Show simple item record

dc.contributor.advisorGaviria-Arango, Jair de Jesús
dc.contributor.advisorGutiérrez Gallego, Adamo Alexander
dc.creatorOlivo-Taborda, Sara Juliana
dc.date.accessioned2020-05-08T21:24:12Z
dc.date.available2020-05-08T21:24:12Z
dc.date.created2019-10-28
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77496
dc.descriptionEn esta investigación, se comparó la eficiencia en la conversión de los ácidos grasos, presentes en el aceite de sacha inchi, a metil ésteres aplicando dos métodos de transesterificación y posterior cuantificación por cromatografía de gases con detector FID (GC-FID); se aplicó un método de referencia descrito en la Norma Técnica Colombina NTC-4967 y otro enzimático, mediante el uso de una lipasa comercial de Candida rugosa, que ha sido estudiada para la producción de biodiesel a partir de ácidos grasos libres. Con la validación estadística de los métodos se establecieron las ventajas del método enzimático, dentro de las que se destaca el tiempo de reacción de 1h para la transformación de Triacil glicéridos en ésteres metílicos de ácidos grasos (FAMEs), estimados a partir, de la comparación de la eficiencia de la conversión para los ácidos grasos C16:0, C18:0, C18:1, C18:2, C18:3 y C20:0. Adicionalmente, se evaluó la concentración de enzima y solvente para definir las condiciones óptimas que permitieron alcanzar la máxima velocidad de conversión, obteniendo unas relaciones metanol/aceite de 1:1 y enzima/aceite de 0,01:1, estos resultados se establecieron aplicando un diseño de superficie de respuesta procesado en el software STATGRAPHICS® Centuriun XVI, en el que se usaron como variables independientes las relaciones metanol/aceite, enzima/aceite y tiempo de reacción.
dc.description.abstractIn this investigation, the efficiency in the conversion in methyl esters of the fatty acids present in sacha inchi oil was compared, applying two transesterification methods, for the subsequent quantification by gas chromatography with FID detector (GC-FID); A reference method described in Colombian Technical Standard NTC-4967 and another enzymatic method was applied, using a commercial lipase from Candida rugosa, which has been studied for the production of biodiesel from free fatty acids. With the statistical validation of the methods, the advantages of the enzymatic method were established, among which the reaction time of 1 h for the transformation into methyl esters of fatty acids (FAMEs), estimated from the comparison of the efficiency, stands out. of the conversion for the fatty acids C16: 0, C18: 0, C18: 1, C18: 2, C18: 3 and C20: 0. Additionally, the concentration of enzyme and solvent was evaluated to define the optimal conditions that allowed reaching the maximum conversion speed, obtaining methanol / oil ratios of 1: 1 and enzyme / oil of 0.01: 1, these results were established applying a response surface design processed in the STATGRAPHICS® Centuriun XVI software, in which the methanol / oil, enzyme / oil and reaction time ratios were used as independent variables.
dc.description.sponsorshipLaboratorio de Análisis Instrumental
dc.format.extent100
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/2.5/co/
dc.subjectValidación química
dc.subjectTransesterificación
dc.subjectEnzimas
dc.subjectÁcidos
dc.subject.ddc540 - Química y ciencias afines::543 - Química analítica
dc.titleEfecto de dos procesos de transesterificación del aceite de sacha inchi, sobre el método de cuantificación de los esteres metílicos mediante GC-FID
dc.title.alternativeEffect of two processes of transesterification of sacha inchi oil, on the method of quantification of methyl esters by GC-FID
dc.typeOther
dc.rights.spaAcceso abierto
dc.contributor.institutionUniversidad Nacional de Colombia - Sede Medellín
dc.subject.keywordChemical validation
dc.subject.keywordTransesterification
dc.subject.keywordCatalyst
dc.type.spaOtro
dc.type.hasversionAccepted Version
dc.coverage.programEscuela de química
dc.description.projectValidación de métodos de cuantificación de ácidos grasos
dc.description.additionalLínea de Investigación: Productos Naturales, Farmacéutica, Química de Alimentos
dc.coverage.modalityMaestria
dc.rights.accessRightsOpen Access
dc.rights.ccAtribución-SinDerivadas 2.5 Colombia
dc.rights.ccAtribución-SinDerivadas 2.5 Colombia
dc.contributor.corpauthorUniversidad Nacional de Colombia - Sede Medellín
dc.identifier.bibliographicCitationAarthy, M., Saravanan, P., Gowthaman, M. K., Rose, C., & Kamini, N. R. (2014). Chemical Engineering Research and Design Enzymatic transesterification for production of biodiesel using yeast lipases : An overview. Chemical Engineering Research and Design, 92(8), 1591–1601. https://doi.org/10.1016/j.cherd.2014.04.008
dc.identifier.bibliographicCitationAjibola,O.O.,Eniyemo, S.E.,Fasina,O.O.,Adeeko,K.A.,1990. Mechanical expression of oil from melon seeds. J. Agric. Eng. Res. 45, 45–53.
dc.identifier.bibliographicCitationAmini, Z., Ilham, Z., Ong, H. C., Mazaheri, H., & Chen, W.-H. (2016). State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2016.09.049
dc.identifier.bibliographicCitationAshraf-Khorassani, M., Isaac, G., Rainville, P., Fountain, K., & Taylor, L. T. (2015). Study of UltraHigh Performance Supercritical Fluid Chromatography to measure free fatty acids with out fatty acid ester preparation. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 997, 45–55. https://doi.org/10.1016/j.jchromb.2015.05.031
dc.identifier.bibliographicCitationAmini, Z., Ilham, Z., Ong, H. C., Mazaheri, H., & Chen, W.-H. (2016). State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2016.09.049
dc.identifier.bibliographicCitationAntolín, E. M., Delange, D. M., & Canavaciolo, V. G. (2008). Evaluation of five methods for derivatization and GC determination of a mixture of very long chain fatty acids (C24:0-C36:0). Journal of Pharmaceutical and Biomedical Analysis, 46(1), 194–199. https://doi.org/10.1016/j.jpba.2007.09.015
dc.identifier.bibliographicCitationBerenice, P., & Torres, S. (2013). Universidad de Guadalajara Centro Universitario de Ciencias Biológicas y Agropecuarias División de Ciencias Biológicas y Ambientales “ Optimización de una Metodología para Derivatizar Disruptores Endócrinos ( 17β - Estradiol y 17α - Etinilestradiol ) y su
dc.identifier.bibliographicCitationCarlos, A., Tercini, B., Pinesi, M., Cyntia, G., & Sequinel, R. (2018). Ultrafast gas chromatographic method for quantitative determination of total FAMEs in biodiesel : An analysis of 90 s. Fuel, 222(August 2017), 792–799. https://doi.org/10.1016/j.fuel.2018.03.008
dc.identifier.bibliographicCitationDal, L., Tacias-pascacio, V. G., Torrestiana-s, B., Rodrigues, R. C., Virgen-ortíz, J. J., Su, F. J., & Fernandez-lafuente, R. (2019). Comparison of acid , basic and enzymatic catalysis on the production of biodiesel after RSM optimization, 135. ttps://doi.org/10.1016/j.renene.2018.11.107
dc.identifier.bibliographicCitationDong, F., Li, L., Lin, L., He, D., Chen, J., Wei, W., & Wei, D. (2017). Transesterification synthesis of chloramphenicol esters with the lipase from bacillus amyloliquefaciens. Molecules, 22(9), 1– 11. https://doi.org/10.3390/molecules22091523
dc.identifier.bibliographicCitationDong, F., Li, L., Lin, L., He, D., Chen, J., Wei, W., & Wei, D. (2017). Transesterification synthesis of chloramphenicol esters with the lipase from bacillus amyloliquefaciens. Molecules, 22(9), 1– 11. Eppler, R. K. (2006). Water dynamics and salt-activation of enzymes in organic media: mechanistic implications revealed by NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 103(15), 5706–5710. https://doi.org/10.1073/pnas.0601113103https://doi.org/10.3390/molecules22091523
dc.identifier.bibliographicCitationEppler, R. K. (2006). Water dynamics and salt-activation of enzymes in organic media: mechanistic implications revealed by NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 103(15), 5706–5710. https://doi.org/10.1073/pnas.0601113103
dc.identifier.bibliographicCitationEsonye, C., Onukwuli, O. D., & Ofoefule, A. U. (2019). Chemical kinetics of a two-step ransesterification of dyacrodes edulis seed oil using acid-alkali catalyst. Chemical Engineering Research and Design, 145, 245–257. https://doi.org/10.1016/j.cherd.2019.03.010
dc.identifier.bibliographicCitationFollegatti-Romero, L. A., Piantino, C. R., Grimaldi, R., & Cabral, F. A. (2009). Supercritical CO2 extraction of omega-3 rich oil from Sacha inchi (Plukenetia volubilis L.) seeds. Journal of Supercritical Fluids, 49(3), 323–329. https://doi.org/10.1016/j.supflu.2009.03.010
dc.identifier.bibliographicCitationGlew, R. H., Vanderjagt, D. J., Lockett, C. T., Grivetti, L. E., Smith, G. C., Pastuzyn, A., & Millson, M. (1997). Amino acid, fatty acid, and mineral compostion of 24 indigenous plants of Burkina Faso. Journal of Food Composition and Analysis, 10, 205–217.
dc.identifier.bibliographicCitationGuillén, M. D., Ruiz, A., Cabo, N., Chirinos, R., & Pascual, G. (2003). Characterization of sacha inchi ( Plukenetia volubilis L .) oil by FTIR spectroscopy and H-1 NMR . J Am Oil Chem Soc Characterization of Sacha Inchi ( Plukenetia volubilis L .) Oil by FTIR Spectroscopy and 1 H NMR ., 80(JULY), 755–756. https://doi.org/10.1007/s11746-003-0768-z
dc.identifier.bibliographicCitationHanssen, H. P., & Schmitz-Hübsch, M. (2011). Sacha Inchi (Plukenetia volubilis L.) Nut Oil and Its Therapeutic and Nutritional Uses. Nuts and Seeds in Health and Disease Prevention, 991– 994. https://doi.org/10.1016/B978-0-12-375688-6.10117-3
dc.identifier.bibliographicCitationKharrat, N., Aissa, I., Dgachi, Y., Aloui, F., Chabchoub, F., Bouaziz, M., & Gargouri, Y. (2017).Bioorganic Chemistry Enzymatic synthesis of 1 , 3-dihydroxyphenylacetoyl -sn- glycerol :Optimization by response surface methodology and evaluation of its antioxidant and antibacterial activities. Bioorganic Chemistry, 75, 347–356. https://doi.org/10.1016/j.bioorg.2017.10.011
dc.identifier.bibliographicCitationKuo, C., Chen, G., Chen, C., Liu, Y., & Shieh, C. (2014). Kinetics and optimization of lipasecatalyzed synthesis of rose fragrance 2-phenylethyl acetate through transesterification.Process Biochemistry, 49(3), 437–444. https://doi.org/10.1016/j.procbio.2013.12.012
dc.identifier.bibliographicCitationLi, Y., Du, W., Dai, L., & Liu, D. (2015). Kinetic study on free lipase NS81006-catalyzed biodiesel production from soybean oil. Journal of Molecular Catalysis B: Enzymatic, 121, 22–27.https://doi.org/10.1016/j.molcatb.2015.07.013
dc.identifier.bibliographicCitationMander, P., Yoo, H. Y., Kim, S. W., Choi, Y. H., Cho, S. S., & Yoo, J. C. (2014). Transesterification of waste cooking oil by an organic solvent-tolerant alkaline lipase from Streptomyces sp.CS273. Applied Biochemistry and Biotechnology, 172(3), 1377–1389. https://doi.org/10.1007/s12010-013-0610-
dc.identifier.bibliographicCitationMaurer, N. E., Hatta-Sakoda, B., Pascual-Chagman, G., & Rodriguez-Saona, L. E. (2012). Characterization and authentication of a novel vegetable source of omega-3 fatty acids,sacha inchi (Plukenetia volubilis L.) oil. Food Chemistry, 134(2), 1173–180.https://doi.org/10.1016/j.foodchem.2012.02.143
dc.identifier.bibliographicCitationMoussa, T. A. A., & Almaghrabi, O. A. (2016). Fatty acid constituents of Peganum harmala plant using Gas Chromatography – Mass Spectroscopy. Saudi Journal of Biological Sciences,23(3), 397–403. https://doi.org/10.1016/j.sjbs.2015.04.013
dc.identifier.bibliographicCitationNavarro López, E., Robles Medina, A., González Moreno, P. A., Esteban Cerdán, L., & Molina Grima, E. (2016). Extraction of microalgal lipids and the influence of polar lipids on biodiesel production by lipase-catalyzed transesterification. Bioresource Technology, 216, 904–913. https://doi.org/10.1016/j.biortech.2016.06.035
dc.identifier.bibliographicCitationSandoval, S. (2010). Guía Técnica: Validación de métodos y determinación de la incertidumbre de la medición. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 66. Retrieved from http://www.ispch.cl/sites/default/files/documento_tecnico/2010/12/Guia T?cnica 1 validaci?n de M?todos y determinaci?n de la incertidumbre de la medici?n_1.pdf
dc.identifier.bibliographicCitationSun, S., & Hu, B. (2017). A novel method for the synthesis of glyceryl monocaffeate by the enzymatic transesterification and kinetic analysis. Food Chemistry, 214, 192–198. https://doi.org/10.1016/j.foodchem.2016.07.087
dc.identifier.bibliographicCitationZhang, H., Wang, Z., & Liu, O. (2015). Development and validation of a GC-FID method for quantitative analysis of oleic acid and related fatty acids. Journal of Pharmaceutical Analysis, 5(4), 223–230. https://doi.org/10.1016/j.jpha.2015.01.005
dc.contributor.generoFemenino
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Química


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nd/2.5/co/This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit