Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorPolo, Mayo Luz
dc.contributor.authorVélez Montoya, Daniela
dc.date.accessioned2020-03-06T15:52:15Z
dc.date.available2020-03-06T15:52:15Z
dc.date.issued2019-03-20
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75926
dc.description.abstractThe thesis presented here focus on the estimation in small areas. The purpose is to implement a modi ed Bootstrap procedure, which allows obtaining an estimate of the mean squared error. In this study a Mixed General Linear model is considered, particular, a two-level model. The main contribution of this thesis consists on considering, in the Bootstrap procedure adaptation, the conditioned Pearson residuals associated to the error of the model (residuals of the units of level 1) and the EBLUP Pearson residuals corresponding to the prediction of the random e ect of the model (residuals of the units of level 2), which has not been considered in the literature related to the Bootstrap procedures applied to linear mixed hierarchical models.
dc.description.abstractLa tesis que se presenta a continuación tiene como tema principal la estimación en áreas pequeñas. El objetivo es implementar una modi ficación del procedimiento Bootstrap sugerido en la literatura, el cual permite obtener un estimador del error cuadrático medio del estimador del promedio para cada área pequeña. En este estudio se trabajará un Modelo Lineal General Mixto, en particular un modelo de dos niveles. El aporte de este trabajo consiste en considerar en la adaptación del procedimiento Bootstrap, los residuales condicionales de Pearson asociados al error del modelo (residuales de las unidades de nivel 1) y residuales MPLIE de Pearson correspondiente a la predicción del efecto aleatorio del modelo (residuales de las unidades de nivel 2), los cuales no son considerados en la literatura relacionada con los procedimientos Bootstrap aplicados a modelos lineales jerárquicos mixtos.
dc.format.extent109
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc310 - Colecciones de estadística general
dc.titleUna adaptación del procedimiento bootstrap en la estimación del error cuadrático medio en área pequeñas con aplicación a datos colombianos.
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalMagíster en Estadística.
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Estadística
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesMapas bogot a, http://mapas.bogota.gov.co/#, Accessed: 2018-11-30.
dc.relation.referencesReml variance-component estimation, http://nitro.biosci.arizona.edu/ courses/EEB596-1999/handouts/REML.pdf, Accessed: 2019-03-02.
dc.relation.referencesAgustin Siti Aminah, Gandhi Pawitan, and Bertho Tantular, Empirical best linear unbiased prediction method for small areas with restricted maximum likelihood and bootstrap procedure to estimate the average of household expenditure per capita in banjar regency, AIP Conference Proceedings, vol. 1827, AIP Publishing, 2017.
dc.relation.referencesGeorge E Battese, Rachel M Harter, and Wayne A Fuller, An error-components model for prediction of county crop areas using survey and satellite data, Journal of the American Statistical Association 83 (1988), no. 401, 28{36.
dc.relation.referencesShijie Chen and P Lahiri, On the estimation of mean squared prediction error in small area estimation, Calcutta Statistical Association Bulletin 63 (2011), no. 1-4, 109{140.
dc.relation.referencesDANE, Encuesta multiprop osito (em), 2017.
dc.relation.referencesGauri S Datta and Partha Lahiri, A uni ed measure of uncertainty of estimated best linear unbiased predictors in small area estimation problems, Statistica Sinica (2000), 613{627.
dc.relation.referencesArthur P Dempster, Donald B Rubin, and Robert K Tsutakawa, Estimation in covariance components models, Journal of the American Statistical Association 76 (1981), no. 374, 341{353.
dc.relation.referencesBradley Efron, Bootstrap methods: another look at the jackknife, Breakthroughs in statistics, Springer, 1992, pp. 569{593.
dc.relation.referencesBradley Efron and Robert Tibshirani, Bootstrap methods for standard errors, con - dence intervals, and other measures of statistical accuracy, Statistical science (1986), 54{75.
dc.relation.referencesRobert E Fay III and Roger A Herriot, Estimates of income for small places: an application of james-stein procedures to census data, Journal of the American Statistical Association 74 (1979), no. 366a, 269{277.
dc.relation.referencesHarvey Goldstein, Multilevel statistical models, vol. 922, John Wiley & Sons, 2011.
dc.relation.referencesJorge Iv an Gonz alez, C esar Castro, Pedro Nel P aez, Arcenio Pecha, Luis Angel Rodr guez, Jorge S aenz, and Germ an S anchez, La demanda de loteria y juegos de azar: su realidad y sus potencialidades, Innovar 1 (2000), no. 16, 27{48.
dc.relation.referencesWenceslao Gonz alez-Manteiga, Maria J Lombardia, Isabel Molina, Domingo Morales, and Laureano Santamar a, Bootstrap mean squared error of a small-area eblup, Journal of Statistical Computation and Simulation 78 (2008), no. 5, 443{462.
dc.relation.referencesPeter Hall and Tapabrata Maiti, On parametric bootstrap methods for small area prediction, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68 (2006), no. 2, 221{238.
dc.relation.referencesPeter Hall, Tapabrata Maiti, et al., Nonparametric estimation of mean-squared prediction error in nested-error regression models, The Annals of Statistics 34 (2006), no. 4, 1733{1750.
dc.relation.referencesHerman O Hartley and Jon NK Rao, Maximum-likelihood estimation for the mixed analysis of variance model, Biometrika 54 (1967), no. 1-2, 93{108.
dc.relation.referencesCharles R Henderson, Estimation of genetic parameters, Biometrics, vol. 6, 1950, pp. 186{187.
dc.relation.referencesBest linear unbiased estimation and prediction under a selection model, Biometrics (1975), 423{447.
dc.relation.referencesJames Andrew Hilden-Minton, Multilevel diagnostics for mixed and hierarchical linear models, Ph.D. thesis, University of California, 1995.
dc.relation.referencesTom a s Hobza and Domingo Morales, Small area estimation under random regression coe cient models, Journal of Statistical Computation and Simulation 83 (2013), no. 11, 2160{2177.
dc.relation.referencesJiming Jiang and Partha Lahiri, Mixed model prediction and small area estimation, Test 15 (2006), no. 1, 1.
dc.relation.referencesJiming Jiang, Partha Lahiri, Shu-Mei Wan, et al., A uni ed jackknife theory for empirical best prediction with m-estimation, The Annals of Statistics 30 (2002), no. 6, 1782{1810.
dc.relation.referencesJiming Jiang, Thuan Nguyen, and J Sunil Rao, Best predictive small area estimation, Journal of the American Statistical Association 106 (2011), no. 494, 732{745.
dc.relation.referencesRaghu N Kackar and David A Harville, Unbiasedness of two-stage estimation and prediction procedures for mixed linear models, Communications in statistics-theory and methods 10 (1981), no. 13, 1249{1261.
dc.relation.referencesApproximations for standard errors of estimators of xed and random e ects in mixed linear models, Journal of the American Statistical Association 79 (1984), no. 388, 853{862.
dc.relation.referencesTatsuya Kubokawa, A review of linear mixed models and small area estimation, CIRJE, University of Tokyo (2009).
dc.relation.referencesP Lahiri and JNK Rao, Robust estimation of mean squared error of small area estimators, Journal of the American Statistical Association 90 (1995), no. 430, 758{766.
dc.relation.referencesNan M Laird and Thomas A Louis, Empirical bayes con dence intervals based on bootstrap samples, Journal of the American Statistical Association 82 (1987), no. 399, 739{750.
dc.relation.referencesAdam Madison Montgomery Loy, Diagnostics for mixed/hierarchical linear models, (2013).
dc.relation.referencesCharles E McCulloch and John M Neuhaus, Generalized linear mixed models, Wiley Online Library, 2001.
dc.relation.referencesCharles E McCulloch and Shayle R Searle, Generalized, linear, and mixed models, John Wiley & Sons, 2004.
dc.relation.referencesOphelia M Mendoza, Taylor series variance estimation for selected indirect demographic estimators, Ph.D. thesis, University of North Carolina at Chapel Hill, 1982.
dc.relation.referencesIsabel Molina, Nicola Salvati, and Monica Pratesi, Bootstrap for estimating the mean squared error of the spatial eblup, (2007).
dc.relation.referencesCarl N Morris, Parametric empirical bayes inference: theory and applications, Journal of the American Statistical Association 78 (1983), no. 381, 47{55.
dc.relation.referencesKari Nissinen, Small area estimation with linear mixed models from unit-level panel and rotating panel data, no. 117, University of Jyv askyl a, 2009.
dc.relation.referencesFernando Ramos Palencia, Azar y fortuna en espa~na: la loter a nacional, 1850{2000, Investigaciones de Historia Econ omica 6 (2010), no. 17, 149{185.
dc.relation.referencesDanny Pfe ermann and Hagit Glickman, Mean square error approximation in small area estimation by use of parametric and nonparametric bootstrap, ASA Section on Survey Research Methods (2004), 4167{4178.
dc.relation.referencesJos e C Pinheiro and Douglas M Bates, Linear mixed-e ects models: basic concepts and examples, Mixed-e ects models in S and S-Plus (2000), 3{56.
dc.relation.referencesM. Polo, Value addes in hierarchical linear mixed model with error in variables (Sin publicar), Ph.D. thesis, Ponti cia Universidad Cat olica de Chile, November 2017.
dc.relation.referencesN. G. N Prasad and J. N. K Rao, On estimation of the mean squared error in small area estimation, Journal of the American Statistical Association 85 (1990), no. 409, 163{171.
dc.relation.referencesJNK Rao, Jackknife and bootstrap methods for small area estimation, Proceedings of the survey research methods section, American Statistical Association, 2007, pp. 2925{2929.
dc.relation.referencesJohn N K Rao, Small-area estimation, Wiley Online Library, 2015.
dc.relation.referencesStephenWRaudenbush and Anthony S Bryk, Hierarchical linear models: Applications and data analysis methods, vol. 1, Sage, 2002.
dc.relation.referencesAlvin C Rencher and G Bruce Schaalje, Linear models in statistics, John Wiley & Sons, 2008
dc.relation.referencesJose Luis Rodriguez, Linealizaci on de modelos.
dc.relation.referencesJuv^encio Santos Nobre and Julio da Motta Singer, Residual analysis for linear mixed models, Biometrical Journal: Journal of Mathematical Methods in Biosciences 49 (2007), no. 6, 863{875.
dc.relation.referencesCarl-Erik S arndal, Methods for estimating the precision of survey estimates when imputation has been used, Survey methodology 18 (1992), no. 2, 241{252.
dc.relation.referencesCarl-Erik S arndal, Bengt Swensson, and Jan Wretman, Model assisted survey sampling, Springer Science & Business Media, 2003.
dc.relation.referencesOliver Schabenberger, Mixed model in uence diagnostics, SUGI, vol. 29, Citeseer, 2005, pp. 189{29.
dc.relation.referencesWesley L Schaible, Dwight B Brock, and George A Schnack, An empirical comparison of the simple in ation, synthetic and composite estimators for small area statistics, Proceedings of the American Statistical Association, Social Statistics Section, vol. 1017, 1977.
dc.relation.referencesS Searle, G Casella, and C McCulloch, Variance components, ser, 2006.
dc.relation.referencesShayle R Searle and Andre I Khuri, Matrix algebra useful for statistics, John Wiley & Sons, 2017.
dc.relation.referencesMaria Dolores Ugarte, T Goicoa, Ana F Militino, and M Sagaseta-L opez, Estimating unemployment in very small areas, SORT-Statistics and Operations Research Transactions 33 (2009), no. 1, 49{70.
dc.relation.referencesRien Van der Leeden, FMTA Busing, and Erik Meijer, Bootstrap methods for two-level models, Multilevel Conference, Amsterdam, 1997.
dc.relation.referencesGeert Verbeke and Emmanuel Lesa re, The e ect of misspecifying the random-e ects distribution in linear mixed models for longitudinal data, Computational Statistics & Data Analysis 23 (1997), no. 4, 541{556.
dc.relation.referencesBrady T West, Kathleen B Welch, and Andrzej T Galecki, Linear mixed models: a practical guide using statistical software, Chapman and Hall/CRC, 2014.
dc.relation.referencesChien-Fu Je Wu, Jackknife, bootstrap and other resampling methods in regression analysis, the Annals of Statistics (1986), 1261{1295.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalÁreas pequeñas
dc.subject.proposalSmall areas
dc.subject.proposalEstimator
dc.subject.proposalEstimador
dc.subject.proposalMean squared error
dc.subject.proposalError Cuadrático Medio
dc.subject.proposalBootstrap
dc.subject.proposalBootstrap.
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit