Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorHiguita-Vásquez, Juan Carlos
dc.contributor.authorPineda Pineda, Sebastián
dc.date.accessioned2020-03-09T21:15:36Z
dc.date.available2020-03-09T21:15:36Z
dc.date.issued2019-11-16
dc.date.issued2019
dc.identifier.citationPineda-Pineda, Sebastian. Producción de biofertilizante a partir de la fermentación de vinazas azucareras por Gluconacetobacter diazotrophicus. Universidad Nacional de Colombia sede Manizales. 2019.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/76021
dc.description.abstractLas vinazas son residuos producidos ampliamente en la industria de la destilería y son catalogados actualmente como desechos tóxicos debido a su alta carga orgánica. Sin embargo, este residuo es viable como fuente de carbono para el crecimiento de cierto tipo de microorganismos como es el caso de Gluconacetobacter diazotrophicus. Este microorganismo es capaz de producir ácido indolacético (AIA), el cuál es una molécula que cumple el papel de fitohormona. Además, el microrganismo per se cumple funciones de fijación de nitrógeno y solubilización de fósforo y níquel lo cual supone un alto potencial como biofertilizante orgánico. El propósito principal de esta tesis es cultivar G. diazotrophicus en vinazas azucareras como base para la elaboración del medio de crecimiento y producción de AIA para su posterior implementación en cultivos de tomate y girasol. Para cumplir este objetivo, se realizó una adaptación progresiva del microorganismo en vinazas azucareras y se determinaron los parámetros que mejoraron la producción de AIA a través de un diseño experimental Box-Behnken. Para realizar la medición de la fitohormona de forma más práctica y efectiva, se propusieron dos métodos colorimétricos basados en la técnica de Salkowski. Después de obtener el biofertilizante, se realizaron dos cultivos de interés industrial (tomate y girasol), los cuales fueron irrigados con el producto resultante y se comparó su efectividad con respecto a la aplicación de un fertilizante comercial. El estudio mostró crecimiento de G diazotrophicus en una concentración de 8,7 ±0,1 gL-1 en vinazas hasta el 50%. Además, se diseñó una técnica práctica, económica y sencilla para la determinación de AIA en matrices complejas como la vinaza. Los parámetros que maximizaron la producción de AIA en este estudio fueron: ajustar el pH de la fermentación a 7,46 y utilizar un flujo de aireación de 3,4 Lmin-1. Los experimentos en campo demostraron un crecimiento en las plantas de tomate de 109% por encima del control y 99% en la productividad en gramos de fruto por planta. En el caso del girasol se tuvo un aumento de 27% en la longitud de los tallos y un incremento del 37 y 35% en el número de flores y el diámetro de la flor al momento de terminar el estudio. La mayoría de las variables medidas demostraron un mejor desempeño del biofertilizante con respecto al fertilizante comercial. Se confirma la hipótesis planteada en el documento y se logra cumplir a cabalidad con los objetivos específicos propuestos. Finalmente, se plantean algunos interrogantes que quedan sin respuesta y vale la pena una investigación posterior.
dc.description.abstractVinasses (sugary residues) are wastes widely produced by the distillery industry and are currently listed as toxic wastes due to their high organic load. However, this residue is viable as a carbon source for the growth of certain types of microorganisms such as Gluconacetobacter diazotrophicus. This microorganism is able to produce indoleacetic acid (IAA), which is a compound that plays the role of a phytohormone on many plants. In addition, the microorganism per se fulfills functions such as nitrogen fixation and phosphorus and nickel solubilization, which supposes a high potential as an organic biofertilizer. The main purpose of this thesis was to grow G. diazotrophicus in vinasses as the growth medium for the production of IAA and its application in tomatoes and sunflower plantations. To achieve this objective, a progressive adaptation of the microorganism in sugar vinasses was carried out and the parameters that improved the IAA production were determined through an experimental Box-Behnken design. To perform the phytohormone measurement in a more practical and effective way, two colorimetric methods based on the Salkowski technique were proposed. After obtaining the biofertilizer, two crops of industrial interest (tomato and sunflower) were made, which were irrigated with the resulting product and its effectiveness was compared with respect to the application of a commercial fertilizer. This study showed growth of G diazotrophicus in a concentration of 8,7 ±0,1 gL-1 in vinasses up to 50%. In addition, a practical, economical and simple technique was designed for the IAA determination in complex matrices such as vinasse. The parameters that maximized the IAA production in this study were: adjust the fermentation pH to 7.46 and use an airflow of 3.4 Lmin-1. Field experiments demonstrated a growth in tomato plants of 109% above the control and 99% in productivity in grams of fruit per plant. In the case of sunflower there was an increase of 27% in the length of the stems and an increase of 37 and 35% in the number of flowers and the diameter of the flower at the end of the study. Most of the measured variables demonstrated a better performance of the biofertilizer with respect to commercial fertilizer. The hypothesis stated in the document is confirmed and the specific objectives proposed are fully achieved. Finally, some questions remain unanswered and worth further investigation
dc.format.extent127
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddcIngeniería química
dc.titleProducción de biofertilizante a partir de la fermentación de vinazas azucareras por Gluconacetobacter diazotrophicus.
