Show simple item record

dc.contributor.advisorRincón-Forero, Verónica del Pilar
dc.creatorPiza-Buitrago, Leidy Adriana
dc.date.accessioned2020-03-02T13:41:58Z
dc.date.available2020-03-02T13:41:58Z
dc.date.created2019-10-31
dc.identifier.citationPiza-Buitrago Leidy Adriana, 2019. Análisis comparativo de los elementos genómicos de resistencia a antibióticos betalactámicos en cepas colombianas de Providencia rettgeri durante el período 2015 – 2016. Universidad Nacional de Colombia.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75779
dc.descriptionLas infecciones asociadas a la atención en salud (IACS) causadas por microorganismos multirresistentes se asocian con un incremento en los costos para los sistemas de salud debido a la estancia prolongada de los pacientes. Providencia rettgeri en los últimos tiempos se ha convertido en una de las más importantes enterobacterias causante de IACS en el mundo, debido a su relación con el determinante de resistencia blaNDM-1 y por los altos niveles de resistencia expresados a los antimicrobianos (RAM), en especial a los carbapenémicos, agentes considerados de último recurso para el tratamiento de cepas multirresistentes. Debido a este problema de salud pública, el objetivo de este estudio fue identificar y evaluar los elementos genómicos de resistencia a antibióticos betalactámicos en cepas colombianas de P. rettgeri. Para ello se realizó la secuenciación de genoma completo (WGS) de 28 aislamientos obtenidos en el periodo 2015 – 2016. Así mismo, se determinó el perfil fenotípico de resistencia, se tipificaron los aislamientos y se generaron perfiles genómicos de resistencia por medio de un flujo de trabajo bioinformático, para un posterior análisis epidemiológico. Como resultado se observaron elevados porcentajes de resistencia a carbapenémicos, cefalosporinas, sulfonamidas y fluoroquinolonas; se obtuvieron por primera vez 8 rSTs de P. rettgeri circulando en el país, de los cuales 7 fueron nuevos. Se encontró que el rST-63073 (45%) y rST-61696 (25%) fueron dominantes. También se identificaron 116 genes mediadores de resistencia, representativos de los mecanismos de resistencia: degradación y modificación, bombas de eflujo, porinas y cambio del sitio blanco. Finalmente se realizó el pangenoma para establecer las relaciones filogenéticas y se correlacionó el perfil genómico obtenido por WGS con el perfil fenotípico de resistencia. El árbol filogenético indicó la amplia dispersión de las cepas de P. rettgeri en Colombia, la tipificación a partir de WGS mostró un poder discriminatorio más alto y el estudio por WGS proporcionó evidencia de un alto nivel de concordancia (96.4%) entre los perfiles fenotípicos y genotípicos de RAM para predecir resistencia a antibióticos betalactámicos y del (96,8% - 92,8%) para predecir resistencia a antibióticos No betalactámicos. Los perfiles genómicos generados en el estudio demostraron ser un determinante importante para caracterizar los aislamientos con base en el resistoma. Palabras clave: Providencia rettgeri, Secuenciación de genoma completo (WGS), resistencia a los antimicrobianos (RAM), perfil fenotípico de resistencia, perfil genómico de resistencia, Infecciones asociadas a la atención en salud (IACS).
dc.description.abstractThe Healthcare-Associated Infections (HAI) caused by multiresistant microorganisms are associated with an increase in costs for health systems due to the prolonged stay of patients. Providencia rettgeri in recent times has become one of the most important enterobacteria causing HAI in the world, due to its relationship with the determinant of resistance blaNDM-1 and the high levels of resistance expressed to antimicrobials (AMR), especially carbapenems, agents considered of last resort for the treatment of multiresistant strains. Due to this public health problem, the objective of this study was to identify and evaluate the genomic elements of resistance to beta-lactam antibiotics in Colombian strains of P. rettgeri. For this, the whole genome sequencing (WGS) of 28 isolates obtained in the period 2015-2016 was carried out. Likewise, the phenotypic profile of resistance was determined, the isolates were typified and genomic profiles of resistance were generated through of a flow of bioinformatic work, for a later epidemiological analysis. As a result, high percentages of resistance to carbapenems, cephalosporins, sulfonamides and fluoroquinolones were observed; 8 rSTs of P. rettgeri circulating in the country were obtained for the first time, of which 7 were new. It was found that rST-63073 (45%) and rST-61696 (25%) were dominant. We also identified 116 resistance genes, representative of the mechanisms of resistance: degradation and modification, efflux pumps, porins and target alteration. Finally, the pangenome was performed to establish the phylogenetic relationships and the genomic profile obtained by WGS was correlated with the phenotypic profile of resistance. The phylogenetic tree indicated the wide dispersion of the P. rettgeri strains in Colombia, the typing from WGS showed a higher discriminatory power and the WGS study provided evidence of a high level of concordance (96.4%) between the phenotypic and genotypic profiles of RAM to predict resistance to beta-lactam antibiotics and (96.8% - 92.8%) to predict resistance to non-beta-lactam antibiotics. The genomic profiles generated in the study proved to be an important determinant to characterize the isolations based on the resistoma. Keywords: Providencia rettgeri, whole genome sequencing (WGS), Antimicrobial resistance (AMR), phenotypic profile of resistance, genomic profile of resistance, Healthcare-Associated Infections (HAI).
dc.description.sponsorshipDivisión de investigación de Bogotá (DIB) Proyecto 35030 - Colciencias: Es Tiempo de Volver: Convocatoria 656, 2014
dc.format.extent156
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/
dc.subjectProvidencia rettgeri, Secuenciación de genoma completo (WGS), resistencia a los antimicrobianos (RAM), perfil fenotípico de resistencia, perfil genómico de resistencia, Infecciones asociadas a la atención en salud (IACS).
dc.subject.ddcBiotecnología
dc.titleAnálisis comparativo de los elementos genómicos de resistencia a antibióticos betalactámicos en cepas colombianas de Providencia rettgeri durante el período 2015 - 2016
dc.typeOther
dc.rights.spaAcceso abierto
dc.contributor.institutionUniversidad Nacional de Colombia - Sede Bogotá
dc.subject.keywordProvidencia rettgeri, whole genome sequencing (WGS), Antimicrobial resistance (AMR), phenotypic profile of resistance, genomic profile of resistance, Healthcare-Associated Infections (HAI).
dc.type.spaOtro
dc.type.hasversionPublished Version
dc.coverage.programInstituto de Biotecnología
dc.contributor.gruplacBioinformática y Epidemiología Molecular
dc.description.projectAnálisis comparativo de los elementos genómicos de resistencia a antibióticos betalactámicos en cepas colombianas de Providencia rettgeri durante el período 2015 – 2016
dc.coverage.modalityMaestria
dc.rights.accessRightsOpen Access
dc.rights.ccCC0 1.0 Universal
dc.identifier.bibliographicCitationAbdallah, M., & Balshi, A. (2018). First literature review of carbapenem-resistant Providencia. New Microbes and New Infections, 25, 16-23. https://doi.org/10.1016/j.nmni.2018.05.009 Abraham, E. P., & Chain, E. (1988). An enzyme from bacteria able to destroy penicillin. 1940. Reviews of Infectious Diseases, 10(4), 677-678. Adedeji, W. A. (2016). THE TREASURE CALLED ANTIBIOTICS. Annals of Ibadan Postgraduate Medicine, 14(2), 56-57. Alikhan, N.-F., Petty, N. K., Ben Zakour, N. L., & Beatson, S. A. (2011). BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genomics, 12, 402. https://doi.org/10.1186/1471-2164-12-402 Al-Jubouri, M., & Vardhan, M. (2001). A case of purple urine bag syndrome associated with Providencia rettgeri. Journal of Clinical Pathology, 54(5), 412. https://doi.org/10.1136/jcp.54.5.412-a Andam, C. P., Fournier, G. P., & Gogarten, J. P. (2011). Multilevel populations and the evolution of antibiotic resistance through horizontal gene transfer. FEMS Microbiology Reviews, 35(5), 756-767. https://doi.org/10.1111/j.1574-6976.2011.00274.x Andrews, S. (2013). FastQC A Quality Control tool for High Throughput Sequence Data. Recuperado 13 de septiembre de 2018, de Http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ website: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ Apweiler, R., Bairoch, A., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S., … Yeh, L.-S. L. (2004). UniProt: The Universal Protein knowledgebase. Nucleic Acids Research, 32(Database issue), D115- D119. https://doi.org/10.1093/nar/gkh131 Bae, I. K., Lee, Y.-N., Hwang, H. Y., Jeong, S. H., Lee, S. J., Kwak, H.-S., … Youn, H. (2006). Emergence of CTX-M-12 extended-spectrum beta-lactamase-producing Escherichia coli in Korea. The Journal of Antimicrobial Chemotherapy, 58(6), 1257-1259. https://doi.org/10.1093/jac/dkl397 Bahar, G., Eraç, B., Mert, A., & Gülay, Z. (2004). PER-1 production in a urinary isolate of Providencia rettgeri. Journal of Chemotherapy (Florence, Italy), 16(4), 343-346. https://doi.org/10.1179/joc.2004.16.4.343 Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., … Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology: A Journal of Computational Molecular Cell Biology, 19(5), 455-477. https://doi.org/10.1089/cmb.2012.0021 Barrios, H., Garza-Ramos, U., Reyna-Flores, F., Sanchez-Perez, A., Rojas-Moreno, T., Garza-Gonzalez, E., … Silva-Sanchez, J. (2013). Isolation of carbapenem-resistant NDM-1-positive Providencia rettgeri in Mexico. The Journal of Antimicrobial Chemotherapy, 68(8), 1934-1936. https://doi.org/10.1093/jac/dkt124 Belkum, A. van, Tassios, P. T., Dijkshoorn, L., Haeggman, S., Cookson, B., Fry, N. K., … Struelens, M. (2007). Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clinical Microbiology and Infection, 13, 1-46. https://doi.org/10.1111/j.1469-0691.2007.01786.x Bhadania, R. A., Golakiya, B. A., Akbari, D. L., Parakhia, M. V., & Bhalani, H. N. (2015, septiembre 1). Draft genome sequence of the endophytic bacterium Providencia rettgeri MR4 isolated from Abuliton indicum—A salt tolerant plant. Recuperado 23 de noviembre de 2018, de Journal of Pure and Applied Microbiology website: http://link.galegroup.com/apps/doc/A436439755/AONE?sid=googlescholar Blakiston, M., Heffernan, H., Roberts, S., & Freeman, J. (2017). The clear and present danger of carbapenemase-producing Enterobacteriaceae (CPE) in New Zealand: Time for a national response plan. The New Zealand Medical Journal, 130(1454), 72-79. Blázquez, J., Oliver, A., & Gómez-Gómez, J.-M. (2002). Mutation and evolution of antibiotic resistance: Antibiotics as promoters of antibiotic resistance? Current Drug Targets, 3(4), 345-349. Bou, G., Fernández-Olmos, A., García, C., Sáez-Nieto, J. A., & Valdezate, S. (2011). Bacterial identification methods in the microbiology laboratory. Enfermedades Infecciosas Y Microbiologia Clinica, 29(8), 601-608. https://doi.org/10.1016/j.eimc.2011.03.012 128 Análisis comparativo de los elementos genómicos de resistencia a antibióticos betalactámicos en cepas colombianas de Providencia rettgeri durante el período 2015 – 2016 Bradford, P. A. (2001). Extended-Spectrum β-Lactamases in the 21st Century: Characterization, Epidemiology, and Detection of This Important Resistance Threat. Clinical Microbiology Reviews, 14(4), 933-951. https://doi.org/10.1128/CMR.14.4.933-951.2001 Buermans, H. P. J., & den Dunnen, J. T. (2014). Next generation sequencing technology: Advances and applications. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1842(10), 1932- 1941. https://doi.org/10.1016/j.bbadis.2014.06.015 Bush, K. (2013a). Proliferation and significance of clinically relevant β-lactamases: β-lactamase overview. Annals of the New York Academy of Sciences, 1277(1), 84-90. https://doi.org/10.1111/nyas.12023 Bush, K. (2013b). The ABCD’s of β-lactamase nomenclature. Journal of Infection and Chemotherapy, 19(4), 549-559. https://doi.org/10.1007/s10156-013-0640-7 Bush, K., & Bradford, P. A. (2016). β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harbor Perspectives in Medicine, 6(8), a025247. https://doi.org/10.1101/cshperspect.a025247 Bush, K., & Jacoby, G. A. (2010). Updated Functional Classification of β-Lactamases. Antimicrobial Agents and Chemotherapy, 54(3), 969-976. https://doi.org/10.1128/AAC.01009-09 Cag, Y., Caskurlu, H., Fan, Y., Cao, B., & Vahaboglu, H. (2016). Resistance mechanisms. Annals of Translational Medicine, 4(17). https://doi.org/10.21037/atm.2016.09.14 Cantón, R., González-Alba, J. M., & Galán, J. C. (2012). CTX-M Enzymes: Origin and Diffusion. Frontiers in Microbiology, 3. https://doi.org/10.3389/fmicb.2012.00110 Carmo Junior, N. V. do, Filho, H. F., Gomes E Costa, D. A., Calvalcante, A. J. W., Garcia, D. de O., & Furtado, J. J. D. (2015). First report of a NDM-producing Providencia rettgeri strain in the state of São Paulo. The Brazilian Journal of Infectious Diseases: An Official Publication of the Brazilian Society of Infectious Diseases, 19(6), 675-676. https://doi.org/10.1016/j.bjid.2015.08.008 Carvalho-Assef, A. P. D., Pereira, P. S., Albano, R. M., Berião, G. C., Chagas, T. P. G., Timm, L. N., … Asensi, M. D. (2013). Isolation of NDM-producing Providencia rettgeri in Brazil. The Journal of Antimicrobial Chemotherapy, 68(12), 2956-2957. https://doi.org/10.1093/jac/dkt298 Chihara, S., Okuzumi, K., Yamamoto, Y., Oikawa, S., & Hishinuma, A. (2011). First case of New Delhi metallo-beta-lactamase 1-producing Escherichia coli infection in Japan. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 52(1), 153-154. https://doi.org/10.1093/cid/ciq054 Choi, H. K., Kim, Y. K., Kim, H. Y., Park, J. E., & Uh, Y. (2015). Clinical and microbiological features of Providencia bacteremia: Experience at a tertiary care hospital. The Korean Journal of Internal Medicine, 30(2), 219-225. https://doi.org/10.3904/kjim.2015.30.2.219 Clatworthy, A. E., Pierson, E., & Hung, D. T. (2007). Targeting virulence: A new paradigm for antimicrobial therapy. Nature Chemical Biology, 3(9), 541-548. https://doi.org/10.1038/nchembio.2007.24 CLSI, 2015. (s. f.). M100-S25: Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement. 240. CLSI, 2018. (s. f.). M100-S28: Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Eight Informational Supplement. Coculescu, B. (2009). Antimicrobial resistance induced by genetic changes. Journal of Medicine and Life, 2(2), 114-123. Collins, A. S. (2008). Preventing Health Care–Associated Infections. En R. G. Hughes (Ed.), Patient Safety and Quality: An Evidence-Based Handbook for Nurses. Recuperado de http://www.ncbi.nlm.nih.gov/books/NBK2683/ Cornaglia, G., Giamarellou, H., & Rossolini, G. M. (2011). Metallo-β-lactamases: A last frontier for β-lactams? The Lancet. Infectious Diseases, 11(5), 381-393. https://doi.org/10.1016/S1473-3099(11)70056-1 da Fonseca, R. R., Albrechtsen, A., Themudo, G. E., Ramos-Madrigal, J., Sibbesen, J. A., Maretty, L., … Pereira, R. J. (2016). Next-generation biology: Sequencing and data analysis approaches for nonmodel organisms. Marine Genomics, 30, 3-13. https://doi.org/10.1016/j.margen.2016.04.012 Day, M. R., Doumith, M., Do Nascimento, V., Nair, S., Ashton, P. M., Jenkins, C., … Godbole, G. (2018). Comparison of phenotypic and WGS-derived antimicrobial resistance profiles of Salmonella enterica serovars Typhi and Paratyphi. Journal of Antimicrobial Chemotherapy, 73(2), 365-372. https://doi.org/10.1093/jac/dkx379 D’Costa, V. M., King, C. E., Kalan, L., Morar, M., Sung, W. W. L., Schwarz, C., … Wright, G. D. (2011). Antibiotic resistance is ancient. Nature, 477(7365), 457-461. https://doi.org/10.1038/nature10388 De Carolis, E., Vella, A., Vaccaro, L., Torelli, R., Spanu, T., Fiori, B., … Sanguinetti, M. (2014). Application of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. Journal of Infection in Developing Countries, 8(9), 1081-1088. https://doi.org/10.3855/jidc.3623 Delcour, A. H. (2009). Outer Membrane Permeability and Antibiotic Resistance. Biochimica et biophysica acta, 1794(5), 808-816. https://doi.org/10.1016/j.bbapap.2008.11.005 Dhillon, R. H.-P., & Clark, J. (2012). ESBLs: A Clear and Present Danger? Critical Care Research and Practice, 2012. https://doi.org/10.1155/2012/625170 Bibliografía Didelot, X., Bowden, R., Wilson, D. J., Peto, T. E. A., & Crook, D. W. (2012). Transforming clinical microbiology with bacterial genome sequencing. Nature Reviews. Genetics, 13(9), 601-612. https://doi.org/10.1038/nrg3226 Do Nascimento, V., Day, M. R., Doumith, M., Hopkins, K. L., Woodford, N., Godbole, G., & Jenkins, C. (2017). Comparison of phenotypic and WGS-derived antimicrobial resistance profiles of enteroaggregative Escherichia coli isolated from cases of diarrhoeal disease in England, 2015–16. Journal of Antimicrobial Chemotherapy, 72(12), 3288-3297. https://doi.org/10.1093/jac/dkx301 Donkor, E. S. (2013). Sequencing of Bacterial Genomes: Principles and Insights into Pathogenesis and Development of Antibiotics. Genes, 4(4), 556-572. https://doi.org/10.3390/genes4040556 Drawz, S. M., & Bonomo, R. A. (2010). Three Decades of β-Lactamase Inhibitors. Clinical Microbiology Reviews, 23(1), 160-201. https://doi.org/10.1128/CMR.00037-09 Dropa, M., Ghiglione, B., Matté, M. H., Balsalobre, L. C., Lincopan, N., Matté, G. R., … Power, P. (2015). Molecular and biochemical characterization of CTX-M-131, a natural Asp240Gly variant derived from CTX-M-2, produced by a Providencia rettgeri clinical strain in São Paulo, Brazil. Antimicrobial Agents and Chemotherapy, 59(3), 1815-1817. https://doi.org/10.1128/AAC.04116-14 Du, D., Wang, Z., James, N. R., Voss, J. E., Klimont, E., Ohene-Agyei, T., … Luisi, B. F. (2014). Structure of the AcrAB–TolC multidrug efflux pump. Nature, 509(7501), 512-515. https://doi.org/10.1038/nature13205 Eduard Guzmán, Antoni Romeu, & antiago Garcia-Vallve. (2008). Completely sequenced genomes of pathogenic bacteria: A review. Recuperado 18 de junio de 2019, de https://www.elsevier.es/esrevista-enfermedades-infecciosas-microbiologia-clinica-28-pdf-S0213005X0872665X Ellington, M. J., Ekelund, O., Aarestrup, F. M., Canton, R., Doumith, M., Giske, C., … Woodford, N. (2017). The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: Report from the EUCAST Subcommittee. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 23(1), 2-22. https://doi.org/10.1016/j.cmi.2016.11.012 Enne, V. I., Delsol, A. A., Roe, J. M., & Bennett, P. M. (2006). Evidence of Antibiotic Resistance Gene Silencing in Escherichia coli. Antimicrobial Agents and Chemotherapy, 50(9), 3003-3010. https://doi.org/10.1128/AAC.00137-06 Escobar Pérez, J. A., Olarte Escobar, N. M., Castro-Cardozo, B., Valderrama Márquez, I. A., Garzón Aguilar, M. I., Martinez de la Barrera, L., … Vanegas Gómez, N. (2013). Outbreak of NDM-1-producing Klebsiella pneumoniae in a neonatal unit in Colombia. Antimicrobial Agents and Chemotherapy, 57(4), 1957-1960. https://doi.org/10.1128/AAC.01447-12 Etebu, E., & Arikekpar, I. (2016). Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. 12. Falagas, M. E., Tansarli, G. S., Karageorgopoulos, D. E., & Vardakas, K. Z. (2014). Deaths Attributable to Carbapenem-Resistant Enterobacteriaceae Infections. Emerging Infectious Diseases, 20(7), 1170- 1175. https://doi.org/10.3201/eid2007.121004 Fernández, L., & Hancock, R. E. W. (2012). Adaptive and Mutational Resistance: Role of Porins and Efflux Pumps in Drug Resistance. Clinical Microbiology Reviews, 25(4), 661-681. https://doi.org/10.1128/CMR.00043-12 Fitzpatrick, M. A., Ozer, E. A., & Hauser, A. R. (2016). Utility of Whole-Genome Sequencing in Characterizing Acinetobacter Epidemiology and Analyzing Hospital Outbreaks. Journal of Clinical Microbiology, 54(3), 593-612. https://doi.org/10.1128/JCM.01818-15 Fournier, P.-E., Dubourg, G., & Raoult, D. (2014). Clinical detection and characterization of bacterial pathogens in the genomics era. Genome Medicine, 6. https://doi.org/10.1186/s13073-014-0114-2 Foxman, B., Zhang, L., Koopman, J. S., Manning, S. D., & Marrs, C. F. (2005). Choosing an appropriate bacterial typing technique for epidemiologic studies. Epidemiologic perspectives & innovations : EP+I, 2, 10. https://doi.org/10.1186/1742-5573-2-10 Frost, L. S., Leplae, R., Summers, A. O., & Toussaint, A. (2005). Mobile genetic elements: The agents of open source evolution. Nature Reviews. Microbiology, 3(9), 722-732. https://doi.org/10.1038/nrmicro1235 Galac, M. R., & Lazzaro, B. P. (2012). Comparative genomics of bacteria in the genus Providencia isolated from wild Drosophila melanogaster. BMC Genomics, 13, 612. https://doi.org/10.1186/1471-2164-13- 612 Gefen-Halevi, S., Hindiyeh, M. Y., Ben-David, D., Smollan, G., Gal-Mor, O., Azar, R., … Keller, N. (2013). Isolation of genetically unrelated bla(NDM-1)-positive Providencia rettgeri strains in Israel. Journal of Clinical Microbiology, 51(5), 1642-1643. https://doi.org/10.1128/JCM.00381-13 130 Análisis comparativo de los elementos genómicos de resistencia a antibióticos betalactámicos en cepas colombianas de Providencia rettgeri durante el período 2015 – 2016 Gibson, M. K., Forsberg, K. J., & Dantas, G. (2015). Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. The ISME Journal, 9(1), 207-216. https://doi.org/10.1038/ismej.2014.106 Gilchrist, C. A., Turner, S. D., Riley, M. F., Petri, W. A., & Hewlett, E. L. (2015). Whole-genome sequencing in outbreak analysis. Clinical Microbiology Reviews, 28(3), 541-563. https://doi.org/10.1128/CMR.00075-13 Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: Quality assessment tool for genome assemblies. Bioinformatics, 29(8), 1072-1075. https://doi.org/10.1093/bioinformatics/btt086 Haft, D. H., Selengut, J. D., Richter, R. A., Harkins, D., Basu, M. K., & Beck, E. (2013). TIGRFAMs and Genome Properties in 2013. Nucleic Acids Research, 41(Database issue), D387-D395. https://doi.org/10.1093/nar/gks1234 Hall, B. G., & Barlow, M. (2005). Revised Ambler classification of β-lactamases. Journal of Antimicrobial Chemotherapy, 55(6), 1050-1051. https://doi.org/10.1093/jac/dki130 Haque, M., Sartelli, M., McKimm, J., & Abu Bakar, M. (2018). Health care-associated infections – an overview. Infection and Drug Resistance, 11, 2321-2333. https://doi.org/10.2147/IDR.S177247 Horiyama, T., & Nishino, K. (2014). AcrB, AcrD, and MdtABC Multidrug Efflux Systems Are Involved in Enterobactin Export in Escherichia coli. PLOS ONE, 9(9), e108642. https://doi.org/10.1371/journal.pone.0108642 Hyatt, D., Chen, G.-L., LoCascio, P. F., Land, M. L., Larimer, F. W., & Hauser, L. J. (2010). Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics, 11, 119. https://doi.org/10.1186/1471-2105-11-119 Jackson, R. W., Vinatzer, B., Arnold, D. L., Dorus, S., & Murillo, J. (2011). The influence of the accessory genome on bacterial pathogen evolution. Mobile Genetic Elements, 1(1), 55-65. https://doi.org/10.4161/mge.1.1.16432 Jacoby, G. A. (2009). AmpC β-Lactamases. Clinical Microbiology Reviews, 22(1), 161-182. https://doi.org/10.1128/CMR.00036-08 Jim O’Neill. (2016, mayo). Tackling drug-resistant infections globally: Final report and recommendations. Recuperado 4 de octubre de 2018, de https://amrreview.org/sites/default/files/160525_Final%20paper_with%20cover.pdf Jolley, K. A., Bliss, C. M., Bennett, J. S., Bratcher, H. B., Brehony, C., Colles, F. M., … Maiden, M. C. J. (2012). Ribosomal multilocus sequence typing: Universal characterization of bacteria from domain to strain. Microbiology (Reading, England), 158(Pt 4), 1005-1015. https://doi.org/10.1099/mic.0.055459-0 Jolley, K. A., & Maiden, M. C. J. (2010). BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics, 11, 595. https://doi.org/10.1186/1471-2105-11-595 Jolley, K. A., & Maiden, M. C. J. (2014). Using multilocus sequence typing to study bacterial variation: Prospects in the genomic era. Future Microbiology, 9(5), 623-630. https://doi.org/10.2217/fmb.14.24 Jones, B. D., & Mobley, H. L. (1987). Genetic and biochemical diversity of ureases of Proteus, Providencia, and Morganella species isolated from urinary tract infection. Infection and Immunity, 55(9), 2198-2203. Joshi, N., & Fass, J. (2011). Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files. Recuperado de http://github.com/najoshi/sickle Kariuki, S., Corkill, J. E., Revathi, G., Musoke, R., & Hart, C. A. (2001). Molecular Characterization of a Novel Plasmid-Encoded Cefotaximase (CTX-M-12) Found in Clinical Klebsiella pneumoniae Isolates from Kenya. Antimicrobial Agents and Chemotherapy, 45(7), 2141-2143. https://doi.org/10.1128/AAC.45.7.2141-2143.2001 Khan, A. U., Maryam, L., & Zarrilli, R. (2017). Structure, Genetics and Worldwide Spread of New Delhi Metallo-β-lactamase (NDM): A threat to public health. BMC Microbiology, 17(1), 101. https://doi.org/10.1186/s12866-017-1012-8 King, D. T., Sobhanifar, S., & Strynadka, N. C. J. (2017). The Mechanisms of Resistance to β-Lactam Antibiotics. En A. Berghuis, G. Matlashewski, M. A. Wainberg, & D. Sheppard (Eds.), Handbook of Antimicrobial Resistance (pp. 177-201). https://doi.org/10.1007/978-1-4939-0694-9_10 Kolbe, D. L., & Eddy, S. R. (2011). Fast filtering for RNA homology search. Bioinformatics, 27(22), 3102-3109. https://doi.org/10.1093/bioinformatics/btr545 Kong, K.-F., Schneper, L., & Mathee, K. (2010). Beta-lactam Antibiotics: From Antibiosis to Resistance and Bacteriology. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica, 118(1), 1-36. https://doi.org/10.1111/j.1600-0463.2009.02563.x Koreishi, A. F., Schechter, B. A., & Karp, C. L. (2006). Ocular infections caused by Providencia rettgeri. Ophthalmology, 113(8), 1463-1466. https://doi.org/10.1016/j.ophtha.2006.03.047 Koser, C. U., Ellington, M. J., Cartwright, E. J. P., Gillespie, S. H., Brown, N. M., Farrington, M., … Peacock, S. J. (2012). Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. [Journal Article, Research Support, Non-U.S. Gov’t, Review]. PLoS Pathogens, 8(8), e1002824. https://doi.org/10.1371/journal.ppat.1002824 Bibliografía Köser, C. U., Ellington, M. J., & Peacock, S. J. (2014). Whole-genome sequencing to control antimicrobial resistance. Trends in Genetics: TIG, 30(9), 401-407. https://doi.org/10.1016/j.tig.2014.07.003 Kumarasamy, K. K., Toleman, M. A., Walsh, T. R., Bagaria, J., Butt, F., Balakrishnan, R., … Woodford, N. (2010). Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study. The Lancet Infectious Diseases, 10(9), 597-602. https://doi.org/10.1016/S1473-3099(10)70143-2 Kus, J. V., Tadros, M., Simor, A., Low, D. E., McGeer, A. J., Willey, B. M., … Poutanen, S. M. (2011). New Delhi metallo-β-lactamase-1: Local acquisition in Ontario, Canada, and challenges in detection. CMAJ : Canadian Medical Association Journal, 183(11), 1257-1261. https://doi.org/10.1503/cmaj.110477 Lachmayr, K. L., Kerkhof, L. J., DiRienzo, A. G., Cavanaugh, C. M., & Ford, T. E. (2009). Quantifying Nonspecific TEM β-Lactamase (blaTEM) Genes in a Wastewater Stream. Applied and Environmental Microbiology, 75(1), 203-211. https://doi.org/10.1128/AEM.01254-08 Lagesen, K., Hallin, P., Rødland, E. A., Stærfeldt, H.-H., Rognes, T., & Ussery, D. W. (2007). RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research, 35(9), 3100- 3108. https://doi.org/10.1093/nar/gkm160 Lascols, C., Hackel, M., Marshall, S. H., Hujer, A. M., Bouchillon, S., Badal, R., … Bonomo, R. A. (2011). Increasing prevalence and dissemination of NDM-1 metallo-β-lactamase in India: Data from the SMART study (2009). Journal of Antimicrobial Chemotherapy, 66(9), 1992-1997. https://doi.org/10.1093/jac/dkr240 Laslett, D., & Canback, B. (2004). ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Research, 32(1), 11-16. https://doi.org/10.1093/nar/gkh152 Lee, G., & Hong, J. H. (2011). Xanthogranulomatous pyelonephritis with nephrocutaneous fistula due to Providencia rettgeri infection. Journal of Medical Microbiology, 60(7), 1050-1052. https://doi.org/10.1099/jmm.0.028977-0 Lerminiaux, N. A., & Cameron, A. D. S. (2018). Horizontal transfer of antibiotic resistance genes in clinical environments. Canadian Journal of Microbiology. https://doi.org/10.1139/cjm-2018-0275 Lévesque, C., Piché, L., Larose, C., & Roy, P. H. (1995). PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrobial Agents and Chemotherapy, 39(1), 185-191. https://doi.org/10.1128/aac.39.1.185 Li, J., Nation, R. L., Milne, R. W., Turnidge, J. D., & Coulthard, K. (2005). Evaluation of colistin as an agent against multi-resistant Gram-negative bacteria. International Journal of Antimicrobial Agents, 25(1), 11-25. https://doi.org/10.1016/j.ijantimicag.2004.10.001 Li, X.-Z., & Nikaido, H. (2009). Efflux-Mediated Drug Resistance in Bacteria: An Update. Drugs, 69(12), 1555- 1623. https://doi.org/10.2165/11317030-000000000-00000 Lowman, W., Sriruttan, C., Nana, T., Bosman, N., Duse, A., Venturas, J., … Coetzee, J. (2011). NDM-1 has arrived: First report of a carbapenem resistance mechanism in South Africa. South African Medical Journal = Suid-Afrikaanse Tydskrif Vir Geneeskunde, 101(12), 873-875. Löytynoja, A. (2014). Phylogeny-aware alignment with PRANK. Methods in Molecular Biology (Clifton, N.J.), 1079, 155-170. https://doi.org/10.1007/978-1-62703-646-7_10 Magiorakos, A.-P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., … Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 18(3), 268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x Magnet, S., Courvalin, P., & Lambert, T. (1999). Activation of the Cryptic aac(6′)-IyAminoglycoside Resistance Gene of Salmonella by a Chromosomal Deletion Generating a Transcriptional Fusion. Journal of Bacteriology, 181(21), 6650-6655. Maiti, T. K., Pandey, P., & Singh, V. K. (2013). Providencia rettgeri: An Unusual Cause of Central Nervous System Infections. The American Journal of the Medical Sciences, 346(2), 158-159. https://doi.org/10.1097/MAJ.0b013e318294f998 Manos, J., & Belas, R. (2006). The Genera Proteus, Providencia, and Morganella. En M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, & E. Stackebrandt (Eds.), The Prokaryotes (pp. 245-269). https://doi.org/10.1007/0-387-30746-X_12 Marquez-Ortiz, R. Alejandro, Haggerty, L., Sim, E. M., Duarte, C., Castro-Cardozo, B. E., Beltran, M., … Petty, N. K. (2017). First Complete Providencia rettgeri Genome Sequence, the NDM-1-Producing Clinical Strain RB151. Genome Announcements, 5(3). https://doi.org/10.1128/genomeA.01472-16 Marquez-Ortiz, Ricaurte Alejandro, Haggerty, L., Olarte, N., Duarte, C., Garza-Ramos, U., Silva-Sanchez, J., … Petty, N. K. (2017). Genomic Epidemiology of NDM-1-Encoding Plasmids in Latin American Clinical 132 Análisis comparativo de los elementos genómicos de resistencia a antibióticos betalactámicos en cepas colombianas de Providencia rettgeri durante el período 2015 – 2016 Isolates Reveals Insights into the Evolution of Multidrug Resistance. Genome Biology and Evolution, 9(6), 1725-1741. https://doi.org/10.1093/gbe/evx115 Martínez-Martínez, L., & González-López, J. J. (2014). Carbapenemases in Enterobacteriaceae: Types and molecular epidemiology. Enfermedades Infecciosas Y Microbiologia Clinica, 32 Suppl 4, 4-9. https://doi.org/10.1016/S0213-005X(14)70168-5 Marull, J. M., & De Benedetti, M. E. (2009). Automatic implantable cardioverter defibrillator pocket infection due to Providencia rettgeri: A case report. Cases Journal, 2. https://doi.org/10.4076/1757-1626-2-8607 Mataseje, L. F., Boyd, D. A., Lefebvre, B., Bryce, E., Embree, J., Gravel, D., … Canadian Nosocomial Infection Surveillance Program. (2014). Complete sequences of a novel blaNDM-1-harbouring plasmid from Providencia rettgeri and an FII-type plasmid from Klebsiella pneumoniae identified in Canada. The Journal of Antimicrobial Chemotherapy, 69(3), 637-642. https://doi.org/10.1093/jac/dkt445 Maurer, F. P., Christner, M., Hentschke, M., & Rohde, H. (2017). Advances in Rapid Identification and Susceptibility Testing of Bacteria in the Clinical Microbiology Laboratory: Implications for Patient Care and Antimicrobial Stewardship Programs. Infectious Disease Reports, 9(1). https://doi.org/10.4081/idr.2017.6839 McArthur, A. G., Waglechner, N., Nizam, F., Yan, A., Azad, M. A., Baylay, A. J., … Wright, G. D. (2013). The Comprehensive Antibiotic Resistance Database. Antimicrobial Agents and Chemotherapy, 57(7), 3348-3357. https://doi.org/10.1128/AAC.00419-13 Meini, M.-R., Llarrull, L. I., & Vila, A. J. (2014). Evolution of Metallo-β-lactamases: Trends Revealed by Natural Diversity and in vitro Evolution. Antibiotics, 3(3), 285-316. https://doi.org/10.3390/antibiotics3030285 Mellmann, A., Harmsen, D., Cummings, C. A., Zentz, E. B., Leopold, S. R., Rico, A., … Karch, H. (2011). Prospective Genomic Characterization of the German Enterohemorrhagic Escherichia coli O104:H4 Outbreak by Rapid Next Generation Sequencing Technology. PLoS ONE, 6(7). https://doi.org/10.1371/journal.pone.0022751 Michael, C. A., Dominey-Howes, D., & Labbate, M. (2014). The Antimicrobial Resistance Crisis: Causes, Consequences, and Management. Frontiers in Public Health, 2. https://doi.org/10.3389/fpubh.2014.00145 Ministerio de Salud. (2014). Detectar Prevenir y Reducir Infecciones Asociacdas con la Atención en Salud. Recuperado de https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/CA/DetectarInfecciones.pdf Montealegre, M. C., Correa, A., Briceño, D. F., Rosas, N. C., De La Cadena, E., Ruiz, S. J., … Villegas, M. V. (2011). Novel VIM Metallo-β-Lactamase Variant, VIM-24, from a Klebsiella pneumoniae Isolate from Colombia▿. Antimicrobial Agents and Chemotherapy, 55(5), 2428-2430. https://doi.org/10.1128/AAC.01208-10 Morgan, D. J., Lomotan, L. L., Agnes, K., McGrail, L., & Roghmann, M.-C. (2010). Characteristics of Healthcare-Associated Infections Contributing to Unexpected In-Hospital Deaths. Infection control and hospital epidemiology : the official journal of the Society of Hospital Epidemiologists of America, 31(8), 864-866. https://doi.org/10.1086/655018 Mukherjee, S., Stamatis, D., Bertsch, J., Ovchinnikova, G., Katta, H. Y., Mojica, A., … Reddy, T. (2018). Genomes OnLine database (GOLD) v.7: Updates and new features. Nucleic Acids Research. https://doi.org/10.1093/nar/gky977 Mulvey, M. R., Grant, J. M., Plewes, K., Roscoe, D., & Boyd, D. A. (2011). New Delhi metallo-β-lactamase in Klebsiella pneumoniae and Escherichia coli, Canada. Emerging Infectious Diseases, 17(1), 103-106. https://doi.org/10.3201/eid1701.101358 Nagakubo, S., Nishino, K., Hirata, T., & Yamaguchi, A. (2002). The Putative Response Regulator BaeR Stimulates Multidrug Resistance of Escherichia coli via a Novel Multidrug Exporter System, MdtABC. Journal of Bacteriology, 184(15), 4161-4167. https://doi.org/10.1128/JB.184.15.4161-4167.2002 Neuert, S., Nair, S., Day, M. R., Doumith, M., Ashton, P. M., Mellor, K. C., … Dallman, T. J. (2018). Prediction of Phenotypic Antimicrobial Resistance Profiles From Whole Genome Sequences of Non-typhoidal Salmonella enterica. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.00592 Ng, P. C., & Kirkness, E. F. (2010). Whole genome sequencing. Methods in Molecular Biology (Clifton, N.J.), 628, 215-226. https://doi.org/10.1007/978-1-60327-367-1_12 Nikaido, H. (2003). Molecular Basis of Bacterial Outer Membrane Permeability Revisited. Microbiology and Molecular Biology Reviews, 67(4), 593-656. https://doi.org/10.1128/MMBR.67.4.593-656.2003 Nikaido, H., & Pagès, J.-M. (2012). Broad Specificity Efflux pumps and Their Role in Multidrug Resistance of Gram Negative Bacteria. FEMS microbiology reviews, 36(2), 340-363. https://doi.org/10.1111/j.1574- 6976.2011.00290.x Nishino, K., Nikaido, E., & Yamaguchi, A. (2007). Regulation of multidrug efflux systems involved in multidrug and metal resistance of Salmonella enterica serovar Typhimurium. Journal of Bacteriology, 189(24), 9066-9075. https://doi.org/10.1128/JB.01045-07 Bibliografía Nordmann, P. (2010). [Gram-negative bacteriae with resistance to carbapenems]. Medecine Sciences: M/S, 26(11), 950-959. https://doi.org/10.1051/medsci/20102611950 Nordmann P, Dortet L, & Poirel L. (2012). Carbapenem resistance in Enterobacteriaceae: Here is the storm! 18(5), 263–272. Recuperado de https://www.ncbi.nlm.nih.gov/pubmed/22480775 Nordmann, P., Naas, T., & Poirel, L. (2011). Global Spread of Carbapenemase-producing Enterobacteriaceae. Emerging Infectious Diseases, 17(10), 1791-1798. https://doi.org/10.3201/eid1710.110655 Nordmann, P., Poirel, L., Walsh, T. R., & Livermore, D. M. (2011). The emerging NDM carbapenemases. Trends in Microbiology, 19(12), 588-595. https://doi.org/10.1016/j.tim.2011.09.005 O’Hara, C. M., Brenner, F. W., & Miller, J. M. (2000). Classification, Identification, and Clinical Significance of Proteus, Providencia, and Morganella. Clinical Microbiology Reviews, 13(4), 534-546. Olaitan, A. O., Diene, S. M., Assous, M. V., & Rolain, J.-M. (2015). Genomic Plasticity of Multidrug-Resistant NDM-1 Positive Clinical Isolate of Providencia rettgeri. Genome Biology and Evolution, 8(3), 723- 728. https://doi.org/10.1093/gbe/evv195 OMS. (2014). ANTIMICROBIAL RESISTANCE Global Report on Surveillance. World Health Organization. Recuperado de http://apps.who.int/iris/bitstream/handle/10665/112642/9789241564748_eng.pdf;jsessionid=BA7418 BDEB041AB010ACB52E19453386?sequence=1 OMS. (2015). Resistencia a los antimicrobianos. Proyecto de plan de acción mundial sobre la resistencia a los antimicrobianos. 68.a ASAMBLEA MUNDIAL DE LA SALUD. Organización Mundial e la Salud. Oniciuc, E. A., Likotrafiti, E., Alvarez-Molina, A., Prieto, M., Santos, J. A., & Alvarez-Ordóñez, A. (2018). The Present and Future of Whole Genome Sequencing (WGS) and Whole Metagenome Sequencing (WMS) for Surveillance of Antimicrobial Resistant Microorganisms and Antimicrobial Resistance Genes across the Food Chain. Genes, 9(5). https://doi.org/10.3390/genes9050268 OPS. (2011). Alerta epidemiológica: Primer hallazgo de carbapenemasas de tipo New Delhi metalobetalactamasas (NDM) en Latinoamérica. Recuperado de https://www.paho.org/hq/dmdocuments/2012/22-noviembre-2011-carbapenemasas-americas1.pdf OPS, & OMS. (2014). Actualización Epidemiológica Carbapenemasas tipo New Delhi metalobetalactamasas (NDM). Recuperado de https://www.cocemi.com.uy/docs/carbapenemasasactualizacion_Mar2014.pdf Oteo, J., Miró, E., Pérez-Vázquez, M., & Navarro, F. (2014). Evolution of carbapenemase-producing Enterobacteriaceae at the global and national level: What should be expected in the future? Enfermedades Infecciosas Y Microbiologia Clinica, 32 Suppl 4, 17-23. https://doi.org/10.1016/S0213- 005X(14)70170-3 Otlu, B., Yakupoğulları, Y., Gürsoy, N. C., Duman, Y., Bayındır, Y., Tekerekoğlu, M. S., & Ersoy, Y. (2018). Co-production of OXA-48 and NDM-1 Carbapenemases in Providencia rettgeri: The first report. Mikrobiyoloji Bulteni, 52(3), 300-307. https://doi.org/10.5578/mb.67153 Ovalle, M. V., Rojas, S. Y. S., Valderrama, C. D., & Durán, M. A. (2016). Resultados del Programa de Vigilancia por Laboratorio de Resistencia antimicrobiana en Infecciones Asociadas a la Atención en Salud (IAAS) 2016. 43. Padungtod, P., Tribuddharat, C., & Chuanchuen, R. (2011). Widespread presence of dfrA12 and its association with dfrA12-aadA2 cassette in Salmonella enterica isolates from swine. The Southeast Asian Journal of Tropical Medicine and Public Health, 42(6), 1471-1476. Page, A. J., Cummins, C. A., Hunt, M., Wong, V. K., Reuter, S., Holden, M. T. G., … Parkhill, J. (2015). Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics (Oxford, England), 31(22), 3691-3693. https://doi.org/10.1093/bioinformatics/btv421 Pagès, J.-M., James, C. E., & Winterhalter, M. (2008). The porin and the permeating antibiotic: A selective diffusion barrier in Gram-negative bacteria. Nature Reviews Microbiology, 6(12), 893-903. https://doi.org/10.1038/nrmicro1994 Pagès, J.-M., Peslier, S., Keating, T. A., Lavigne, J.-P., & Nichols, W. W. (2016). Role of the Outer Membrane and Porins in Susceptibility of β-Lactamase-Producing Enterobacteriaceae to Ceftazidime-Avibactam. Antimicrobial Agents and Chemotherapy, 60(3), 1349-1359. https://doi.org/10.1128/AAC.01585-15 Pagès, J.-M., Sandrine, A.-F., Mahamoud, A., Bolla, J.-M., Davin-Regli, A., Chevalier, J., & Garnotel, E. (2010). Efflux pumps of gram-negative bacteria, a new target for new molecules. Current Topics in Medicinal Chemistry, 10(18), 1848-1857. Palzkill, T. (2013). Metallo-β-lactamase structure and function. Annals of the New York Academy of Sciences, 1277, 91-104. https://doi.org/10.1111/j.1749-6632.2012.06796.x Parizad, E. G., Parizad, E. G., & Valizadeh, A. (2016). The Application of Pulsed Field Gel Electrophoresis in Clinical Studies. Journal of Clinical and Diagnostic Research : JCDR, 10(1), DE01-DE04. https://doi.org/10.7860/JCDR/2016/15718.7043 134 Análisis comparativo de los elementos genómicos de resistencia a antibióticos betalactámicos en cepas colombianas de Providencia rettgeri durante el período 2015 – 2016 Park, S. T., & Kim, J. (2016). Trends in Next-Generation Sequencing and a New Era for Whole Genome Sequencing. International Neurourology Journal, 20(Suppl 2), S76-83. https://doi.org/10.5213/inj.1632742.371 Pasteran, F., Albornoz, E., Faccone, D., Gomez, S., Valenzuela, C., Morales, M., … Corso, A. (2012). Emergence of NDM-1-producing Klebsiella pneumoniae in Guatemala. The Journal of Antimicrobial Chemotherapy, 67(7), 1795-1797. https://doi.org/10.1093/jac/dks101 Pasteran, F., Meo, A., Gomez, S., Derdoy, L., Albronoz, E., Faccone, D., … Corso, A. (2014). Emergence of genetically related NDM-1-producing Providencia rettgeri strains in Argentina. Journal of Global Antimicrobial Resistance, 2(4), 344-345. https://doi.org/10.1016/j.jgar.2014.07.003 Pereira, P. S., Albano, R. M., Asensi, M. D., & Carvalho-Assef, A. P. D. (2015). Draft genome sequences of three NDM-1-producing Enterobacteriaceae species isolated from Brazil. Memorias Do Instituto Oswaldo Cruz, 110(4), 580-582. https://doi.org/10.1590/0074-02760150081 Pérez, A., Poza, M., Fernández, A., Fernández, M. del C., Mallo, S., Merino, M., … Bou, G. (2012). Involvement of the AcrAB-TolC Efflux Pump in the Resistance, Fitness, and Virulence of Enterobacter cloacae. Antimicrobial Agents and Chemotherapy, 56(4), 2084-2090. https://doi.org/10.1128/AAC.05509-11 PEREZ, F., & VAN DUIN, D. (2013). Carbapenem-resistant Enterobacteriaceae: A menace to our most vulnerable patients. Cleveland Clinic journal of medicine, 80(4), 225-233. https://doi.org/10.3949/ccjm.80a.12182 Perry, J. D., Naqvi, S. H., Mirza, I. A., Alizai, S. A., Hussain, A., Ghirardi, S., … Raza, M. W. (2011). Prevalence of faecal carriage of Enterobacteriaceae with NDM-1 carbapenemase at military hospitals in Pakistan, and evaluation of two chromogenic media. Journal of Antimicrobial Chemotherapy, 66(10), 2288-2294. https://doi.org/10.1093/jac/dkr299 Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nature Methods, 8(10), 785-786. https://doi.org/10.1038/nmeth.1701 Philippon, A., Arlet, G., & Jacoby, G. A. (2002). Plasmid-determined AmpC-type beta-lactamases. Antimicrobial Agents and Chemotherapy, 46(1), 1-11. Piddock, L. J. V. (2006). Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clinical Microbiology Reviews, 19(2), 382-402. https://doi.org/10.1128/CMR.19.2.382- 402.2006 Poirel, L., Gniadkowski, M., & Nordmann, P. (2002). Biochemical analysis of the ceftazidime-hydrolysing extended-spectrum beta-lactamase CTX-M-15 and of its structurally related beta-lactamase CTX-M3. The Journal of Antimicrobial Chemotherapy, 50(6), 1031-1034. Poirel, L., Lagrutta, E., Taylor, P., Pham, J., & Nordmann, P. (2010). Emergence of Metallo-β-Lactamase NDM-1-Producing Multidrug-Resistant Escherichia coli in Australia. Antimicrobial Agents and Chemotherapy, 54(11), 4914-4916. https://doi.org/10.1128/AAC.00878-10 Poirel, L., Naas, T., & Nordmann, P. (2010). Diversity, Epidemiology, and Genetics of Class D β-Lactamases. Antimicrobial Agents and Chemotherapy, 54(1), 24-38. https://doi.org/10.1128/AAC.01512-08 Poirel, L., Pitout, J. D., & Nordmann, P. (2007). Carbapenemases: Molecular diversity and clinical consequences. [Journal Article, Review]. Future Microbiology, 2(5), 501-512. https://doi.org/10.2217/17460913.2.5.501 Pollett, S., Miller, S., Hindler, J., Uslan, D., Carvalho, M., & Humphries, R. M. (2014). Phenotypic and Molecular Characteristics of Carbapenem-Resistant Enterobacteriaceae in a Health Care System in Los Angeles, California, from 2011 to 2013. Journal of Clinical Microbiology, 52(11), 4003-4009. https://doi.org/10.1128/JCM.01397-14 Poole, K. (2004). Resistance to β-lactam antibiotics. Cellular and Molecular Life Sciences CMLS, 61(17), 2200-2223. https://doi.org/10.1007/s00018-004-4060-9 Poole, Keith. (2005). Efflux-mediated antimicrobial resistance. Journal of Antimicrobial Chemotherapy, 56(1), 20-51. https://doi.org/10.1093/jac/dki171 Potter, R. F., Wallace, M. A., McMullen, A. R., Prusa, J., Stallings, C. L., Burnham, C. a. D., & Dantas, G. (2018). BlaIMP-27 on transferable plasmids in Proteus mirabilis and Providencia rettgeri. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 24(9), 1019.e5-1019.e8. https://doi.org/10.1016/j.cmi.2018.02.018 Potter, Robert F., D’Souza, A. W., & Dantas, G. (2016). The rapid spread of carbapenem-resistant Enterobacteriaceae. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy, 29, 30-46. https://doi.org/10.1016/j.drup.2016.09.002 Price, M. N., Dehal, P. S., & Arkin, A. P. (2009). FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Molecular Biology and Evolution, 26(7), 1641-1650. https://doi.org/10.1093/molbev/msp077 Punta, M., Coggill, P. C., Eberhardt, R. Y., Mistry, J., Tate, J., Boursnell, C., … Finn, R. D. (2012). The Pfam protein families database. Nucleic Acids Research, 40(Database issue), D290-D301. https://doi.org/10.1093/nar/gkr1065 Bibliografía Quainoo, S., Coolen, J. P. M., van Hijum, S. A. F. T., Huynen, M. A., Melchers, W. J. G., van Schaik, W., & Wertheim, H. F. L. (2017). Whole-Genome Sequencing of Bacterial Pathogens: The Future of Nosocomial Outbreak Analysis. Clinical Microbiology Reviews, 30(4), 1015-1063. https://doi.org/10.1128/CMR.00016-17 Queenan, A. M., & Bush, K. (2007). Carbapenemases: The Versatile β-Lactamases. Clinical Microbiology Reviews, 20(3), 440-458. https://doi.org/10.1128/CMR.00001-07 Rankin, D. J., Rocha, E. P. C., & Brown, S. P. (2011). What traits are carried on mobile genetic elements, and why? Heredity, 106(1), 1-10. https://doi.org/10.1038/hdy.2010.24 Rasheed, J. K., Kitchel, B., Zhu, W., Anderson, K. F., Clark, N. C., Ferraro, M. J., … Limbago, B. M. (2013). New Delhi Metallo-β-Lactamase–producing Enterobacteriaceae, United States. Emerging Infectious Diseases, 19(6), 870-878. https://doi.org/10.3201/eid1906.121515 Reuter, S., Ellington, M. J., Cartwright, E. J. P., Koser, C. U., Torok, M. E., Gouliouris, T., … Peacock, S. J. (2013). Rapid bacterial whole-genome sequencing to enhance diagnostic and public health microbiology. [Journal Article, Research Support, Non-U.S. Gov’t]. JAMA Internal Medicine, 173(15), 1397-1404. https://doi.org/10.1001/jamainternmed.2013.7734 Rose, W. E., & Rybak, M. J. (2006). Tigecycline: First of a new class of antimicrobial agents. Pharmacotherapy, 26(8), 1099-1110. https://doi.org/10.1592/phco.26.8.1099 Rossen, J. W. A., Friedrich, A. W., & Moran-Gilad, J. (2018). Practical issues in implementing whole-genomesequencing in routine diagnostic microbiology. Clinical Microbiology and Infection, 24(4), 355-360. https://doi.org/10.1016/j.cmi.2017.11.001 Ruiz, J., Castro, D., Goñi, P., Santamaria, J. A., Borrego, J. J., & Vila, J. (1997). Analysis of the mechanism of quinolone resistance in nalidixic acid-resistant clinical isolates of Salmonella serotype Typhimurium. Journal of Medical Microbiology, 46(7), 623-628. https://doi.org/10.1099/00222615-46-7-623 Rumbo, C., Gato, E., López, M., Ruiz de Alegría, C., Fernández-Cuenca, F., Martínez-Martínez, L., … Tomás, M. (2013). Contribution of Efflux Pumps, Porins, and β-Lactamases to Multidrug Resistance in Clinical Isolates of Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 57(11), 5247-5257. https://doi.org/10.1128/AAC.00730-13 Rupp, M. E., & Fey, P. D. (2003). Extended spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae: Considerations for diagnosis, prevention and drug treatment. Drugs, 63(4), 353-365. https://doi.org/10.2165/00003495-200363040-00002 Saavedra-Rojas, S.-Y., Duarte-Valderrama, C., González-de-Arias, M.-N., & Ovalle-Guerro, M. V. (2017). Emergencia de Providencia rettgeri NDM-1 en dos departamentos de Colombia, 2012-2013. Enfermedades Infecciosas y Microbiología Clínica, 35(6), 354-358. https://doi.org/10.1016/j.eimc.2015.05.011 Sader, H. S., Mendes, R. E., Pfaller, M. A., Shortridge, D., Flamm, R. K., & Castanheira, M. (2018). Antimicrobial Activities of Aztreonam-Avibactam and Comparator Agents against Contemporary (2016) Clinical Enterobacteriaceae Isolates. Antimicrobial Agents and Chemotherapy, 62(1), e01856- 17. https://doi.org/10.1128/AAC.01856-17 Sadouki, Z., Day, M. R., Doumith, M., Chattaway, M. A., Dallman, T. J., Hopkins, K. L., … Jenkins, C. (2017). Comparison of phenotypic and WGS-derived antimicrobial resistance profiles of Shigella sonnei isolated from cases of diarrhoeal disease in England and Wales, 2015. Journal of Antimicrobial Chemotherapy, 72(9), 2496-2502. https://doi.org/10.1093/jac/dkx170 Safdar, N., Anderson, D. J., Braun, B. I., Carling, P., Cohen, S., Donskey, C., … Zerr, D. M. (2014). The Evolving Landscape of Healthcare-Associated Infections: Recent Advances in Prevention and a Road Map for Research. Infection control and hospital epidemiology, 35(5), 480-493. https://doi.org/10.1086/675821 Sagar, S. (2017). Providencia Rettgeri: An Emerging Nosocomial Uropathogen in an Indwelling Urinary Catheterised Patient. JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH. https://doi.org/10.7860/JCDR/2017/25740.10026 Salipante, S. J., SenGupta, D. J., Cummings, L. A., Land, T. A., Hoogestraat, D. R., & Cookson, B. T. (2015). Application of Whole-Genome Sequencing for Bacterial Strain Typing in Molecular Epidemiology. Journal of Clinical Microbiology, 53(4), 1072-1079. https://doi.org/10.1128/JCM.03385-14 Sato, T., Hara, T., Horiyama, T., Kanazawa, S., Yamaguchi, T., & Maki, H. (2015). Mechanism of resistance and antibacterial susceptibility in extended-spectrum β-lactamase phenotype Klebsiella pneumoniae and Klebsiella oxytoca isolated between 2000 and 2010 in Japan. Journal of Medical Microbiology, 64(Pt 5), 538-543. https://doi.org/10.1099/jmm.0.000057 Scarafile, G. (2016). Antibiotic resistance: Current issues and future strategies. Reviews in Health Care, 7(1), 3-16. https://doi.org/10.7175/rhc.v7i1.1226 136 Análisis comparativo de los elementos genómicos de resistencia a antibióticos betalactámicos en cepas colombianas de Providencia rettgeri durante el período 2015 – 2016 Schechter, L. M., Creely, D. P., Garner, C. D., Shortridge, D., Nguyen, H., Chen, L., … Leopold, S. R. (2018). Extensive Gene Amplification as a Mechanism for Piperacillin-Tazobactam Resistance in Escherichia coli. MBio, 9(2). https://doi.org/10.1128/mBio.00583-18 Schürch, A. C., Arredondo-Alonso, S., Willems, R. J. L., & Goering, R. V. (2018). Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 24(4), 350-354. https://doi.org/10.1016/j.cmi.2017.12.016 Secretaría Distrital de Salud, & Sub-dirección Vigilancia en Salud Pública. (2015). Lineamientos 2015, Infecciones Asociadas a la Atención en Salud. Seemann, T. (2014). Prokka: Rapid prokaryotic genome annotation. Bioinformatics (Oxford, England), 30(14), 2068-2069. https://doi.org/10.1093/bioinformatics/btu153 SenGupta, D. J., Cummings, L. A., Hoogestraat, D. R., Butler-Wu, S. M., Shendure, J., Cookson, B. T., & Salipante, S. J. (2014). Whole-Genome Sequencing for High-Resolution Investigation of MethicillinResistant Staphylococcus aureus Epidemiology and Genome Plasticity. Journal of Clinical Microbiology, 52(8), 2787-2796. https://doi.org/10.1128/JCM.00759-14 Shaikh, S., Fatima, J., Shakil, S., Rizvi, S. Mohd. D., & Kamal, M. A. (2015). Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi Journal of Biological Sciences, 22(1), 90-101. https://doi.org/10.1016/j.sjbs.2014.08.002 Shaista Nazir, Angmo Dekyong, Bashir A Fomda, Shazia Benazir, Asifa Bhat, & Lenah Bashir. (2017). PROVIDENCIA RETTGERI: AN UNEXPECTED CAUSE OF SEPSIS. Recuperado 4 de mayo de 2019, de ResearchGate website: https://www.researchgate.net/publication/322503225_PROVIDENCIA_RETTGERI_AN_UNEXPECT ED_CAUSE_OF_SEPSIS Sharma, D., Sharma, P., & Soni, P. (2017). First case report of Providencia Rettgeri neonatal sepsis. BMC Research Notes, 10. https://doi.org/10.1186/s13104-017-2866-4 Sherry, N. L., Porter, J. L., Seemann, T., Watkins, A., Stinear, T. P., & Howden, B. P. (2013). Outbreak Investigation Using High-Throughput Genome Sequencing within a Diagnostic Microbiology Laboratory. Journal of Clinical Microbiology, 51(5), 1396-1401. https://doi.org/10.1128/JCM.03332-12 Shin, S., Jeong, S. H., Lee, H., Hong, J. S., Park, M.-J., & Song, W. (2018). Emergence of multidrug-resistant Providencia rettgeri isolates co-producing NDM-1 carbapenemase and PER-1 extended-spectrum β-lactamase causing a first outbreak in Korea. Annals of Clinical Microbiology and Antimicrobials, 17(1), 20. https://doi.org/10.1186/s12941-018-0272-y Shiroto, K., Ishii, Y., Kimura, S., Alba, J., Watanabe, K., Matsushima, Y., & Yamaguchi, K. (2005). Metallobeta-lactamase IMP-1 in Providencia rettgeri from two different hospitals in Japan. [Journal Article, Research Support, Non-U.S. Gov’t]. Journal of Medical Microbiology, 54(Pt 11), 1065-1070. https://doi.org/10.1099/jmm.0.46194-0 Stock, I. (2014). Infectious diseases caused by carbapenemase-producing Enterobacteriaceae—A particular challenge for antibacterial therapy. Medizinische Monatsschrift Fur Pharmazeuten, 37(5), 162-172; quiz 173-174. Stoesser, N., Batty, E. M., Eyre, D. W., Morgan, M., Wyllie, D. H., Del Ojo Elias, C., … Crook, D. W. (2013). Predicting antimicrobial susceptibilities for Escherichia coli and Klebsiella pneumoniae isolates using whole genomic sequence data. Journal of Antimicrobial Chemotherapy, 68(10), 2234-2244. https://doi.org/10.1093/jac/dkt180 Struelens, M. J., Monnet, D. L., Magiorakos, A. P., Santos O’Connor, F., Giesecke, J., & European NDM-1 Survey Participants. (2010). New Delhi metallo-beta-lactamase 1-producing Enterobacteriaceae: Emergence and response in Europe. Euro Surveillance: Bulletin Europeen Sur Les Maladies Transmissibles = European Communicable Disease Bulletin, 15(46). Sugawara, E., Kojima, S., & Nikaido, H. (2016). Klebsiella pneumoniae Major Porins OmpK35 and OmpK36 Allow More Efficient Diffusion of β-Lactams than Their Escherichia coli Homologs OmpF and OmpC. Journal of Bacteriology, 198(23), 3200-3208. https://doi.org/10.1128/JB.00590-16 Sultan, I., Rahman, S., Jan, A. T., Siddiqui, M. T., Mondal, A. H., & Haq, Q. M. R. (2018). Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02066 Sundsfjord, A., Simonsen, G. S., Haldorsen, B. C., Haaheim, H., Hjelmevoll, S.-O., Littauer, P., & Dahl, K. H. (2004). Genetic methods for detection of antimicrobial resistance. APMIS: Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 112(11-12), 815-837. https://doi.org/10.1111/j.1600- 0463.2004.apm11211-1208.x Tada, T., Miyoshi-Akiyama, T., Dahal, R. K., Sah, M. K., Ohara, H., Shimada, K., … Pokhrel, B. M. (2014). NDM-1 Metallo-β-Lactamase and ArmA 16S rRNA methylase producing Providencia rettgeri clinical isolates in Nepal. BMC Infectious Diseases, 14, 56. https://doi.org/10.1186/1471-2334-14-56 Bibliografía Tagini, F., & Greub, G. (2017). Bacterial genome sequencing in clinical microbiology: A pathogen-oriented review. European Journal of Clinical Microbiology & Infectious Diseases, 36(11), 2007-2020. https://doi.org/10.1007/s10096-017-3024-6 Thiolas, A., Bornet, C., Davin-Régli, A., Pagès, J.-M., & Bollet, C. (2004). Resistance to imipenem, cefepime, and cefpirome associated with mutation in Omp36 osmoporin of Enterobacter aerogenes. Biochemical and Biophysical Research Communications, 317(3), 851-856. https://doi.org/10.1016/j.bbrc.2004.03.130 Trivedi MK, Shettigar H, Bairwa K, & Jana S. (2015). Effect of Biofield Treatment on Phenotypic and Genotypic Characteristic of Provindencia rettgeri. Recuperado 29 de diciembre de 2018, de Trivedi Science website: https://www.trivedieffect.com/the-science/publications/biotechnology-publication/effect-of-biofieldtreatment-on-phenotypic-and-genotypic-characteristic-of-provindencia-rettgeri/ Tshisevhe, V. S., Lekalakala, M. R., Tshuma, N., Janse van Rensburg, S., & Mbelle, N. (2016). Outbreak of carbapenem-resistant Providencia rettgeri in a tertiary hospital. South African Medical Journal = SuidAfrikaanse Tydskrif Vir Geneeskunde, 107(1), 31-33. https://doi.org/10.7196/SAMJ.2016.v107.i1.12002 Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C., Knight, R., & Gordon, J. I. (2007). The human microbiome project: Exploring the microbial part of ourselves in a changing world. Nature, 449(7164), 804-810. https://doi.org/10.1038/nature06244 Tyson, G. H., McDermott, P. F., Li, C., Chen, Y., Tadesse, D. A., Mukherjee, S., … Zhao, S. (2015). WGS accurately predicts antimicrobial resistance in Escherichia coli. Journal of Antimicrobial Chemotherapy, 70(10), 2763-2769. https://doi.org/10.1093/jac/dkv186 Urwin, R., & Maiden, M. C. J. (2003). Multi-locus sequence typing: A tool for global epidemiology. Trends in Microbiology, 11(10), 479-487. Vedant Vikrom Borah, Arabinda Ghosh, Mohd Shahbaaz, Imtaiyaz Hassan, & Kandarpa K Saikia. (2018, marzo). Omp 36 mediated meropenem resistance in clinical isolates of klebsiella pneumonia. Recuperado 11 de junio de 2019, de ResearchGate website: https://www.researchgate.net/publication/323607329_Omp_36_mediated_meropenem_resistance_i n_clinical_isolates_of_klebsiella_pneumonia Ventola, C. L. (2015). The Antibiotic Resistance Crisis. Pharmacy and Therapeutics, 40(4), 277-283. Walsh, T. R. (2010). Emerging carbapenemases: A global perspective. International Journal of Antimicrobial Agents, 36 Suppl 3, S8-14. https://doi.org/10.1016/S0924-8579(10)70004-2 Walsh, T. R., Toleman, M. A., Poirel, L., & Nordmann, P. (2005). Metallo-β-Lactamases: The Quiet before the Storm? Clinical Microbiology Reviews, 18(2), 306-325. https://doi.org/10.1128/CMR.18.2.306- 325.2005 Walsh, T. R., Weeks, J., Livermore, D. M., & Toleman, M. A. (2011). Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: An environmental point prevalence study. The Lancet. Infectious Diseases, 11(5), 355-362. https://doi.org/10.1016/S1473- 3099(11)70059-7 Walther-Rasmussen, J., & Høiby, N. (2006). OXA-type carbapenemases. The Journal of Antimicrobial Chemotherapy, 57(3), 373-383. https://doi.org/10.1093/jac/dki482 Wang, G.-H., & Brucker, R. M. (2019). Genome Sequence of Providencia rettgeri NVIT03, Isolated from Nasonia vitripennis. Microbiology Resource Announcements, 8(3). https://doi.org/10.1128/MRA.01157-18 Washington, M. A., Barnhill, J., & Griffin, J. M. (2015). A Case of Wound Infection with Providencia rettgeri and Coincident Gout in a Patient from Guam. Hawai’i Journal of Medicine & Public Health, 74(11), 375-377. Wei, W.-J., Yang, H.-F., Ye, Y., & Li, J.-B. (2015). New Delhi Metallo-β-Lactamase-Mediated Carbapenem Resistance: Origin, Diagnosis, Treatment and Public Health Concern. Chinese Medical Journal, 128(14), 1969-1976. https://doi.org/10.4103/0366-6999.160566 WHO. (2017). GLOBAL PRIORITY LIST OF ANTIBIOTIC-RESISTANT BACTERIA TO GUIDE RESEARCH, DISCOVERY, AND DEVELOPMENT OF NEW ANTIBIOTICS. Recuperado de http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf Wie, S.-H. (2015). Clinical significance of Providencia bacteremia or bacteriuria. The Korean Journal of Internal Medicine, 30(2), 167-169. https://doi.org/10.3904/kjim.2015.30.2.167 Williamson, R., Collatz, E., & Gutmann, L. (1986). [Mechanisms of action of beta-lactam antibiotics and mechanisms of non-enzymatic resistance]. Presse Medicale (Paris, France: 1983), 15(46), 2282-2289. Wu, P. J., Shannon, K., & Phillips, I. (1995). Mechanisms of hyperproduction of TEM-1 beta-lactamase by clinical isolates of Escherichia coli. The Journal of Antimicrobial Chemotherapy, 36(6), 927-939. https://doi.org/10.1093/jac/36.6.927 138 Análisis comparativo de los elementos genómicos de resistencia a antibióticos betalactámicos en cepas colombianas de Providencia rettgeri durante el período 2015 – 2016 Wu, W., Feng, Y., Tang, G., Qiao, F., McNally, A., & Zong, Z. (2019). NDM Metallo-β-Lactamases and Their Bacterial Producers in Health Care Settings. Clinical Microbiology Reviews, 32(2), e00115-18. https://doi.org/10.1128/CMR.00115-18 Yoh, M., Matsuyama, J., Ohnishi, M., Takagi, K., Miyagi, H., Mori, K., … Honda, T. (2005). Importance of Providencia species as a major cause of travellers’ diarrhoea. Journal of Medical Microbiology, 54(11), 1077-1082. https://doi.org/10.1099/jmm.0.45846-0 Yong, D., Toleman, M. A., Giske, C. G., Cho, H. S., Sundman, K., Lee, K., & Walsh, T. R. (2009). Characterization of a New Metallo-β-Lactamase Gene, blaNDM-1, and a Novel Erythromycin Esterase Gene Carried on a Unique Genetic Structure in Klebsiella pneumoniae Sequence Type 14 from India. Antimicrobial Agents and Chemotherapy, 53(12), 5046-5054. https://doi.org/10.1128/AAC.00774-09 Zankari, E., Hasman, H., Kaas, R. S., Seyfarth, A. M., Agersø, Y., Lund, O., … Aarestrup, F. M. (2013). Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing. The Journal of Antimicrobial Chemotherapy, 68(4), 771-777. https://doi.org/10.1093/jac/dks496 Zhao, W.-H., & Hu, Z.-Q. (2013). Epidemiology and genetics of CTX-M extended-spectrum β-lactamases in Gram-negative bacteria. Critical Reviews in Microbiology, 39(1), 79-101. https://doi.org/10.3109/1040841X.2012.691460 Zhou, G., Guo, S., Luo, Y., Ye, L., Song, Y., Sun, G., … Yang, J. (2014). NDM-1–producing Strains, Family Enterobacteriaceae, in Hospital, Beijing, China. Emerging Infectious Diseases, 20(2), 340-342. https://doi.org/10.3201/eid2002.121263 Zhou, K., Tao, Y., Han, L., Ni, Y., & Sun, J. (2019). Piperacillin-Tazobactam (TZP) Resistance in Escherichia coli Due to Hyperproduction of TEM-1 β-Lactamase Mediated by the Promoter Pa/Pb. Frontiers in Microbiology, 10, 833. https://doi.org/10.3389/fmicb.2019.00833 Zmarlicka, M. T., Nailor, M. D., & Nicolau, D. P. (2015). Impact of the New Delhi metallo-beta-lactamase on beta-lactam antibiotics. Infection and Drug Resistance, 8, 297-309. https://doi.org/10.2147/IDR.S39186 Zurita, J., Parra, H., Gestal, M. C., McDermott, J., & Barba, P. (2015). First case of NDM-1-producing Providencia rettgeri in Ecuador. Journal of Global Antimicrobial Resistance, 3(4), 302-303. https://doi.org/10.1016/j.jgar.2015.07.003
dc.contributor.generoFemenino


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/publicdomain/zero/1.0/This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit