Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorAristizabal-Gutierrez, Fabio Ancizar
dc.contributor.authorBeltrán-López, Angela Patricia
dc.date.accessioned2020-03-02T22:41:08Z
dc.date.available2020-03-02T22:41:08Z
dc.date.issued2017-03-15
dc.identifier.citationBeltran AP. (2017).Asociación de variantes genéticas en el gen DEAR1 con cáncer de seno y desenlace clínico en población colombiana (tesis doctoral). Universidad Nacional, Bogotá- Colombia.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75786
dc.description.abstractBreast cancer is the most common cancer and is the leading cause of cancer death in women worldwide. In Colombia, it is the leading cause of cancer death in women. For this reason is important to identify genes that may be involved in the development and progression of the disease. In this work, a candidate gene association study was carried out in the DEAR1 gene. The DEAR1 gene, coding for a member of the subfamily TRIM of finger RING proteins (TRIM 62), is located within chromosome 1p35.1, that is mutated and homozygously deleted in breast cancer and whose expression is down regulated/lost in DCIS. DEAR1 is an E3 ubiquitin ligase, involved in the process of acinar morphogenesis of the mammary gland. Previous work has shown that DEAR1 is a novel tumor suppressor that acts as a dominant regulator of polarity, tissue architecture, (Lott ST et al., 2009) and TGFβ-driven epithelial-mesenchymal transition (EMT) (Chen N et al., 2013). The main objective of this study was to determine the association of molecular variants in the DEAR1 gene with breast cancer, histopathological parameters and survival using a tagging SNP approach in a Colombian population sample. A case - control study was carried out, including 1023 patients with breast cancer (cases) and 1023 patients without the disease (controls), including epidemiological, histopathological and survival data. Genotyping of four SNPs rs584298, rs2927970, rs59983645 and rs599167, which captured 93.8% of the genetic variation in the region under investigation considering an MAF ≥5% and r2≥0.8, were performed for genotyping two methodological strategies IPLEX and KASP. The association analysis was perform by logistic conditional regression for six variables of epidemiological risk and pathological variables. Associations were found between tagSnps and breast cancer adjusted for the epidemiological risk factors rs584298 genotypes AG and GG (p=0.048 and p= 0.004, respectively). Analysis of the disease characteristics showed that SNPs rs584298 (genotype AG) (p = 0.015) show association with PR status and (genotype AA) (p= 0.048) show association with HER2 status.Sequencing of the coding region of the DEAR1 gene in breast tumor tissues and normal tissues embedded in paraffin was perform in order to identify new variants. Sequence analyzes performed with the CLC software genomics workbench revealed a low reading distribution length (1000pb). In the analysis, the presence of a variant already noted in the NCBI rs622407 that is located in the RING domain of the TRIM62 gene shown to be a synonymous SNP that does not alter the functionality of the protein. These results suggest that variants in DEAR1 are associated with breast cancer in a sample of the Colombian population, which would translate into the possible use of these variants as prognostic factors for the disease.
dc.description.abstractEl cáncer de seno es el cáncer más común y también es la primera causa de muerte por cáncer en mujeres a nivel mundial. En Colombia es la primera causa de muerte por cáncer en mujeres, de ahí la importancia en la identificación de genes que puedan estar implicados en el desarrollo y progresión de la enfermedad. En este trabajo se llevó a cabo un estudio de asociación tipo gen candidato en el gen DEAR1. El gen DEAR1, codifica para un miembro de la subfamilia TRIM de proteínas “finger RING” (TRIM 62), está ubicado dentro del cromosoma 1p35.1, presenta mutaciones y deleciones homocigotas en cáncer de seno y su expresión esta disminuida o pérdida en DCIS (carcinoma ductal in situ). DEAR1 es una E3 ubiquitin ligasa, involucrada en el proceso de morfogénesis acinar de la glándula mamaria. Es un supresor tumoral que actúa como un regulador dominante de polaridad, arquitectura del tejido (Lott ST et al., 2009) y como un regulador del proceso de transición epitelio mesenquimal dirigido por TGFβ (Chen N et al., 2013). El objetivo principal del estudio fue determinar la asociación de variantes moleculares en el gen DEAR1 con cáncer de seno, parámetros histopatológicos y sobrevida usando una aproximación “tagging SNP” en una muestra de población Colombiana. Se realizó un estudio caso – control que incluyo 1023 pacientes afectadas con cáncer de seno (casos) y 1023 pacientes sin la enfermedad (controles), se incluyeron datos epidemiológicos, histopatológicos y de sobrevida. Se realizó la genotipificación de cuatro SNPs rs584298, rs2927970, rs59983645 y rs599167 que capturaron el 93,8% de la variación genética en la región investigada considerando un MAF≥5% y r2≥0,8, para su genotipificación se utilizaron dos aproximaciones metodológicas iPLEX y KASP. Se realizó el análisis de asociación por regresión condicional logística para seis variables de riesgo epidemiológico y variables patológicas. Los resultados revelaron una asociación entre el tagSNP rs584298 genotipos AG y GG con cáncer de seno [p=0.048 y p=0.004 respectivamente] y el rs584298 (genotipo AG p=0.015) mostró asociación con la expresión de PR y el genotipo AA (p=0.048) mostró asociación con la expresión de HER2. La secuenciación de la región codificante del gen DEAR1 en tejidos tumorales de cáncer de seno y tejidos normales embebidos en parafina fue realizada con el fin de identificar nuevas variantes. Los análisis de secuencia realizados con el software CLC genomics workbench revelaron una baja longitud de distribución de las lecturas (1000pb). En el análisis se evidenció la presencia de una variante ya anotada en el NCBI rs622407 que se localiza en el dominio RING del gen TRIM62, es un SNP sinónimo que no altera la funcionalidad de la proteína. Estos resultados sugieren que variantes en DEAR1 están asociadas con cáncer de seno en una muestra de la población colombiana lo cual se traduciría en el posible uso de estas variantes como factores pronósticos de la enfermedad.
dc.format.extent171
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddcCiencias básicas- genética
dc.titleAsociación de variantes genéticas en el gen DEAR1 con cáncer de seno y desenlace clínico en población colombiana
dc.title.alternativeAssociation of DEAR1 tagging SNPs with breast Cancer in a sample of Colombian population: a case control study
dc.typeOtro
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.contributor.corporatenameBeltran-Lopez, Angela Patricia
dc.description.degreelevelDoctorado
dc.publisher.departmentInstituto de Biotecnología
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesA map of human genome variation from population-scale sequencing. (2010). Nature, 467(7319),1061-1073.
dc.relation.referencesAllred, D. C., Mohsin, S. K., & Fuqua, S. A. (2001). Histological and biological evolution of human premalignant breast disease. Endocr Relat Cancer, 8(1), 47-61.
dc.relation.referencesAnderson, E. (2002). The role of oestrogen and progesterone receptors in human mammary development and tumorigenesis. Breast Cancer Res, 4(5), 197-201.
dc.relation.referencesAntoniou, A. C., & Easton, D. F. (2006). Models of genetic susceptibility to breast cancer. Oncogene, 25(43), 5898-5905. doi:10.1038/sj.onc.1209879
dc.relation.referencesAuton, A., Brooks, L. D., Durbin, R. M., Garrison, E. P., Kang, H. M., Korbel, J. O., Abecasis, G. R. (2015). A global reference for human genetic variation. Nature, 526(7571), 68-74. doi:10.1038/nature15393
dc.relation.referencesBayés, M., & Gut, I. G. (2011). Overview of Genotyping Molecular Analysis and Genome Discovery (pp. 1-23): John Wiley & Sons, Ltd.
dc.relation.referencesBeral, V., Bull, D., Doll, R., Peto, R., Reeves, G., & Cancer, C. G. o. H. F. i. B. (2001). Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58 209 women with breast cancer and 101 986 women without the disease. Lancet, 358(9291), 1389-1399.
dc.relation.referencesBerliner, J. L., & Fay, A. M. (2007). Risk assessment and genetic counseling for hereditary breast and ovarian cancer: recommendations of the National Society of Genetic Counselors. J Genet Couns, 16(3), 241-260. doi:10.1007/s10897-007-9090-7
dc.relation.referencesBerndsen, C. E., & Wolberger, C. (2014). New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol, 21(4), 301-307. doi:10.1038/nsmb.2780
dc.relation.referencesBirch, J. M., Alston, R. D., McNally, R. J., Evans, D. G., Kelsey, A. M., Harris, M., . . . Varley, J. M. (2001). Relative frequency and morphology of cancers in carriers of germline TP53 mutations. Oncogene, 20(34), 4621-4628. doi:10.1038/sj.onc.1204621
dc.relation.referencesBloom HJG, R. W. (1957). Histologic grading and prognosis in breast cancer A study of 1409 cases of which 359 have been followed for 15 years. Breast Journal Cancer, 11(3), 359-377.
dc.relation.referencesBoardman, L. A., Thibodeau, S. N., Schaid, D. J., Lindor, N. M., McDonnell, S. K., Burgart, L. J., Hartmann, L. C. (1998). Increased risk for cancer in patients with the Peutz-Jeghers syndrome. Ann Intern Med, 128(11), 896-899.
dc.relation.referencesChan, M., Ji, S. M., Liaw, C. S., Yap, Y. S., Law, H. Y., Yoon, C. S., Lee, A. S. (2012). Association of common genetic variants with breast cancer risk and clinicopathological characteristics in a Chinese population. Breast Cancer Res Treat, 136(1), 209-220. doi:10.1007/s10549-012-2234-y
dc.relation.referencesChen, C., Seth, A. K., & Aplin, A. E. (2006). Genetic and Expression Aberrations of E3 Ubiquitin Ligases in Human Breast Cancer. Molecular Cancer Research, 4(10), 695-707. doi:10.1158/1541-7786.mcr-06-0182
dc.relation.referencesChen, N., Balasenthil, S., Reuther, J., Frayna, A., Wang, Y., Chandler, D. S., Killary, A. M. (2013). DEAR1 is a Chromosome 1p35 Tumor Suppressor and Master Regulator of TGFβ-Driven Epithelial-Mesenchymal Transition. Cancer discovery, 3(10), 1172-1189. doi:10.1158/2159-8290.cd-12-0499
dc.relation.referencesChen, Z. J. (2005). Ubiquitin signalling in the NF-[kappa]B pathway. Nat Cell Biol, 7(8), 758-765. doi:http://www.nature.com/ncb/journal/v7/n8/suppinfo/ncb0805-758_S1.html
dc.relation.referencesCiechanover, A. (2005). Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol, 6(1), 79-87.
dc.relation.referencesCox, A., Dunning, A. M., Garcia-Closas, M., Balasubramanian, S., Reed, M. W. R., Pooley, K. A., Consortium, B. C. A.C (2007). A common coding variant in CASP8 is associated with breast cancer risk. Nature Genetics, 39(3), 352-358. doi:10.1038/ng1981
dc.relation.referencesde Bakker, P. I., Yelensky, R., Pe'er, I., Gabriel, S. B., Daly, M. J., & Altshuler, D. (2005). Efficiency and power in genetic association studies. Nat Genet, 37(11), 1217-1223. doi:10.1038/ng1669
dc.relation.referencesDeshaies, R. J., & Joazeiro, C. A. (2009). RING domain E3 ubiquitin ligases. Annu Rev Biochem, 78, 399-434. doi:10.1146/annurev.biochem.78.101807.093809
dc.relation.referencesEaston, D. F., Pooley, K. A., Dunning, A. M., Pharoah, P. D., Thompson, D., Ballinger, D. G., Ponder, B. A. (2007). Genome-wide association study identifies novel breast cancer susceptibility loci. Nature, 447(7148), 1087-1093. doi:nature05887 [pii]10.1038/nature05887
dc.relation.referencesElston, C. W., & Ellis, I. O. (1991). Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology, 19(5), 403-410.
dc.relation.referencesEngle, L. J., Simpson, C. L., & Landers, J. E. (2006). Using high-throughput SNP technologies to study cancer. Oncogene, 25(11), 1594-1601. doi:10.1038/sj.onc.1209368
dc.relation.referencesFarmer, P., Bonnefoi, H., Becette, V., Tubiana-Hulin, M., Fumoleau, P., Larsimont, D., . . . Iggo, R. (2005). Identification of molecular apocrine breast tumours by microarray analysis. Oncogene, 24(29), 4660-4671. doi:1208561 [pii]10.1038/sj.onc.1208561
dc.relation.referencesFerlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., . . . Bray, F. (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 136(5), E359-386. doi:10.1002/ijc.29210
dc.relation.referencesFish, E. M., & Molitoris, B. A. (1994). Alterations in epithelial polarity and the pathogenesis of disease states. N Engl J Med, 330(22), 1580-1588. doi:10.1056/NEJM199406023302207
dc.relation.referencesFitzGerald, M. G., Marsh, D. J., Wahrer, D., Bell, D., Caron, S., Shannon, K. E., . . . Haber, D. A. (1998). Germline mutations in PTEN are an infrequent cause of genetic predisposition to breast cancer. Oncogene, 17(6), 727-731. doi:10.1038/sj.onc.1201984
dc.relation.referencesFrazer, K. A., Murray, S. S., Schork, N. J., & Topol, E. J. (2009). Human genetic variation and its contribution to complex traits. Nature Reviews Genetics, 10(4), 241-251. doi:10.1038/nrg2554
dc.relation.referencesFreemont, P. S. (1993). The RING finger. A novel protein sequence motif related to the zinc finger. Ann N Y Acad Sci, 684, 174-192.
dc.relation.referencesGago-Dominguez, M., Castelao, E. J., Gude, F., Fernandez, M. P., Aguado-Barrera, M. E., Ponte, S. M., . . . Martínez, M. E. (2016). Alcohol and breast cancer tumor subtypes in a Spanish Cohort. SpringerPlus, 5(1), 1-9. doi:10.1186/s40064-015-1630-2
dc.relation.referencesGarber, J. E., Goldstein, A. M., Kantor, A. F., Dreyfus, M. G., Fraumeni, J. F., Jr., & Li, F. P. (1991). Follow-up study of twenty-four families with Li-Fraumeni syndrome. Cancer Res, 51(22), 6094-6097.
dc.relation.referencesGarcia-Closas, M., Hall, P., Nevanlinna, H., Pooley, K., Morrison, J., Richesson, D. A., . . . Pharoah, P. D. (2008). Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics. PLoS Genet, 4(4), e1000054. doi:10.1371/journal.pgen.1000054
dc.relation.referencesGhoussaini, M., & Pharoah, P. D. (2009). Polygenic susceptibility to breast cancer: current state-of-the-art. Future Oncol, 5(5), 689-701.
dc.relation.referencesGibbs, R. A., Belmont, J. W., Hardenbol, P., Willis, T. D., Yu, F., Yang, H., . . . Nussbaum, R. L. (2003). The International HapMap Project. Nature, 426(6968), 789-796. doi:doi:10.1038/nature02168
dc.relation.referencesGjorevski, N., & Nelson, C. M. (2011). Integrated morphodynamic signalling of the mammary gland. Nature Reviews Molecular Cell Biology, 12(9), 581-593. doi:10.1038/nrm3168
dc.relation.referencesGomez. (2006). Evaluación cuantitativa del riesgo de cáncer de mama. Rev. Med. Clin. Condes, 17(4), 149-163.
dc.relation.referencesGonzález Ortega, J. M., Morales Wong, M. M., López Cuevas, Z., & Díaz Valdéz, M. (2011). Factores pronósticos del cáncer de mama. Revista Cubana de Cirugía, 50, 130-138.
dc.relation.referencesGupta, S., Jaworska-Bieniek, K., Lubinski, J., & Jakubowska, A. (2013). Can selenium be a modifier of cancer risk in CHEK2 mutation carriers? Mutagenesis, 28(6), 625-629. doi:10.1093/mutage/get050
dc.relation.referencesHall, J. M., Lee, M. K., Newman, B., Morrow, J. E., Anderson, L. A., Huey, B., & King, M. C. (1990). Linkage of early-onset familial breast cancer to chromosome 17q21. Science, 250(4988), 1684-1689.
dc.relation.referencesHatakeyama, S. (2011). TRIM proteins and cancer. Nat Rev Cancer, 11(11), 792-804. doi:10.1038/nrc3139nrc3139 [pii]
dc.relation.referencesHennessy, B. T., Gonzalez-Angulo, A. M., Stemke-Hale, K., Gilcrease, M. Z., Krishnamurthy, S., Lee, J. S., . . . Mills, G. B. (2009). Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res, 69(10), 4116-4124. doi:10.1158/0008-5472.CAN-08-34410008-5472.CAN-08-3441 [pii]
dc.relation.referencesHofmann, W., & Schlag, P. M. (2000). BRCA1 and BRCA2--breast cancer susceptibility genes. J Cancer Res Clin Oncol, 126(9), 487-496.
dc.relation.referencesHoward, B. A., & Gusterson, B. A. (2000). Human breast development. J Mammary Gland Biol Neoplasia, 5(2), 119-137.
dc.relation.referencesHu, Z., Fan, C., Oh, D. S., Marron, J. S., He, X., Qaqish, B. F., . . . Perou, C. M. (2006). The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics, 7, 96. doi:1471-2164-7-96 [pii]10.1186/1471-2164-7-96
dc.relation.referencesHuibregtse, J. M., Scheffner, M., Beaudenon, S., & Howley, P. M. (1995). A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci U S A, 92(7), 2563-2567.
dc.relation.referencesHulka, B. S., & Moorman, P. G. (2008). Breast cancer: hormones and other risk factors. Maturitas, 61(1-2), 203-213; discussion 213.
dc.relation.referencesJarvius, J., Nilsson, M., & Landegren, U. (2003). Oligonucleotide Ligation Assay. In P.-Y. Kwok (Ed.), Single Nucleotide Polymorphisms: Methods and Protocols (pp. 215-228). Totowa, NJ: Springer New York.
dc.relation.referencesKenemans, P., Verstraeten, R. A., & Verheijen, R. H. (2004). Oncogenic pathways in hereditary and sporadic breast cancer. Maturitas, 49(1), 34-43. doi:10.1016/j.maturitas.2004.06.005S0378512204002075 [pii]
dc.relation.referencesKitagawa, K., Kotake, Y., & Kitagawa, M. (2009). Ubiquitin-mediated control of oncogene and tumor suppressor gene products. Cancer Science, 100(8), 1374-1381. doi:10.1111/j.1349-7006.2009.01196.x
dc.relation.referencesKwok, P. Y. (2000). High-throughput genotyping assay approaches. Pharmacogenomics, 1(1), 95-100. doi:10.1517/14622416.1.1.95
dc.relation.referencesKwok, P. Y. (2001). Methods for genotyping single nucleotide polymorphisms. Annu Rev Genomics Hum Genet, 2, 235-258. doi:10.1146/annurev.genom.2.1.235
dc.relation.referencesLahmann, P. H., Hoffmann, K., Allen, N., Van Gils, C. H., Khaw, K. T., Tehard, B., . . . Riboli, E. (2004). Body size and breast cancer risk: Findings from the european prospective investigation into cancer and nutrition (EPIC). International Journal of Cancer, 111(5), 762-771. doi:10.1002/ijc.20315
dc.relation.referencesLambertini, M., Santoro, L., Del Mastro, L., Nguyen, B., Livraghi, L., Ugolini, D., . . . Azim, H. A., Jr. (2016). Reproductive behaviors and risk of developing breast cancer according to tumor subtype: A systematic review and meta-analysis of epidemiological studies. Cancer Treat Rev, 49, 65-76. doi:S0305-7372(16)30062-7 [pii]10.1016/j.ctrv.2016.07.006
dc.relation.referencesLander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., . . . Chen, Y. J. (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860-921.
dc.relation.referencesLim, W., Olschwang, S., Keller, J. J., Westerman, A. M., Menko, F. H., Boardman, L. A., . . . Houlston, R. S. (2004). Relative frequency and morphology of cancers in STK11 mutation carriers. Gastroenterology, 126(7), 1788-1794.
dc.relation.referencesLivak, K. J. (2003). SNP genotyping by the 5'-nuclease reaction. Methods Mol Biol, 212, 129-147.
dc.relation.referencesLott, S. T., Chen, N., Chandler, D. S., Yang, Q., Wang, L., Rodriguez, M., . . . Killary, A. M. (2009a). DEAR1 is a dominant regulator of acinar morphogenesis and an independent predictor of local recurrence-free survival in early-onset breast cancer. PLoS Med, 6(5), e1000068. doi:10.1371/journal.pmed.1000068
dc.relation.referencesLott, S. T., Chen, N. Y., Chandler, D. S., Yang, Q. F., Wang, L., Rodriguez, M., . . . Killary, A. M. (2009b). DEAR1 Is a Dominant Regulator of Acinar Morphogenesis and an Independent Predictor of Local Recurrence-Free Survival in Early-Onset Breast Cancer. Plos Medicine, 6(5). doi:ARTN e100006810.1371/journal.pmed.1000068
dc.relation.referencesMarblestone, J. G., LaRocque, J. P., Mattern, M. R., & Leach, C. A. (2012). Analysis of ubiquitin E3 ligase activity using selective polyubiquitin binding proteins. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1823(11), 2094-2097. doi:http://dx.doi.org/10.1016/j.bbamcr.2012.06.013
dc.relation.referencesMavaddat, N., Antoniou, A. C., Easton, D. F., & Garcia-Closas, M. (2010). Genetic susceptibility to breast cancer. Molecular Oncology, 4(3), 174-191. doi:http://dx.doi.org/10.1016/j.molonc.2010.04.011
dc.relation.referencesMcGuire WL, C. P., Sears ME, Escher GC. (1975). Estrogen receptors in human breast cancer: an overview. . Raven Press, New York,, 1-8.
dc.relation.referencesMcGuire WL, C. P., Sears ME, Escher GC. (1980). An update on estrogen and progesterone receptors in prognosis for primary and advanced breast cancer. . Progr Cancer Res Ther, 14, 337-343.
dc.relation.referencesMcPherson, K., Steel, C. M., & Dixon, J. M. (2000). ABC of breast diseases. Breast cancer-epidemiology, risk factors, and genetics. BMJ, 321(7261), 624-628.
dc.relation.referencesMeijers-Heijboer, H., van den Ouweland, A., Klijn, J., Wasielewski, M., de Snoo, A., Oldenburg, R., . . . Stratton, M. R. (2002). Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet, 31(1), 55-59.
dc.relation.referencesMeroni, G., & Diez-Roux, G. (2005). TRIM/RBCC, a novel class of 'single protein RING finger' E3 ubiquitin ligases. Bioessays, 27(11), 1147-1157. doi:10.1002/bies.20304
dc.relation.referencesMetzger Filho, O., Ignatiadis, M., & Sotiriou, C. (2011). Genomic Grade Index: An important tool for assessing breast cancer tumor grade and prognosis. Crit Rev Oncol Hematol, 77(1), 20-29. doi:10.1016/j.critrevonc.2010.01.011S1040-8428(10)00012-0 [pii]
dc.relation.referencesMichailidou, K., Hall, P., Gonzalez-Neira, A., Ghoussaini, M., Dennis, J., Milne, R. L., . . . Easton, D. F. (2013). Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet, 45(4), 353-361. doi:http://www.nature.com/ng/journal/v45/n4/abs/ng.2563.html#supplementary-information
dc.relation.referencesMichelle Alizart, J. S., Margaret Cummings, Sunil R. Lakhani. (2012). Molecular classification of breast carcinoma. Diagnostic Histopathology, 18(3), 97-103. doi: http://dx.doi.org/10.1016/j.mpdhp.2011.12.003
dc.relation.referencesMiller, S. A., Dykes, D. D., & Polesky, H. F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res, 16(3), 1215.
dc.relation.referencesMuthuswamy, S. K. (2009). A new tumor suppressor that regulates tissue architecture. PLoS Med, 6(5), e1000073. doi:10.1371/journal.pmed.1000073
dc.relation.referencesOeth, P., del Mistro, G., Marnellos, G., Shi, T., & van den Boom, D. (2009). Qualitative and quantitative genotyping using single base primer extension coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MassARRAY). Methods Mol Biol, 578, 307-343. doi:10.1007/978-1-60327-411-1_20
dc.relation.referencesOlayioye, M. A., Neve, R. M., Lane, H. A., & Hynes, N. E. (2000). The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J, 19(13), 3159-3167. doi:10.1093/emboj/19.13.3159
dc.relation.referencesOlefsky, J. M. (2001). Nuclear receptor minireview series. J Biol Chem, 276(40), 36863-36864. doi:10.1074/jbc.R100047200
dc.relation.referencesPatnala, R., Clements, J., & Batra, J. (2013). Candidate gene association studies: a comprehensive guide to useful in silicotools. BMC Genetics, 14(1), 39. doi:10.1186/1471-2156-14-39
dc.relation.referencesPerou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., . . . Botstein, D. (2000). Molecular portraits of human breast tumours. Nature, 406(6797), 747-752. doi:10.1038/35021093
dc.relation.referencesPharoah, P. D., Guilford, P., & Caldas, C. (2001). Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology, 121(6), 1348-1353.
dc.relation.referencesPérez Sánchez VM, V. C. T., Mora Tiscareño A. (2008). Diagnóstico histopatológico y factores pronóstico en cáncer infiltrante de glándula mamaria. Cancerología, 3, 7-17.
dc.relation.referencesQuintas-Cardama, A., Post, S. M., Solis, L. M., Xiong, S., Yang, P., Chen, N., . . . Lozano, G. (2014). Loss of the novel tumour suppressor and polarity gene Trim62 (Dear1) synergizes with oncogenic Ras in invasive lung cancer. J Pathol, 234(1), 108-119. doi:10.1002/path.4385
dc.relation.referencesQuintas-Cardama, A., Zhang, N., Qiu, Y. H., Post, S., Creighton, C. J., Cortes, J., . . . Kornblau, S. M. (2015). Loss of TRIM62 expression is an independent adverse prognostic factor in acute myeloid leukemia. Clin Lymphoma Myeloma Leuk, 15(2), 115-127.e115. doi:10.1016/j.clml.2014.07.011
dc.relation.referencesRahman, N., Seal, S., Thompson, D., Kelly, P., Renwick, A., Elliott, A., . . . Stratton, M. R. (2007). PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet, 39(2), 165-167. doi:10.1038/ng1959
dc.relation.referencesRenwick, A., Thompson, D., Seal, S., Kelly, P., Chagtai, T., Ahmed, M., . . . Rahman, N. (2006). ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet, 38(8), 873-875. doi:10.1038/ng1837
dc.relation.referencesReymond, A., Meroni, G., Fantozzi, A., Merla, G., Cairo, S., Luzi, L., . . . Ballabio, A. (2001). The tripartite motif family identifies cell compartments. EMBO J, 20(9), 2140-2151. doi:10.1093/emboj/20.9.2140
dc.relation.referencesReynolds, P., Hurley, S., Goldberg, D. E., Anton-Culver, H., Bernstein, L., Deapen, D., . . . Ziogas, A. (2004). Active smoking, household passive smoking, and breast cancer: evidence from the California Teachers Study. J Natl Cancer Inst, 96(1), 29-37.
dc.relation.referencesRipperger, T., Gadzicki, D., Meindl, A., & Schlegelberger, B. (2009). Breast cancer susceptibility: current knowledge and implications for genetic counselling. Eur J Hum Genet, 17(6), 722-731. doi:10.1038/ejhg.2008.212
dc.relation.referencesRoberts, J. M., Eide, E., & Faltermier, C. (2009). Inhibition of trim62 activity reduces cancer cell proliferation: Google Patents.
dc.relation.referencesRuiz-Linares, A., Adhikari, K., Acuna-Alonzo, V., Quinto-Sanchez, M., Jaramillo, C., Arias, W., . . . Gonzalez-Jose, R. (2014). Admixture in Latin America: geographic structure, phenotypic diversity and self-perception of ancestry based on 7,342 individuals. PLoS Genet, 10(9), e1004572. doi:10.1371/journal.pgen.1004572
dc.relation.referencesSavage, S. A., & Chanock, S. J. (2006). Genetic association studies in cancer: good, bad or no longer ugly? Hum Genomics, 2(6), 415-421.
dc.relation.referencesSeal, S., Thompson, D., Renwick, A., Elliott, A., Kelly, P., Barfoot, R., . . . Rahman, N. (2006). Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet, 38(11), 1239-1241.
dc.relation.referencesShehata, M., Teschendorff, A., Sharp, G., Novcic, N., Russell, I. A., Avril, S., . . . Stingl, J. (2012). Phenotypic and functional characterisation of the luminal cell hierarchy of the mammary gland. Breast Cancer Res, 14(5), R134. doi:10.1186/bcr3334 [pii]
dc.relation.referencesShen, R., Fan, J. B., Campbell, D., Chang, W., Chen, J., Doucet, D., . . . Oliphant, A. (2005). High-throughput SNP genotyping on universal bead arrays. Mutat Res, 573(1-2), 70-82. doi:10.1016/j.mrfmmm.2004.07.022
dc.relation.referencesSinn, H. P., & Kreipe, H. (2013). A Brief Overview of the WHO Classification of Breast Tumors, 4th Edition, Focusing on Issues and Updates from the 3rd Edition. Breast Care (Basel), 8(2), 149-154. doi:10.1159/000350774
dc.relation.referencesSmid, M., Wang, Y., Klijn, J. G., Sieuwerts, A. M., Zhang, Y., Atkins, D., . . . Foekens, J. A. (2006). Genes associated with breast cancer metastatic to bone. J Clin Oncol, 24(15), 2261-2267. doi:JCO.2005.03.8802 [pii]10.1200/JCO.2005.03.8802
dc.relation.referencesSorlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., . . . Borresen-Dale, A. L. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A, 98(19), 10869-10874. doi:10.1073/pnas.19136709898/19/10869 [pii]
dc.relation.referencesSpratt, Donald E., Walden, H., & Shaw, Gary S. (2014). RBR E3 ubiquitin ligases: new structures, new insights, new questions. Biochemical Journal, 458(Pt 3), 421-437. doi:10.1042/bj20140006
dc.relation.referencesSun, Y., Zhang, T., Wang, C., Jin, X., Jia, C., Yu, S., & Chen, J. (2015). MiRNA-615-5p functions as a tumor suppressor in pancreatic ductal adenocarcinoma by targeting AKT2. PLoS One, 10(4), e0119783. doi:10.1371/journal.pone.0119783
dc.relation.referencesSyvanen, A. C. (2001). Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet, 2(12), 930-942. doi:10.1038/35103535
dc.relation.referencesTan, M.-H., Mester, J. L., Ngeow, J., Rybicki, L. A., Orloff, M. S., & Eng, C. (2012). Lifetime Cancer Risks in Individuals with Germline PTEN Mutations. Clinical Cancer Research, 18(2), 400-407. doi:10.1158/1078-0432.ccr-11-2283
dc.relation.referencesThe International HapMap Project. (2003a). Nature, 426(6968), 789-796. doi:10.1038/nature02168 nature02168 [pii]
dc.relation.referencesThe International HapMap Project. (2003b). Nature, 426(6968), 789-796. doi:http://www.nature.com/nature/journal/v426/n6968/suppinfo/nature02168_S1.html
dc.relation.referencesThomas, G., Jacobs, K. B., Kraft, P., Yeager, M., Wacholder, S., Cox, D. G., . . . Hunter, D. J. (2009). A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nature Genetics, 41(5), 579-584. doi:10.1038/ng.353