dc.title.alternativeProduction of a biofertilizer from the fermentation of sugarcane vinasses by Gluconacetobacter diazotrophicus.
dc.typeOtro
dc.rights.spaAcceso abierto
dc.coverage.sucursalUniversidad Nacional de Colombia - Sede Manizales
dc.description.additionalTesis o trabajo de investigación presentada(o) como requisito parcial para optar al título de: Magíster en Ingeniería – Ingeniería Química. -- Línea de Investigación: Ingeniería de Procesos Químicos y Biotecnológicos.
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.contributor.researchgroupProcesos Químicos, Catalíticos y Biotecnológicos
dc.description.degreelevelDoctorado
dc.publisher.departmentDepartamento de Ingeniería Química
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.references[1] R. Dey, K. K. Pal, D. M. Bhatt, and S. M. Chauhan, “Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria,” Microbiol. Res., vol. 159, no. 4, pp. 371–394, Dec. 2004. [2] P. Instituto de Ciencia Agrícola (Cuba), H. Cuba. Ministerio de Educación Superior., M. Instituto Nacional de Ciencias Agrícolas (Cuba), and M. Seeger, Cultivos tropicales : CT, vol. 37. El Instituto, 1979. [3] D. Escuela Nacional de Agricultura (Mexico). Colegio de Postgraduados., J. J. Vargas-Hernández, J. López-Upton, and A. Muñoz-Orozco, Agrociencia., vol. 45, no. 4. Colegio de Postgraduados, 2011. [4] J. Muñoz-Rojas and J. Caballero-Mellado, “Population Dynamics of Gluconacetobacter diazotrophicus in Sugarcane Cultivars and Its Effect on Plant Growth,” Microb. Ecol., vol. 46, no. 4, pp. 454–464, Dec. 2003. [5] G. Colla, Y. Rouphael, R. Canaguier, E. Svecova, and M. Cardarelli, “Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis.,” Front. Plant Sci., vol. 5, p. 448, 2014. [6] P. du Jardin, “Plant biostimulants: Definition, concept, main categories and regulation,” Sci. Hortic. (Amsterdam)., vol. 196, pp. 3–14, Nov. 2015. [7] A. Radkowski and I. Radkowska, “Effect of Foliar Application of Growth Biostimulant on Quality and Nutritive Value of Meadow Sward,” Ecol. Chem. Eng. A, no. Vol. 20, nr 10, pp. 1205--1211, 2013. [8] M. J. Dirbeba, A. Brink, N. DeMartini, D. Lindberg, and M. Hupa, “Sugarcane vinasse CO2 gasification and release of ash-forming matters in CO2 and N2 atmospheres,” Bioresour. Technol., vol. 218, pp. 606–614, Oct. 2016. [9] L. Janke et al., “Biogas Production from Sugarcane Waste: Assessment on Kinetic Challenges for Process Designing.,” Int. J. Mol. Sci., vol. 16, no. 9, pp. 20685–703, 2015. [10] A. Farghaly and A. Tawfik, “Simultaneous Hydrogen and Methane Production Through Multi-Phase Anaerobic Digestion of Paperboard Mill Wastewater Under Different Operating Conditions,” Appl. Biochem. Biotechnol., vol. 181, no. 1, pp. 142–156, Jan. 2017. [11] M. P. M. Pinto, A. Mudhoo, T. de Alencar Neves, M. D. Berni, and T. Forster-Carneiro, “Co–digestion of coffee residues and sugarcane vinasse for biohythane generation,” J. Environ. Chem. Eng., vol. 6, no. 1, pp. 146–155, Feb. 2018. [12] Agriculturers - Red especializada en agricultura., “Mercado de los bioferilizantes - Tendencias mundiales,” 2017. [Online]. Available: http://agriculturers.com/mercado-de-los-biofertilizantes-tendencias-mundiales-escenario-competitivo-y-pronosticos-2017-2022/. [Accessed: 26-Aug-2019]. [13] K. M. A. Rahman and D. Zhang, “Effects of Fertilizer Broadcasting on the Excessive Use of Inorganic Fertilizers and Environmental Sustainability,” Sustainability, vol. 10, no. 3, p. 759, Mar. 2018. [14] A. Leip et al., “The value of manure - Manure as co-product in life cycle assessment,” J. Environ. Manage., vol. 241, pp. 293–304, Jul. 2019. [15] D. Shen, “Microbial diversity and application of microbial products for agricultural purposes in China,” Agric. Ecosyst. Environ., vol. 62, no. 2–3, pp. 237–245, Apr. 1997. [16] A. Gousterova, M. Nustorova, P. Christov, P. Nedkov, G. Neshev, and E. Vasileva-Tonkova, “Development of a biotechnological procedure for treatment of animal wastes to obtain inexpensive biofertilizer,” World J. Microbiol. Biotechnol., vol. 24, no. 11, pp. 2647–2652, Nov. 2008. [17] M. R. Brosius, G. K. Evanylo, L. R. Bulluck, and J. B. Ristaino, “Comparison of Commercial Fertilizer and Organic By-Products on Soil Chemical and Biological Properties and Vegetable Yields,” in Beneficial Co-Utilization of Agricultural, Municipal and Industrial by-Products, Dordrecht: Springer Netherlands, 1998, pp. 195–202. [18] S. Sarkar, S. Pal, and S. Chanda, “Optimization of a Vegetable Waste Composting Process with a Significant Thermophilic Phase,” Procedia Environ. Sci., vol. 35, pp. 435–440, 2016. [19] P. Nepolean et al., “Role of biofertilizers in increasing tea productivity,” Asian Pac. J. Trop. Biomed., vol. 2, no. 3, pp. S1443–S1445, Jan. 2012. [20] O. B. Weber, M. Stoffels, A. Hartmann, G. Kirchhof, A. Halbritter, and B. Eckert, “Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus.,” Int. J. Syst. Evol. Microbiol., vol. 51, no. 1, pp. 17–26, Jan. 2001. [21] O. Steenhoudt and J. Vanderleyden, “Azospirillum , a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects,” FEMS Microbiol. Rev., vol. 24, no. 4, pp. 487–506, Oct. 2000. [22] S. B. Sharma, R. Z. Sayyed, M. H. Trivedi, and T. A. Gobi, “Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils.,” Springerplus, vol. 2, p. 587, 2013. [23] A. Saeid, E. Prochownik, and J. Dobrowolska-Iwanek, “Phosphorus Solubilization by Bacillus Species.,” Molecules, vol. 23, no. 11, Nov. 2018. [24] C.-H. Chang and S.-S. Yang, “Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation,” Bioresour. Technol., vol. 100, no. 4, pp. 1648–1658, Feb. 2009. [25] J. Postma, F. Clematis, E. H. Nijhuis, and E. Someus, “Efficacy of four phosphate-mobilizing bacteria applied with an animal bone charcoal formulation in controlling Pythium aphanidermatum and Fusarium oxysporum f.sp. radicis lycopersici in tomato,” Biol. Control, vol. 67, no. 2, pp. 284–291, Nov. 2013. [26] D. Bhardwaj, M. W. Ansari, R. K. Sahoo, and N. Tuteja, “Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity.,” Microb. Cell Fact., vol. 13, p. 66, May 2014. [27] P. N. Bhattacharyya and D. K. Jha, “Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture,” World J. Microbiol. Biotechnol., vol. 28, no. 4, pp. 1327–1350, Apr. 2012. [28] M. L. Lopes-Assad, S. H. Avansini, M. M. Rosa, J. R. P. de Carvalho, and S. R. Ceccato-Antonini, “The solubilization of potassium-bearing rock powder by Aspergillus niger in small-scale batch fermentations.,” Can. J. Microbiol., vol. 56, no. 7, pp. 598–605, Jul. 2010. [29] T. Padmavathi, “Optimization of phosphate solubilization by aspergillus niger using plackett-burman and response surface methodology,” J. soil Sci. plant Nutr., vol. 15, no. ahead, pp. 0–0, 2015. [30] K. Sasaki, M. Tsunekawa, T. Ohtsuka, and H. Konno, “The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 133, no. 3, pp. 269–278, Feb. 1998. [31] Z.-H. Yang, K. Stöven, S. Haneklaus, B. R. Singh, and E. Schnug, “Elemental Sulfur Oxidation by Thiobacillus spp. and Aerobic Heterotrophic Sulfur-Oxidizing Bacteria,” Pedosphere, vol. 20, no. 1, pp. 71–79, Feb. 2010. [32] FAO, “World fertilizer trends and outlook to 2019,” Rome, 2016. [33] Hexa Research, “Biofertilizers Market Size and Forecast, By Product (Nitrogen fixing, Phosphate solubilizing), By Application (Seed treatment, Soil treatment) And Trend Analysis, 2014 - 2024,” 2018. [34] Mordor, “Biofertilizers Market | Growth, Trends & Forecast (2019–2024).” [Online]. Available: https://www.mordorintelligence.com/industry-reports/global-biofertilizers-market-industry. [Accessed: 15-Nov-2019]. [35] Cision, “Global Biofertilizer Markets, 2011-2018 & 2019-2024.” [Online]. Available: https://www.prnewswire.com/news-releases/global-biofertilizer-markets-2011-2018--2019-2024-300880789.html. [Accessed: 15-Nov-2019]. [36] V. A. Cavalcante and J. Dobereiner, “A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane,” Plant Soil, vol. 108, no. 1, pp. 23–31, May 1988. [37] E. C. Cocking, “Endophytic colonization of plant roots by nitrogen-fixing bacteria,” Plant Soil, vol. 252, no. 1, pp. 169–175, May 2003. [38] M. M. Universidad Nacional de Colombia., A. J. Rodríguez, I. D. Trujillo, and M. Heydrich, Revista Colombiana de biotecnología., vol. 11, no. 1. Universidad Nacional de Colombia, 2009. [39] E. P. Rodrigues et al., “Identification of Genes Involved in Indole-3-Acetic Acid Biosynthesis by Gluconacetobacter diazotrophicus PAL5 Strain Using Transposon Mutagenesis.,” Front. Microbiol., vol. 7, p. 1572, 2016. [40] R. M. Boddey et al., “Biological nitrogen fixation associated with sugar cane and rice: Contributions and prospects for improvement,” Plant Soil, vol. 174, no. 1–2, pp. 195–209, Jul. 1995. [41] D. Dutta, R. G. Correspondence, and R. Gachhui, “Novel nitrogen-fixing Acetobacter nitrogenifigens sp. nov., isolated from Kombucha tea.” [42] A. Ureta, B. Alvarez, A. Ramón, M. A. Vera, and G. Martinez-Drets, “Indentification of Acetobacter diazotrophicus, Herbaspirillum seropedicae and Herbaspirillum rubrisubalbicans using biochemical and genetic criteria,” Plant Soil, vol. 172, no. 2, pp. 271–277, 1995. [43] L. Hernández et al., “Structural levansucrase gene (lsdA) constitutes a functional locus conserved in the species Gluconacetobacter diazotrophicus.,” Arch. Microbiol., vol. 174, no. 1–2, pp. 120–4, 1996. [44] J. Arrieta et al., “Molecular characterization of the levansucrase gene from the endophytic sugarcane bacterium Acetobacter diazotrophicus SRT4,” Microbiology, vol. 142, no. 5, pp. 1077–1085, May 1996. [45] V. Skalický, M. Kubeš, R. Napier, and O. Novák, “Molecular Sciences Auxins and Cytokinins-The Role of Subcellular Organization on Homeostasis,” 2018. [46] G. E. Schaller, A. Bishopp, and J. J. Kieber, “The Yin-Yang of Hormones: Cytokinin and Auxin Interactions in Plant Development,” Plant Cell, vol. 27, no. 1, pp. 44–63, Jan. 2015. [47] A. Ganguly, D. Sasayama, and H.-T. Cho, “Regulation of the polarity of protein trafficking by phosphorylation.,” Mol. Cells, vol. 33, no. 5, pp. 423–30, May 2012. [48] M. Jordán and J. Casaretto, “Hormonas y Reguladores del Crecimiento: Auxinas, Giberelinas y Citocininas,” in Fisiología Vegetal, vol. 84, no. 4, F. A. Squeo and L. Cardemil, Eds. La Serena, Chile: Ediciones Universidad de La Serena, 2006, pp. 1–28. [49] S. Compant, A. Samad, H. Faist, and A. Sessitsch, “A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application,” Journal of Advanced Research, vol. 19. Elsevier B.V., pp. 29–37, 01-Sep-2019. [50] J. M. Lynch, “Origin, Nature and Biological Activity of Aliphatic Substances and Growth Hormones Found in Soil,” in Soil Organic Matter and Biological Activity, Dordrecht: Springer Netherlands, 1985, pp. 151–174. [51] C. Datta and P. S. Basu, “Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan,” Microbiol. Res., vol. 155, no. 2, pp. 123–127, Jan. 2000. [52] Y. Zhao, “Auxin Biosynthesis and Its Role in Plant Development,” Annu. Rev. Plant Biol., vol. 61, no. 1, pp. 49–64, Jun. 2010. [53] E. Matsukawa, Y. Nakagawa, Y. Iimura, and M. Hayakawa, “Stimulatory effect of indole-3-acetic acid on aerial mycelium formation and antibiotic production in Streptomyces spp.,” Actinomycetologica, vol. 21, no. 1, pp. 32–39, Jun. 2007. [54] P. Vega-Celedón, H. Canchignia Martínez, M. González, and M. Seeger, “Revisión bibliográfica. Biosíntesis de ácido indol-3-acético y promoción del crecimiento de plantas por bacterias.,” Cultiv. Trop., vol. 37, no. especial, pp. 33–39, 2016. [55] E. A. Zakharova, A. A. Shcherbakov, V. V. Brudnik, N. G. Skripko, N. S. Bulkhin, and V. V. Ignatov, “Biosynthesis of indole-3-acetic acid in Azospirillum brasilense,” Eur. J. Biochem., vol. 259, no. 3, pp. 572–576, Dec. 2001. [56] S. Spaepen, J. Vanderleyden, and R. Remans, “Indole-3-acetic acid in microbial and microorganism-plant signaling,” FEMS Microbiol. Rev., vol. 31, no. 4, pp. 425–448, Jul. 2007. [57] A. Müller and E. W. Weiler, “Indolic constituents and indole-3-acetic acid biosynthesis in the wild-type and a tryptophan auxotroph mutant of Arabidopsis thaliana,” Planta, vol. 211, no. 6, pp. 855–863, Nov. 2000. [58] M. Theunis, H. Kobayashi, W. J. Broughton, and E. Prinsen, “Flavonoids, NodD1, NodD2, and Nod -Box NB15 Modulate Expression of the y4wEFG Locus That Is Required for Indole-3-Acetic Acid Synthesis in Rhizobium sp. strain NGR234,” Mol. Plant-Microbe Interact., vol. 17, no. 10, pp. 1153–1161, Oct. 2004. [59] S. Chandra, K. Askari, and M. Kumari, “Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth,” J. Genet. Eng. Biotechnol., vol. 16, no. 2, pp. 581–586, Dec. 2018. [60] M. Waqas et al., “Endophytic Fungi Produce Gibberellins and Indoleacetic Acid and Promotes Host-Plant Growth during Stress,” Molecules, vol. 17, no. 9, pp. 10754–10773, Sep. 2012. [61] E. Nuray, T. Fatih, and Y. Atilla, “Auxin (Indole-3-acetic acid), Gibberellic acid (GA3), Abscisic Acid (ABA) and Cytokinin (Zeatin) Production by Some Species of Mosses and Lichens.,” Turk J. Bot, vol. 26, pp. 13–18, 2002. [62] A. Ehmann, “The van urk-Salkowski reagent--a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives.,” J. Chromatogr., vol. 132, no. 2, pp. 267–76, Feb. 1977. [63] O. Z. Barazani and J. Friedman, “Is IAA the major root growth factor secreted from plant-growth-mediating bacteria?,” vol. 25, no. 10. Journal of chemical ecology, pp. 2397–2406, 01-Jan-1999. [64] S. Porfírio, M. D. R. Gomes da Silva, A. Peixe, M. J. Cabrita, and P. Azadi, “Current analytical methods for plant auxin quantification – A review,” Anal. Chim. Acta, vol. 902, pp. 8–21, Jan. 2016. [65] B. Mohite, “Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth,” J. Soil Sci. Plant Nutr., vol. 13, no. 3, pp. 638–649, 2013. [66] M. Szkop and W. Bielawski, “A simple method for simultaneous RP-HPLC determination of indolic compounds related to bacterial biosynthesis of indole-3-acetic acid.,” Antonie Van Leeuwenhoek, vol. 103, no. 3, pp. 683–91, Mar. 2013. [67] Y. Kim, Y. Oh, W. P.-J. of N. & Biotech, and U. 2006, “HPLC-based quantification of indole-3-acetic acid in the primary root tip of maize,” JNBT, vol. 3, no. 1, pp. 40–45, 2006. [68] L. E. Fuentes-Ramirez, T. Jimenez-Salgado, I. R. Abarca-Ocampo, and J. Caballero-Mellado, “Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of México,” Plant Soil, vol. 154, no. 2, pp. 145–150, Jul. 1993. [69] M. Madhaiyan et al., “Occurrence of Gluconacetobacter diazotrophicus in tropical and subtropical plants of Western Ghats, India,” Microbiol. Res., vol. 159, no. 3, pp. 233–243, Sep. 2004. [70] N. B. Patil, M. Gajbhiye, S. S. Ahiwale, A. B. Gunjal, and B. P. Kapadnis, “Optimization of Indole 3 ­ acetic acid ( IAA ) production by Acetobacter diazotrophicus L1 isolated from Sugarcane,” Int. J. Environ. Sci., vol. 2, no. 1, pp. 295–302, 2011. [71] M. Arm, P. Suer, H. Arvidsson, and J.-E. Lindqvist, “Technical and environmental long-term properties of industrial residues – Summary of field and laboratory investigations,” Waste Manag., vol. 31, no. 1, pp. 101–107, Jan. 2011. [72] A. R. Navarro, M. Del, and M. C. Rubio, “Bio-concentration of vinasse from the alcoholic fermentation of sugar cane molasses,” Waste Manag., vol. 20, no. 7, pp. 581–585, 2000. [73] O. A. Braunbeck and E. A. Neto, “Transport logistics of raw material and waste of sugarcane,” in Sugarcane bioethanol — R&D for Productivity and Sustainability, Editora Edgard Blücher, 2014, pp. 487–504. [74] M. A. Bustamante, C. Paredes, R. Moral, J. Moreno-Caselles, A. Pérez-Espinosa, and M. D. Pérez-Murcia, “Uses of winery and distillery effluents in agriculture: characterisation of nutrient and hazardous components.,” Water Sci. Technol., vol. 51, no. 1, pp. 145–51, 2005. [75] M. Krzywonos, E. Cibis, T. Miskiewicz, and A. Ryznar-Luty, “Utilization and biodegradation of starch stillage (distillery wastewater),” Electron. J. Biotechnol., vol. 12, no. 1, pp. 6–7, 2009. [76] D. Pant and A. Adholeya, “Biological approaches for treatment of distillery wastewater: A review,” Bioresour. Technol., vol. 98, no. 12, pp. 2321–2334, Sep. 2007. [77] B. F. Naspolini, A. C. de O. Machado, W. B. Cravo Junior, D. M. G. Freire, and M. C. Cammarota, “Bioconversion of Sugarcane Vinasse into High-Added Value Products and Energy,” Biomed Res. Int., vol. 2017, pp. 1–11, Nov. 2017. [78] A. J. N. da Silva, M. S. V. Cabeda, F. G. de Carvalho, and J. F. W. F. Lima, “Alterações físicas e químicas de um Argissolo amarelo sob diferentes sistemas de uso e manejo,” Rev. Bras. Eng. Agrícola e Ambient., vol. 10, no. 1, pp. 76–83, Mar. 2006. [79] R. P. de Barros et al., “Alterações em atributos químicos de solo cultivado com cana-de-açúcar e adição de vinhaça,” Pesqui. Agropecuária Trop., vol. 40, no. 3, Aug. 2010. [80] F. L. Brito, M. M. Rolim, and E. M. R. Pedrosa, “Concentração de cátions presentes no lixiviado de solos tratados com vinhaça,” Eng. Agrícola, vol. 27, no. 3, pp. 773–781, Dec. 2007. [81] C. A. Christofoletti, J. P. Escher, J. E. Correia, J. F. U. Marinho, and C. S. Fontanetti, “Sugarcane vinasse: Environmental implications of its use,” Waste Manag., vol. 33, no. 12, pp. 2752–2761, Dec. 2013. [82] G. P. Ortegón, F. M. Arboleda, L. Candela, K. Tamoh, and J. Valdes-Abellan, “Vinasse application to sugar cane fields. Effect on the unsaturated zone and groundwater at Valle del Cauca (Colombia),” Sci. Total Environ., vol. 539, pp. 410–419, Jan. 2016. [83] R. de M. Prado, G. Caione, and C. N. S. Campos, “Filter Cake and Vinasse as Fertilizers Contributing to Conservation Agriculture,” Appl. Environ. Soil Sci., vol. 2013, pp. 1–8, Jul. 2013. [84] G. Gunkel, J. Kosmol, M. Sobral, H. Rohn, S. Montenegro, and J. Aureliano, “Sugar Cane Industry as a Source of Water Pollution – Case Study on the Situation in Ipojuca River, Pernambuco, Brazil,” Water. Air. Soil Pollut., vol. 180, no. 1–4, pp. 261–269, Feb. 2007. [85] V. Parnaudeau, N. Condom, R. Oliver, P. Cazevieille, and S. Recous, “Vinasse organic matter quality and mineralization potential, as influenced by raw material, fermentation and concentration processes,” Bioresour. Technol., vol. 99, no. 6, pp. 1553–1562, Apr. 2008. [86] D. da S. Paredes et al., “Nitrous Oxide and Methane Fluxes Following Ammonium Sulfate and Vinasse Application on Sugar Cane Soil,” Environ. Sci. Technol., vol. 49, no. 18, pp. 11209–11217, Sep. 2015. [87] Statista, “Fuel ethanol production worldwide in 2018, by country.,” 2018. [88] B. Rau and L. A. Gomez, “Colombia Biofuels Annual Report,” USDA Foreign Agric. Serv., 2017. [89] B. G. de Oliveira, J. L. N. Carvalho, C. E. P. Cerri, C. C. Cerri, and B. J. Feigl, “Soil greenhouse gas fluxes from vinasse application in Brazilian sugarcane areas,” Geoderma, vol. 200–201, pp. 77–84, Jun. 2013. [90] J. B. do Carmo et al., “Infield greenhouse gas emissions from sugarcane soils in Brazil: effects from synthetic and organic fertilizer application and crop trash accumulation,” GCB Bioenergy, vol. 5, no. 3, pp. 267–280, May 2013. [91] R. G. Moran-Salazar et al., “Utilization of vinasses as soil amendment: consequences and perspectives.,” Springerplus, vol. 5, no. 1, p. 1007, 2016. [92] SSSA, “Home | Soil Science Society of America,” 2018. [Online]. Available: https://www.soils.org/. [Accessed: 23-Mar-2018]. [93] DANE, “DANE -Información para todos-,” Boletín 2016 - Hortalizas, 2016. [Online]. Available: https://www.dane.gov.co/. [Accessed: 08-Aug-2019]. [94] M. Abad and A. A. Monteiro, “The use of auxins for the production of greenhouse tomatoes in mild-winter conditions: A review,” Sci. Hortic. (Amsterdam)., vol. 38, no. 3–4, pp. 167–192, 1989. [95] G. Colla, M. Cardarelli, P. Bonini, and Y. Rouphael, “Foliar Applications of Protein Hydrolysate, Plant and Seaweed Extracts Increase Yield but Differentially Modulate Fruit Quality of Greenhouse Tomato,” HortScience, vol. 52, no. 9, pp. 1214–1220, Sep. 2017. [96] M. A. Bootello and R. Garcés, “Food Uses of Sunflower Oils,” Sunflower, pp. 441–464, Jan. 2015. [97] J. Batista Dos-Santos et al., “Sunflower (Helianthus annuus L.) growth depending on irrigation with saline water and nitrogen fertilization,” Agrociencia, vol. 51, pp. 649–660, 2017. [98] A. Demirbas, “Biodiesel from sunflower oil in supercritical methanol with calcium oxide,” Energy Convers. Manag., vol. 48, no. 3, pp. 937–941, Mar. 2007. [99] R. M. Atlas and R. Bartha, Microbial ecology : fundamentals and applications. Benjamin/Cummings, 1998. [100] E. E. Sánchez, “Effect of Auxym on the quality of summer pears with emphasis on fruit size,” Acta Hortic., vol. 594, pp. 321–325, 2002. [101] M. J. Zarei, N. Kazemi, and A. Marzban, “Life cycle environmental impacts of cucumber and tomato production in open-field and greenhouse,” J. Saudi Soc. Agric. Sci., vol. 18, no. 3, pp. 249–255, Jul. 2019. [102] Vetmeduni-Viena, “World Maps of Köppen-Geiger climate classification.” [Online]. Available: http://koeppen-geiger.vu-wien.ac.at/. [Accessed: 15-Nov-2019]. [103] Sena, “SENA Caldas.” [Online]. Available: http://www.sena.edu.co/es-co/regionales/zonaAndina/Paginas/_Caldas.aspx. [Accessed: 15-Nov-2019]. [104] Y. Rouphael, M. Cardarelli, P. Bonini, and G. Colla, “Synergistic Action of a Microbial-based Biostimulant and a Plant Derived-Protein Hydrolysate Enhances Lettuce Tolerance to Alkalinity and Salinity,” Front. Plant Sci., vol. 8, p. 131, Feb. 2017. [105] M. R. Gloria, J. S. Oscar, M. M. Sandra, F. G. Narmer, and T. Gonzalo, “Evaluation of plant-growth promoting properties of Gluconacetobacter diazotrophicus and Gluconacetobacter sacchari isolated from sugarcane and tomato in West Central region of Colombia,” African J. Biotechnol., vol. 16, no. 30, pp. 1619–1629, Jul. 2017. [106] R. Vasylkovska, N. Petriv, and H. Semchyshyn, “Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype.,” Int. J. Microbiol., vol. 2015, p. 697813, 2015. [107] M. L. Molinari and J. L. Boiardi, “Levans production by Gluconacetobacter diazotrophicus,” Electron. J. Biotechnol., vol. 16, no. 3, pp. 7–7, May 2013. [108] P. Dorado-Morales, C. Vilanova, J. Peretó, F. M. Codoñer, D. Ramón, and M. Porcar, “A highly diverse, desert-like microbial biocenosis on solar panels in a Mediterranean city,” Sci. Rep., vol. 6, no. 1, p. 29235, Jul. 2016. [109] R. Carlson, Design and optimization in organic synthesis. Elsevier, 1992. [110] M. P. Chavez García, “Producción de Trichoderma sp. y evaluación de su efecto en cultivo de crisantemo (Dendranthema grandiflora),” Pontificia Universidad Javeriana, 2006. [111] C. O. Dimkpa, A. Svatoš, P. Dabrowska, A. Schmidt, W. Boland, and E. Kothe, “Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp.,” Chemosphere, vol. 74, no. 1, pp. 19–25, Dec. 2008. [112] S. J. Cooper et al., “High-throughput profiling of amino acids in strains of the Saccharomyces cerevisiae deletion collection.,” Genome Res., vol. 20, no. 9, pp. 1288–96, Sep. 2010. [113] V. J. Morris, G. J. Brownsey, P. Cairns, G. R. Chilvers, and M. J. Miles, “Molecular origins of acetan solution properties,” Int. J. Biol. Macromol., vol. 11, no. 6, pp. 326–328, 1989. [114] M. S. Khan, A. Zaidi, P. A. Wani, M. Ahemad, and M. Oves, “Functional Diversity Among Plant Growth-Promoting Rhizobacteria: Current Status,” in Microbial Strategies for Crop Improvement, Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 105–132. [115] L. G. Angelini, S. Tozzi, and N. Nassi o Di Nasso, “Environmental Factors Affecting Productivity, Indican Content, and Indigo Yield in Polygonum tinctorium Ait., a Subtropical Crop Grown under Temperate Conditions,” J. Agric. Food Chem., vol. 52, no. 25, pp. 7541–7547, Dec. 2004. [116] G. Castillo, B. Altuna, G. Michelena, J. Sánchez-Bravo, M. Acosta, and C. M. Acosta, “Cuantificación del contenido de ácido indolacético (AIA) en un caldo de fermentación microbiana,” 2005. [117] S. Ahmed, “Effect of indole acetic acid (IAA) on fruit drop and fruit quality of date palm cultivars,” Pure Appl. Biol., vol. 2, no. 1, pp. 1–6, Mar. 2013. [118] M. He et al., “Nutrient levels within leaves, stems, and roots of the xeric species Reaumuria soongorica in relation to geographical, climatic, and soil conditions.,” Ecol. Evol., vol. 5, no. 7, pp. 1494–503, Apr. 2015. [119] G. Joshi, A. Shukla, and A. Shukla, “Synergistic response of auxin and ethylene on physiology of Jatropha curcas L.,” Brazilian J. Plant Physiol., vol. 23, no. 1, pp. 66–77, 2011. [120] N. Lopera Salas, “Gestión de Calidad Tahamí & Cultiflores,” Corporación Universitaria Lasallista, 2012. [121] ANDI, “BASES PARA EL DISEÑO DE UNA POLÍTICA DE PRECIOS DE AGROQUÍMICOS.,” 2017. [122] Sodiak, “Ficha técnica Crecifol(R),” 2019. [Online]. Available: https://www.sodiak.com.co/images/fichas/FT_Crecifol103010.pdf. [Accessed: 15-Nov-2019]. [123] EPSA, “INFORMACIÓN SOBRE TARIFAS,” 2018.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalBiofertilizer
dc.subject.proposalBiofertilizante
dc.subject.proposalGluconacetobacter diazotrophicus
dc.subject.proposalGluconacetobacter diazotrophicus
dc.subject.proposalVinazas
dc.subject.proposalVinasses
dc.subject.proposalÁcido indolacético
dc.subject.proposalIndoleacetic acid
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit