Show simple item record

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorGuerrero Orjuela, Ligia Stella
dc.contributor.advisorUribe Bustos, Johanna Xiomara
dc.contributor.authorCaicedo Torres, Lida Marcela
dc.date.accessioned2020-03-05T13:27:38Z
dc.date.available2020-03-05T13:27:38Z
dc.date.issued2019-12-21
dc.identifier.citationCaicedo, Lida M; Guerrero Ligia S; Uribe, Johanna X.(2019 ).Análisis de ecuaciones de determinación del gasto energético basal y/o en reposo que incluyen la variable masa libre de grasa, en población adulta físicamente activa. Universidad Nacional de Colombia.
dc.identifier.citationCaicedo, Lida M; Guerrero Ligia S, Johanna X. Análisis de ecuaciones de determinación del gasto energético basal y/o en reposo que incluyen la variable masa libre de grasa, en población adulta físicamente activa. Univ Nac Colomb. 2019
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75859
dc.description.abstractIntroducción: Un equilibrio óptimo entre la ingesta y el gasto de energía es crucial para el rendimiento en la actividad física especialmente en deportistas y/o alto entrenamiento, obtener las estimaciones del Gasto Energético en Reposo (GER) y/o Gasto Energético Basal (GEB) de forma práctica, sencilla y cercana al Gold Standard (Calorimetría Indirecta) es fundamental para asegurar el cumplimiento de las metas en las intervenciones dietéticas y deportivas. Se asume que el GER/GEB es mayor en atletas y/o personas físicamente muy activas derivado de su masa libre de grasa (MLG) comparado con personas que realizan actividad física moderada o leve. Objetivo: Explorar en la literatura cuáles de las ecuaciones de predicción que emplean la variable Masa Libre de Grasa tiene una predicción más cercana al Gold Estándar (Calorimetría Indirecta) para el cálculo de Gasto Metabólico en Reposo y/o Basal en personas físicamente activas. Tipo de estudio: Revisión narrativa de tipo cualitativo. Metodología: Se realizó la búsqueda de artículos científicos en 4 bases de datos: Pubmed (MEDLINE), Web of Science, Cochrane y el buscador de la Universidad Nacional de Colombia con palabras términos MeSH y términos libres con la siguiente ecuación de búsqueda.((("Athletes"[Mesh] OR "Sports"[Mesh]) OR "Exercise"[Mesh]) AND (("prediction equation"[All Fields] OR "Cunningham equation"[All Fields] OR "Prediction formulas"[All Fields]) AND "lean body mass"[All Fields] OR "fat free mass"[All Fields] OR "body composition "[Mesh])) AND ("Basal Metabolism"[Mesh] OR "Energy Intake"[Mesh] OR "Energy expenditure"[All Fields] OR "basal metabolic rate"[All Fields] OR "resting metabolic rate (RMR)"[All Fields]) AND ("2009/05/29"[PDat]: "2019/01/01"[PDat] AND "humans"[MeSH Terms]) AND "Calorimetry, Indirect"[Mesh]) y filtro de edad de 19 a 65 años. Se encontraron 49 artículos de los cuales se seccionaron 10 de acuerdo a los criterios de inclusión y exclusión que se establecieron y de acuerdo al objetivo de la investigación, con el propósito de determinar cuáles de las ecuaciones de predicción se pueden utilizar en la práctica deportiva y de esta forma generar recursos bibliográficos para futuras investigaciones experimentales. Resultados: En la revisión de la literatura se encontró que algunas ecuaciones de predicción como la propuesta por Cunningham 1991 , Harris- Benedict, De Lorentz, Owen, FAO-OMS-ONU y Mifflin-St. Jeor, fueron analizadas en población físicamente activa, mostrando una predicción cercana a la Calorimetría Indirecta; considerada el método de referencia, lo cual válida emplear dichas ecuaciones como un método alternativo, práctico y económico para la estimación del GER/GEB. Conclusiones: Existe evidencia científica que el GER/GEB se puede determinar con precisión en personas adultas sanas y físicamente activas, empleando diferentes ecuaciones de predicción que incluyen cálculos de composición corporal específicamente el correspondiente a la Masa Libre de Grasa (MLG), de la misma manera los estudios sugieren tener en cuenta el tipo de actividad física pues los resultados puede variar significativamente entre deportistas de alto rendimiento con respecto a deportistas recreativos.
dc.description.abstractBackground: An optimal balance between intake and energy expenditure is crucial for the performance in physical activity especially in athletes and / or high training, obtaining the benefits of Resting Energy Expenditure (RRE) in a practical, simple and close to the Gold Standard (Indirect Calorimetry) is essential to ensure compliance with the goals in the dietetics and sports. It is assumed that resting energy expenditure (RRE) is higher in athletes and / or physically very active people in their fat-free mass (FFM). Purpose: To explore in the literature of the prediction equations that use the Fat Free Mass variable has a prediction closer to the Standard Gold (Indirect Calorimetry) for the calculation of Metabolic Expenditure at Rest and / or Baseline in physically active people. Type of study: Qualitative type narrative review. Methodology: The search of scientific articles was carried out in 4 databases: Pubmed (MEDLINE), Web of Science, Cochrane and the search engine of the Universidad Nacional de Colombia with words MeSH terms and free terms with the following search equation. ((("Athletes"[Mesh] OR "Sports"[Mesh]) OR "Exercise"[Mesh]) AND (("prediction equation"[All Fields] OR "Cunningham equation"[All Fields] OR "Prediction formulas"[All Fields]) AND "lean body mass"[All Fields] OR "fat free mass"[All Fields] OR "body composition "[Mesh])) AND ("Basal Metabolism"[Mesh] OR "Energy Intake"[Mesh] OR "Energy expenditure"[All Fields] OR "basal metabolic rate"[All Fields] OR "resting metabolic rate (RMR)"[All Fields]) AND ("2009/05/29"[PDat]: "2019/01/01"[PDat] AND "humans"[MeSH Terms]) AND "Calorimetry, Indirect"[Mesh]) and age filter from 19 to 65 years. 49 articles were found of which 10 were sectioned according to the inclusion and exclusion criteria that were established and according to the objective of the investigation. With the purpose of determining which of the prediction equations can be used in sports practice and thus generate bibliographic resources for future experimental research. Results: In the literature review it was found that some prediction equations such as the one proposed by Cunningham 1991, Harris-Benedict, De Lorentz, Owen, FAO-WHO-UN and Mifflin-St. Jeor, they were analyzed in a physically active population, showing a prediction close to Indirect Calorimetry; considered the reference method, which valid to use these equations as an alternative, practical and economical method for estimating the GER / GEB. Conclusions: There is scientific evidence that the RRE can be accurately determined in healthy and physically active adults, using different prediction equations that include calculations of body composition specifically corresponding to Fat Free Mass (FFM), of the same In this way, studies suggest taking into account the type of physical activity, since the results can vary significantly among high-performance athletes with respect to recreational athletes.
dc.format.extent97
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddcMedicina y salud
dc.titleAnálisis de ecuaciones de determinación del gasto energético basal y/o en reposo que incluyen la variable masa libre de grasa, en población adulta físicamente activa
dc.title.alternativeAnalysis of the prediction equations of resting energy expenditure (RRE) / Basal metabolic rate (BMR) that include the variable fat-free mass in the physically active adult population.
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalMagister en Fisiología. Línea de Investigación: Alimentación y Promoción de la salud
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.contributor.researchgroupAlimentación y Nutrición Humana
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAmerican Dietetic Association, Dietitians of Canada, & American College of Sports Medicine, et al. (2009). American College of Sports Medicine Position stand. Nutriticion and athletic performance. Medicine & Science in Sports & Exercise, 41(3), 709–731. https://doi.org/10.1249/MSS.0b013e318190eb86
dc.relation.referencesArchiza, B., Welch, J. F., & Sheel, A. W. (2017). Classical experiments in whole-body metabolism: closed-circuit respirometry. European Journal of Applied Physiology, 117(10), 1929–1937. https://doi.org/10.1007/s00421-017-3681-2
dc.relation.referencesArmstrong, T., & Bull, F. (2006). Development of the World Health Organization Global Physical Activity Questionnaire (GPAQ). Journal of Public Health, 14(2), 66–70. https://doi.org/10.1007/s10389-006-0024-x
dc.relation.referencesBroad, E., & Juzwiak, C. (2018). Sports nutrition in para athletes determining energy requirements. In ASPETAR Issue targeted topic - paralympic athletesTAR Issue targeted topic - paralympic athletes (pp. 170–175).
dc.relation.referencesCompher, C., Frankenfield, D., Keim, N., & Roth-Yousey, L. (2006). Best Practice Methods to Apply to Measurement of Resting Metabolic Rate in Adults: A Systematic Review. Journal of the American Dietetic Association, 106(6), 881–903. https://doi.org/10.1016/j.jada.2006.02.009
dc.relation.referencesCunningham, J. (1980). A reanalysis of the factors influencing metabolic rate in normal. Am J Clin Nutr, 30(Noviembre), 2372–2374.
dc.relation.referencesCunningham, J. (1991a). Original Body composition a synthetic review general prediction of energy expenditure : as a determinant and a proposed. Am J Clin Nutr, 54(February), 963–969.
dc.relation.referencesCunningham, J. (1991b). Original Body composition a synthetic review general prediction of energy expenditure : as a determinant and a proposed. Am J Clin Nutr, 54, 963–969.
dc.relation.referencesDaly, J. M., Heymsfield, S. B., Head, C. A., Harvey, L. P., Nixon, D. W., Katzeff, H., & Grossman, G. D. (1985). Human energy requirements: Overestimation by widely used prediction equation. American Journal of Clinical Nutrition, 42(6), 1170–1174. https://doi.org/10.1093/ajcn/42.6.1170
dc.relation.referencesDasso, N. A. (2019). How is exercise different from physical activity? A concept analysis. Nursing Forum, 54(1), 45–52. https://doi.org/10.1111/nuf.12296
dc.relation.referencesDe Lorenzo A; Bertini I, C. N. P. R. I. I. B. A. (1999). A new predictive equation to calculate resting metabolic rate in athletes. J Sports Med Phys Fitness, 39(3), 213–219.
dc.relation.referencesDe, S., Marcos, C., Silleras, B. D. M., Alicia, M., Martín, C., Carreño, L., … Redondo, P. (2015). Propuesta de una nueva fórmula de estimación del gasto energético en reposo para población sana española. Nutr Hosp, 32(5), 2346–2352. https://doi.org/10.3305/nh.2015.32.5.9680
dc.relation.referencesEdgar L, A. A. (2014). Herramienta pico para la formulación y búsqueda de preguntas clínicamente relevantes en la psicooncología basada en la evidencia PICO. Rev_psic, 11(2–3), 259–270. https://doi.org/10.5209/rev
dc.relation.referencesFlack, K. D., Siders, W. A., Ms, L. J., & Roemmich, J. N. (2016). Cross-Validation of Resting Metabolic Rate Prediction Equations. Journal of the Academy of Nutrition and Dietetics, 116(9), 1413–1422. https://doi.org/10.1016/j.jand.2016.03.018
dc.relation.referencesFrankenfield, D. C. (2010). On heat, respiration, and calorimetry. Nutrition, 26(10), 939–950. https://doi.org/10.1016/j.nut.2010.01.002
dc.relation.referencesG.Christenson, C. C. K. P. (1985). Physical activity, exercise, and physical fitness: definitions and distinctions for healt-related research. Public Health Rep, 100(2), 126–131. https://doi.org/10.1093/nq/s9-IX.228.365-f
dc.relation.referencesGreenwood, M., Cooke, M. B., Ziegenfuss, T., Kalman, D. S., & Antonio, J. (2009). Macronutrient Intake for Physical Activity. In Nutritional Supplements in Sports and Exercise (Vol. 41, p. 441.e7). https://doi.org/10.1016/j.jneb.2009.05.003
dc.relation.referencesHaaf, T., & Weijs, P. J. M. (2014). Resting Energy Expenditure Prediction in Recreational Athletes of 18 – 35 Years : Confirmation of Cunningham Equation and an Improved Weight-Based Alternative. PLos One, 9(10), 1–8. https://doi.org/10.1371/journal.pone.0108460
dc.relation.referencesHackney, A. C. (2016). Measurement Techniques for Energy Expenditure. Exercise, Sport, and Bioanalytical Chemistry, 33–42. https://doi.org/10.1016/b978-0-12-809206-4.00013-5
dc.relation.referencesHarris, J. A., & Benedict, F. G. (1918). A Biometric Study of Human Basal Metabolism. Proceedings of the National Academy of Sciences of the United States of America, 4(12), 370–373.
dc.relation.referencesHaugen, H. A., Chan, L.-N., & Li, F. (2007). Invited Review Indirect Calorimetry: A Practical Guide for Clinicians Determining Energy Expenditure. Nutrition in Clinical Practice, (22), 377–388.
dc.relation.referencesHenry, C. J. K. (2005). Basal metabolic rate studies in humans : measurement and development of new equations. Public Health Nutrition, 8, 1133–1152. https://doi.org/10.1079/PHN2005801
dc.relation.referencesHeymsfield, S. B., Bourgeois, B., & Thomas, D. M. (2017). Assessment of human energy exchange: Historical overview. European Journal of Clinical Nutrition, 71(3), 294–300. https://doi.org/10.1038/ejcn.2016.221
dc.relation.referencesJanice T, M. M. (1996). Predicted and Measured Resting Metabolic Rate of Male and Female Endurance Athletes.pdf. J Am Diet Assoc, 96(1), 34.
dc.relation.referencesJohn K. (1988). Energy metabolism an overview. Infunsiontherapie, 15(4), 148–151.
dc.relation.referencesJoseph, M., Gupta, R. Das, Prema, L., Inbakumari, M., & Thomas, N. (2017). Are predictive equations for estimating resting energy expenditure accurate in Asian Indian male weightlifters? Indian Journal of Endocrinology and Metabolism, 21(4), 515–519. https://doi.org/10.4103/ijem.IJEM_563_16
dc.relation.referencesJuzwiak, C. R., Winckler, C., Joaquim, D. P., Silva, A., & de Mello, M. T. (2016). Comparison of Measured and Predictive Values of Basal Metabolic Rate in Brazilian Paralympic Track and Field Athletes. International Journal of Sport Nutrition and Exercise Metabolism, 26(4), 330–337. https://doi.org/10.1123/ijsnem.2015-0015
dc.relation.referencesK, R. (2018). Body composition techniques. Indian J Med Res, 148, 648–658. https://doi.org/10.4103/ijmr.IJMR
dc.relation.referencesKinney, J. (1992). Indirect Calorimetry: The Search for Clinical Relevance. Nutrition in Clinical Practice, 7(5), 203–206. https://doi.org/10.1177/0115426592007005203
dc.relation.referencesLoucks, A. B. (2004). Energy balance and body composition in sports and exercise. Journal of Sports Sciences, 22(1), 1–14. https://doi.org/10.1080/0264041031000140518
dc.relation.referencesLoucks, A. B., Kiens, B., & Wright, H. H. (2011). Energy availability in athletes. Journal of Sports Sciences, 29(S1), S7–S15. https://doi.org/10.1080/02640414.2011.588958
dc.relation.referencesMantilla Toloza, S., Gómez-Conesa, A., & Toloza, S, G.-C. A. (2007). Revisión El Cuestionario Internacional de Actividad Física . Un instrumento adecuado en el seguimiento de la actividad física poblacional International Physical Activity Questionnaire . An adequate instrument in population physical activity monitoring. Rev Iberoam Fisioter Kinesiol, 8(10), 48–52. Retrieved from https://www.elsevier.es/es-revista-revista-iberoamericana-fisioterapia-kinesiologia-176-pdf-13107139
dc.relation.referencesMartínez-Sanz, J., Urdampilleta, A., & Mielgo-Ayuso, J. (2013). Necesidades energéticas, hídricas y nutricionales en el deporte. Motricidad. European Journal of Human Movement, 30, 37–52.
dc.relation.referencesMataix, J. M. J. (2008). Gasto Energético. In Tratado de nutrición y alimentación (pp. 909–925).
dc.relation.referencesMattsson, S., & Thomas, B. J. (2006). Development of methods for body composition studies. Physics in Medicine and Biology, 51(13), 203–228. https://doi.org/10.1088/0031-9155/51/13/R13
dc.relation.referencesMcArdle, W., & V, K. F. K. (2002). Body composition. In Essentials of exercise physiology (pp. 522–551). https://doi.org/10.1108/09513550510576125
dc.relation.referencesMielgo-ayuso, J., Maroto-sánchez, B., Luzardo-socorro, R., & Palacios, G. (2015). Valoración del estado nutricional y del gasto energético en deportistas. Rev Esp Nutr Comunitaria, 21(1), 225–234. https://doi.org/10.14642/RENC.2015.21.sup1.5069
dc.relation.referencesMifflin, D., Jeor, T., Daugherty, A., Hill, A., Scott, J., Daugherty, S., & Kho, Y. (1990). A new predictive equation in healthy individuals for resting energy. American Journal of Clinical Nutrition, 51(January), 241–247.
dc.relation.referencesMinisterio de la Protección Social, Departamento Administrativo del Deporte, la Recreación, la A. F. y el A. del T. L.-C. (2011). Documento técnico con los contenidos de direccionamiento pedagógico para la promoción de hábitos de vida saludable, con énfasis en alimentación saludable y el fomento de ambientes 100% libres de humo de cigarrillo a través de la práctica regular de la act.
dc.relation.referencesMoreira, O. C., Alonso-Aubin, D. A., De Oliveira, C. E. P., Candia-Luján, R., & De Paz, J. A. (2015). Métodos de evaluación de la composición corporal: Una revisión actualizada de descripción, aplicación, ventajas y desventajas. Archivos de Medicina Del Deporte, 32(6), 387–394.
dc.relation.referencesMüller, M. J., Bosy-Westphal, A., Klaus, S., Kreymann, G., Lührmann, P. M., Neuhäuser-Berthold, M., … Steiniger, J. (2004). World Health Organization equations have shortcomings for predicting resting energy expenditure in persons from a modern, affluent population: generation of a new reference standard from a retrospective analysis of a German database of resting energy expe. The American Journal of Clinical Nutrition, 80(5), 1379–1390. https://doi.org/10.1093/ajcn/80.5.1379
dc.relation.referencesMurison, S. D., Johnstone, A. M., Rance, K. A., Speakman, J. R., & Duncan, J. S. (2018). Factors influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin, or triiodothyronine. The American Journal of Clinical Nutrition, 82(5), 941–948. https://doi.org/10.1093/ajcn/82.5.941
dc.relation.referencesOlivos, Cristina; Cuevas, Ada; Alvarez, Veronica; Jorquera, C. (2012). Nutrición Para el Entrenamiento y la Competición. Revista Médica Clínica Las Condes, 23(3), 253–261. https://doi.org/10.1016/s0716-8640(12)70308-5
dc.relation.referencesOrganización Mundial de la Salud. (2010). Recomendaciones mundiales sobre actividad física para la salud.
dc.relation.referencesOwen, E., Owen, S., & Kendrick, V. (1986). A reappraisal of caloric in healthy women13 requirements. Am J Clin Nutr, (44), 1–19.
dc.relation.referencesPatil, B. R., Patkar, D. P., Mandlik, S. A., Kuswarkar, M. M., & Jindal, G. D. (2011). Single prediction equation for bioelectrical impedance analysis in adults aged 2259 years. Journal of Medical Engineering and Technology, 35(2), 109–114. https://doi.org/10.3109/03091902.2010.543751
dc.relation.referencesPinheiro Volp, A. C., Esteves de Oliveira, F. C., Duarte Moreira Alves, R., Esteves, E. A., & Bressan, J. (2011). Energy expenditure: components and evaluation methods. Nutricion Hospitalaria, 26(3), 430–440. https://doi.org/10.1590/S0212-16112011000300002
dc.relation.referencesRangel Caballero, L. G., Rojas Sánchez, L. Z., & Gamboa Delgado, E. M. (2015). Actividad física y composición corporal en estudiantes universitarios de cultura física, deporte y recreación. Revista de La Universidad Industrial de Santander. Salud, 47(3), 281–290. https://doi.org/10.18273/revsal.v47n3-2015004
dc.relation.referencesRavussin, E., Lillioja, S., Anderson, T. E., Christin, L., & Bogardus, C. (1986). Determinants of 24-hour Energy Expenditure in Man. The Journal of Clinical Investigation, Inc., 78, 1568–1578.
dc.relation.referencesRedondo, R. B. (2015). Resting energy expenditure ; assessment methods and applications. Nutr Hosp, 31, 245–253. https://doi.org/10.3305/nh.2015.31.sup3.8772
dc.relation.referencesRother, E. T. (2007). Revisión Sistemática X Revison Narrativa. Acta Paul Enfem, 20(2). https://doi.org/10.1097/00005053-192411000-00111
dc.relation.referencesSarah Staal, Anders Sjödin, Ida Fahrenholtz, Karen Bonnesen, and A. M. (2014). Low RMRratio as a Surrogate Marker for Energy Deficiency, the Choice of Predictive Equation Vital for Correctly Identifying Male and Female Ballet Dancers at Risk. International Journal of Sport Nutrition and Exercise Metabolism. https://doi.org/10.1123/ijsnem.2017-0327
dc.relation.referencesSchofield, K. L., Thorpe, H., & Sims, S. T. (2019). Resting metabolic rate prediction equations and the validity to assess energy deficiency in the athlete population. Experimental Physiology, 104(4), 469–475. https://doi.org/10.1113/EP087512
dc.relation.referencesTaylor, N. A. S., Shephard, R. J., & Lindinger, M. I. (2018). Foundational insights into the estimation of whole-body metabolic rate. European Journal of Applied Physiology, 118(5), 867–874. https://doi.org/10.1007/s00421-018-3828-9
dc.relation.referencesTen Haaf, T., & Weijs, P. J. M. (2014). Resting energy expenditure prediction in recreational athletes of 18-35 years: Confirmation of Cunningham equation and an improved weight-based alternative. PLoS ONE, 9(10), 1–8. https://doi.org/10.1371/journal.pone.0108460
dc.relation.referencesWebb, P. (1981). Energy expenditure and fat-free mass in men and women, 34, 1816–1826.
dc.relation.referencesWilmore, Jack; Costill, D. (2007). Programación de ejercicios para la salud y las forma física. In Fisiología del esfuerzo y del deporte (pp. 663–667).
dc.relation.referencesWong, J. E., Poh, B. K., Nik Shanita, S., Izham, M. M., Chan, K. Q., Tai, M. De, … Ismail, M. N. (2012). Predicting basal metabolic rates in Malaysian adult elite athletes. Singapore Medical Journal, 53(11), 744–749. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23192502
dc.relation.referencesWorld Health Organization. (2018). Global Physical Activity Questionnaire Analysis Guide, 23. https://doi.org/10.1016/S0140-6736(12)60736-3.The World Health Organization (WHO). (1988). Obesity: preventing and managing the global epidemic. Geneva: World Health Organization. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11234459
dc.relation.referencesZarate, M; Lancheros, L; Barrera, P. (2011). Gasto energético en reposo y composición corporal en adultos. Rev Fac Med, 59(1), 43–58.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalBasal metabolism
dc.subject.proposalMetabolismo basal
dc.subject.proposalComposición corporal
dc.subject.proposalBody composition
dc.subject.proposalGasto de energía
dc.subject.proposalEnergy expenditure
dc.subject.proposalAtletas
dc.subject.proposalAthletes
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit