, 2(2):90–95
Rutledge, G. G., Böhme, U., Sanders, M., Reid, A. J., Cotton, J. A., Maiga-Ascofare, O.,
Djimdé, A. A., Apinjoh, T. O., Amenga-Etego, L., Manske, M., et al. (2017). Plasmodium
malariae and p. ovale genomes provide insights into malaria parasite evolution. Nature,
542(7639):101.
Saif, Y., Barnes, H., Glisson, J., Fadly, A., McDougald, L., and Swayne, D. (2003). Diseases
of Poultry. Wiley.
Valki¯unas, G. (2005). Avian malaria parasites and other haemosporidia CRC press. Florida,
Boca Raton.
van Riper, C., van Riper, S. G., Goff, M. L., and Laird, M. (1986). The epizootiology and
ecological significance of malaria in hawaiian land birds. Ecological monographs, 56(4):327–
344. |