dc.relation.references | Atkins, R. C. (2005), ‘The changing patterns of chronic kidney disease: the need to develop strategies for prevention relevant to different regions and countries’, Kidney International 68, S83–S85. Barshan, E., Ghodsi, A., Azimifar, Z. & Jahromi, M. Z. (2011), ‘Supervised principal component analysis: Visualization, classification and regression on subspaces and submanifolds’, Pattern Recognition 44(7), 1357–1371. Bradbury, B. D., Fissell, R. B., Albert, J. M., Anthony, M. S., Critchlow, C. W., Pisoni, R. L., Port, F. K. & Gillespie, B. W. (2007), ‘Predictors of early mortality among incident us hemodialysis patients in the dialysis outcomes and practice patterns study (dopps)’, Clinical Journal of the American Society of Nephrology 2(1), 89–99. Celeux, G. & Govaert, G. (1992), ‘A classification em algorithm for clustering and two stochastic versions’, Computational Statistics & Data Analysis 14(3), 315–332. Chang, W., Cheng, J., Allaire, J., Xie, Y. & McPherson, J. (2019), shiny: Web Application Framework for R. R package version 1.3.2. URL: https: // CRAN. R-project. org/ package= shiny Chatfield, C., Zidek, J. & Lindsey, J. (2010), An introduction to generalized linear models, Chapman and Hall/CRC. Codreanu, I., Perico, N., Sharma, S. K., Schieppati, A. & Remuzzi, G. (2006), ‘Prevention programmes of progressive renal disease in developing nations’, Nephrology 11(4), 321– 328. Draper, N. R. & Smith, H. (1998), Applied regression analysis, John Wiley & Sons. Everitt, B. S., Landau, S., Leese, M. & Stahl, D. (2011), Cluster Analysis, 5th Edition, John Wiley & Sons, Ltd, Chichester, UK. Fisher, R. A. (1924), ‘The conditions under which χ 2 measures the discrepancy between observation and hypothesis’, Journal of the Royal Statistical Society pp. 442–450. Fisher, R. A. (1936), ‘The use of multiple measurements in taxonomic problems’, Annals of Eugenics 7(2), 179–188. Genolini, C., Alacoque, X., Sentenac, M., Arnaud, C. et al. (2015), ‘kml and kml3d: R packages to cluster longitudinal data’, Journal of Statistical Software 65(4), 1–34. Genolini, C., Ecochard, R. & Jacqmin-Gadda, H. (2013), ‘Copy mean: a new method to ´ impute intermittent missing values in longitudinal studies’, Open Journal of Statistics 3(04). Hastie, T., Tibshirani, R. & Friedman, J. (2009), ‘The elements of statistical learning: Data mining, inference and prediction’. Hu, B., Gadegbeku, C., Lipkowitz, M. S., Rostand, S., Lewis, J., Wright, J. T., Appel, L. J., Greene, T., Gassman, J., Astor, B. C. et al. (2012), ‘Kidney function can improve in patients with hypertensive ckd’, Journal of the American Society of Nephrology 23(4), 706–713. Jolliffe, I. (2002), Principal component analysis, Springer Text in Statistics. Jolliffe, I. T. (1982), ‘A note on the use of principal components in regression’, Applied Statistics pp. 300–303. Kent, J., Bibby, J. & Mardia, K. (2006), Multivariate analysis (probability and mathematical statistics), Elsevier Amsterdam. Kuhn, M. C. f. J. W., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., the R Core Team, Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C. & Hunt., T. (2018), caret: Classification and Regression Training. R package version 6.0-81. URL: https://CRAN.R-project.org/package=caret Lebart, L., Morineau, A. & Piron, M. (1995), Statistique Exploratoire Multidimensionnelle, Dunond, Paris. Levey, A. S., Eckardt, K.-U., Tsukamoto, Y., Levin, A., Coresh, J., Rossert, J., Zeeuw, D. D., Hostetter, T. H., Lameire, N. & Eknoyan, G. (2005), ‘Definition and classification of chronic kidney disease: a position statement from kidney disease: Improving global outcomes (kdigo)’, Kidney International 67(6), 2089–2100. MacQueen, J. (1967), Some methods for classification and analysis of multivariate observations, in ‘Proceedings of the fifth Berkeley symposium on mathematical statistics and probability’, number 14, Oakland, CA, USA, pp. 281–297. Massey, F. J. (1951), ‘The kolmogorov-smirnov test for goodness of fit’, Journal of the American statistical Association 46(253), 68–78. National Kidney Foundation, . (2017), Glomerular Filtration Rate (GFR). https://www. kidney.org/atoz/content/gfr (accessed August 30, 2018). Pardo, C. E. & Del Campo, P. C. (2007), ‘Combination of Factorial Methods and Cluster Analysis in R: The Package FactoClass’, Revista Colombiana de Estad´ıstica 30(2), 231– 245. R Core Team (2019), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Ripley, B. D. & Hjort, N. (1996), Pattern recognition and neural networks, Cambridge University Press. Suri, R. S., Lindsay, R. M., Bieber, B. A., Pisoni, R. L., Garg, A. X., Austin, P. C., Moist, L. M., Robinson, B. M., Gillespie, B. W., Couchoud, C. G. et al. (2013), ‘A multinational cohort study of in-center daily hemodialysis and patient survival’, Kidney International 83(2), 300–307. Todorov, V. (2007), ‘Robust selection of variables in linear discriminant analysis’, Statistical Methods and Applications 15(3), 395–407. Venables, W. N. & Ripley, B. D. (2002), Modern Applied Statistics with S, fourth edn, Springer, New York. ISBN 0-387-95457-0. Ward, J. H. (1963), ‘Hierarchical grouping to optimize an objective function’, Journal of the American Statistical Association 58(301), 236–244. Warne, R. T. (2014), ‘A primerisisisisimo on multivariate analysis of variance (manova) for behavioral scientists.’, Practical Assessment, Research & Evaluation 19. Weihs, C., Ligges, U., Luebke, K. & Raabe, N. (2005), klaR analyzing german business cycles, in D. Baier, R. Decker & L. Schmidt-Thieme, eds, ‘Data Analysis and Decision Support’, Springer-Verlag, Berlin, pp. 335–343. Wishart, D. (1969), ‘An algorithm for hierarchical classifications’, Biometrics pp. 165–170. |