dc.relation.referencesThompson, D., & Easton, D. (2004). The genetic epidemiology of breast cancer genes. J Mammary Gland Biol Neoplasia, 9(3), 221-236. doi:494761 [pii] 10.1023/B:JOMG.0000048770.90334.3b
dc.relation.referencesTorres, D., Rashid, M. U., Gil, F., Umana, A., Ramelli, G., Robledo, J. F., Hamann, U. (2007). High proportion of BRCA1/2 founder mutations in Hispanic breast/ovarian cancer families from Colombia. Breast Cancer Res Treat, 103(2), 225-232. doi:10.1007/s10549-006-9370-1
dc.relation.referencesTurnbull, C., & Rahman, N. (2008). Genetic predisposition to breast cancer: past, present, and future. Annu Rev Genomics Hum Genet, 9, 321-345. doi:10.1146/annurev.genom.9.081307.164339
dc.relation.referencesUchil, P. D., Quinlan, B. D., Chan, W. T., Luna, J. M., & Mothes, W. (2008). TRIM E3 ligases interfere with early and late stages of the retroviral life cycle. PLoS Pathog, 4(2), e16. doi:10.1371/journal.ppat.004001607-PLPA-RA-0403 [pii]
dc.relation.referencesVega, A., Salas, A., Milne, R. L., Carracedo, B., Ribas, G., Ruibal, A., . . . Carracedo, A. (2009). Evaluating new candidate SNPs as low penetrance risk factors in sporadic breast cancer: a two-stage Spanish case-control study. Gynecol Oncol, 112(1), 210-214. doi:10.1016/j.ygyno.2008.09.012
dc.relation.referencesVenter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., . . . Zhu, X. (2001). The sequence of the human genome. Science, 291(5507), 1304-1351.
dc.relation.referencesVeronesi, U., Viale, G., Rotmensz, N., & Goldhirsch, A. (2006). Rethinking TNM: breast cancer TNM classification for treatment decision-making and research. Breast, 15(1), 3-8. doi:S0960-9776(05)00297-3 [pii]10.1016/j.breast.2005.11.011
dc.relation.referencesWalsh, T., Casadei, S., Coats, K. H., Swisher, E., Stray, S. M., Higgins, J., . . . King, M. C. (2006). Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA, 295(12), 1379-1388.
dc.relation.referencesWashbrook, E. (2006). Breast disordersRisk factors and epidemiology of breast cancer. Women's Health Medicine, 3(1), 8-14. doi:http://dx.doi.org/10.1383/wohm.2006.3.1.8
dc.relation.referencesWeigelt B, G. F., Reis-Filho JS. (2010). Histological types of breast cancer: how special are they? Molecular Oncology, 4(3), 192-208. doi:10.1016/j.molonc.2010.04.004
dc.relation.referencesWinston, J. S., Ramanaryanan, J., & Levine, E. (2004). HER-2/neu evaluation in breast cancer are we there yet? Am J Clin Pathol, 121 Suppl, S33-49.
dc.relation.referencesWooster, R., Bignell, G., Lancaster, J., Swift, S., Seal, S., Mangion, J., . . . Micklem, G. (1995). Identification of the breast cancer susceptibility gene BRCA2. Nature, 378(6559), 789-792. doi:10.1038/378789a0
dc.relation.referencesWu, M. C., Kraft, P., Epstein, M. P., Taylor, D. M., Chanock, S. J., Hunter, D. J., & Lin, X. (2010). Powerful SNP-set analysis for case-control genome-wide association studies. Am J Hum Genet, 86(6), 929-942. doi:10.1016/j.ajhg.2010.05.002
dc.relation.referencesYoon, A. R., Gao, R., Kaul, Z., Choi, I. K., Ryu, J., Noble, J. R., . . . Wadhwa, R. (2011). MicroRNA-296 is enriched in cancer cells and downregulates p21WAF1 mRNA expression via interaction with its 3' untranslated region. Nucleic Acids Res, 39(18), 8078-8091. doi:10.1093/nar/gkr492
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalBreast cancer
dc.subject.proposalcancer de seno
dc.subject.proposalDEAR1
dc.subject.proposalmorfogenesis
dc.subject.proposalDEAR1/TRIM62
dc.subject.proposalGenetic susceptibility
dc.subject.proposalFactores de riesgo genéticos
dc.subject.proposalPolymorphism
dc.subject.proposalUbiquitins
dc.subject.proposalHER
dc.subject.proposalProgesterone receptor
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit