Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorGarcía Guerrero, Claudia Carmiña
dc.contributor.advisorMarroquín Peñaloza, Talía Yolanda
dc.contributor.authorNavarrete Mendoza, Leidy Julieth
dc.date.accessioned2020-05-12T00:21:15Z
dc.date.available2020-05-12T00:21:15Z
dc.date.issued2019-12
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77505
dc.description.abstractInorganic and organic dentinal structural components, keep the mechanical integrity of teeth while functioning. Age, pathological processes, and chemicals use, modify the dentinal subtract irreversibly. Objective: To quantify the effect of irrigants on biomechanical properties of dentine, as reported in available literature. Methods: A literature review(Publication date:2009-2019) was conducted on different databases, secondary publications, and indices from specialized journals. Two researchers included in vitro studies according to the eligibility criteria. In case of non-consensus, a third reviewer was consulted. Initial selection process focused on sequential title analysis, abstract evaluation and removal of duplicates, until identifying articles for complete reading and qualitative and quantitative evaluation. An instrument for bias analysis was designed. Results Using the PRISMA tool, an electronic search found 9026 titles. From these, 153 were selected following removal of duplicated. Afterwards, 63 were named for abstract reading. Of these, 28 were subjected to full text analysis. 9 were chosen for further evaluation and qualitative analysis(8:Uncertain bias-1:Low bias). Finally, 6 of these articles were quantitatively evaluated with RevMan5.3.5. Conclusions Biomechanical properties of root dentine depend on its organic and inorganic components, which are altered by irrigants.
dc.description.abstractAntecedentes: El marco estructural de la dentina dado por la fracción inorgánica y orgánica, mantiene la integridad mecánica del diente en función. Factores como edad, procesos patológicos y uso de sustancias químicas modifican de manera irreversible el sustrato dentinal. Objetivo: Analizar sistemáticamente la evidencia disponible, identificando de manera cuantitativa el efecto en las propiedades biomecánicas que diferentes soluciones irrigadoras en endodoncia generan sobre la dentina radicular. Métodos: Búsqueda de la literatura (Año publicación: 2009-2019), mediante una ecuación determinada en diferentes bases de datos, publicaciones secundarias y tablas de contenido de revistas especializadas. Dos investigadores, incluyeron estudios in vitro de acuerdo a los criterios de elegibilidad. En ausencia de consenso, un tercer evaluador lo resolvió. El proceso de selección incluyó análisis secuencial de título, resumen y publicaciones duplicadas, hasta identificar artículos para lectura completa y evaluación cualitativa y cuantitativa. Se diseñó un instrumento para análisis de sesgo. Resultados: Acorde con la herramienta PRISMA, un proceso bibliométrico recuperó 9026 títulos mediante la búsqueda electrónica, con un resultado de 153 títulos después de eliminar duplicados. Posteriormente y acorde con la lectura de título, se seleccionaron 63 resúmenes, cuya evaluación incluyó 28 artículos para lectura completa. 9 artículos fueron seleccionados para evaluación y análisis. Acorde con la valoración de sesgo 8 publicaciones se calificaron con sesgo Incierto y 1 de ellas con Bajo sesgo. Finalmente, 6 de estos artículos se evaluaron cuantitativamente con el software RevMan5.3.5. Conclusiones: Las propiedades biomecánicas del tejido dentinal dependen de la integridad de los componentes orgánicos e inorgánicos de la dentina, los cuales se alteran por uso de irrigantes.
dc.format.extent22
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc610 - Medicina y salud
dc.titleCambios estructurales en dentina radicular por el efecto de las soluciones irrigadoras en endodoncia. Revisión sistemática de la literatura
dc.typeArtículo de revista
dc.rights.spaAcceso abierto
dc.description.additionalEspecialista en Endodoncia
dc.type.driverinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Odontología - Especialidad en Endodoncia
dc.contributor.researchgroupINVENDO
dc.description.degreelevelEspecialidades Médicas
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesGu L-S, Huang X-Q, Griffin B, Bergeron BR, Pashley DH, Niu L-N, et al. Primum non nocere - the effects of sodium hypochlorite on dentin as used in endodontics. Acta Biomater. 2017; S1742-7061(17)30498-1.
dc.relation.referencesTjäderhane L, Carrilho MR, Breschi L, Tay FR, Pashley DH. Dentin basic structure and composition-an overview. Endod Topics. 2012; 20:3–29.
dc.relation.referencesZaslansky P. Dentin, in: Fratzl P. (Ed.), Collagen: Structure and Mechanics, Springer. 2008; pp. 421-446.
dc.relation.referencesCarrilho MR, Tay FR, Donnelly AM, Agee KA, Tja¨ derhane L, Mazzoni A, et. al. Host-Derived Loss of Dentin Matrix Stiffness Associated With Solubilization of Collagen. J Biomed Mater Res B Appl Biomater. 2008; 10.1002/jbm.b.31295.
dc.relation.referencesKishen A. Mechanisms and risk factors for fracture predilection in endodontically treated teeth. Endod Topics. 2006, 13, 57–83.
dc.relation.referencesHülsmann M. Effects of mechanical instrumentation and chemical irrigation on the root canal dentin and surrounding tissues. Endod Topics. 2013; 29:55–86.
dc.relation.referencesGarcía Guerrero C, Parra Junco C, Quijano Guauque S, Molano N, Pineda GA, Marín Zuluaga DJ. Vertical root fractures in endodontically-treated teeth: A retrospective analysis of possible risk factors. J Invest Clin Dent. 2018; 9:e12273.
dc.relation.referencesCurrey JD, Brear K, Zioupos P. Dependence of mechanical properties on fibre angle in narwhal tusk, a highly oriented biological composite. J Biomech. 1994; 27:885–97.
dc.relation.referencesGarcia A.J., Kuga M.C., Palma-Dibb R.G., Só M.V., Matsumoto M.A., Faria G., et al. Effect of sodium hypochlorite under several formulations on root canal dentin microhardness. J Investig Clin Dent. 2013; 4:229-232.
dc.relation.referencesCecchin D, Farina AP, Souza MA, Albarello LL, Schneider AP, Pimenta Vidal CM, et al. Evaluation of antimicrobial effectiveness and dentine mechanical properties after use of chemical and natural auxiliary irrigants. J Dent. 2015; 43:695 – 702.
dc.relation.referencesGrigoratos D, Knowles J, Ng YL, Gulabivala K. Effect of exposing dentine to sodium hypochlorite and calcium hydroxide on its flexural strength and elastic modulus. Int Endod J. 2001; 34:113-119.
dc.relation.referencesScaffa PM, Vidal CMP, Barros N, Gesteira TF, Carmona AK, Breschi L, et al. Chlorhexidine inhibits the activity of dental cysteine cathepsins. Den Res J. 2012; 91:420-5.
dc.relation.referencesFuriga A, Roques C, Badet C. Preventive effects of an original combination of grape seed polyphenols with amine fluoride on dental biofilm formation and oxidative damage by oral bacteria. J Appl Microbiol. 2014; 116:761–71.
dc.relation.referencesAl-Habib A, Al-Saleh E, Safer AM, Afzal M. Bactericidal effect of grape seed extract on methicillin-resistant Staphylococcus aureus (MRSA). J Toxicol Sci. 2010; 35:357–64.
dc.relation.referencesAguiar TR, Vidal CMP, Phansalkar RS, Todorova I, Napolitano JG, McAlpine JB, et al. Dentin biomodification potential depends on polyphenol source. Den Res J. 2014; 93:417–22.
dc.relation.referencesVidal CMP, Aguiar TR, Phansalkar R, McAlpine JB, Napolitano JG, Chen S-N, et al. Galloyl moieties enhance the dentin biomodification potential of plant-derived catechins. Acta Biomater. 2014; 10:3288–94.
dc.relation.referencesDel Carpio-Perochena A, Monteiro Bramante C, Hungaro Duarte MA, de Moura MR, Aouada FA, Kishen A. Chelating and antibacterial properties of chitosan nanoparticles on dentin. Restor Dent Endod. 2015; 2234-7658.
dc.relation.referencesDel Carpio-Perochena A, Monteiro Bramante C, Hungaro Duarte MA, de Moura MR, Aouada FA, Kishen A. Chelating and antibacterial properties of chitosan nanoparticles on dentin. Restor Dent Endod. 2015; 2234-7658.
dc.relation.referencesHiggins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from www.cochrane-handbook.org.
dc.relation.referencesMoher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009; 6(6): e1000097. doi: 10.1371/journal.pmed1000097.
dc.relation.referencesShea BJ, Grimshaw JM, Wells GA, Boers M, Andersson N, Hamel C, et al. Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. BMC Med Res Methodol. 2007 Feb 15; 7:10. PMID: 17302989.
dc.relation.referencesKrithikadatta J, Gopikrishna V, Datta M. CRIS Guidelines (Checklist for Reporting In-vitro Studies): A concept note on the need for standardized guidelines for improving quality and transparency in reporting in-vitro studies in experimental dental research. J Conserv Dent. 2014 Jul;17(4):301-4.
dc.relation.referencesReview Manager (RevMan) [Computer program]. Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014.
dc.relation.referencesBarón M, Llena C, Forner L, Palomares M, González-García C, Salmerón-Sánchez M. Nanostructural changes in dentine caused by endodontic irrigants. Med Oral Patol Oral Cir Bucal. 2013 Jul 1;18(4):e733-6.
dc.relation.referencesFarshad M, Abbaszadegan A, Ghahramani Y, Jamshidzadeh A. Effect of Imidazolium-Based Silver Nanoparticles on Root Dentin Roughness in Comparison with Three Common Root Canal Irrigants. Iran Endod J. 2017;12(1):83-86.
dc.relation.referencesBallal NV, Mala K, Bhat KS. Evaluation of the Effect of Maleic Acid and Ethylenediaminetetraacetic Acid on the Microhardness and Surface Roughness of Human Root Canal Dentin. J Endod.2010; Volume 36, Issue 8, Pages 1385-1388.
dc.relation.referencesSaha SG, Sharma V, Bharadwaj A, Shrivastava P, Saha MK, Dubey S, et. al. Effectiveness of Various Endodontic Irrigants on the Micro-Hardness of the Root Canal Dentin: An in vitro Study. J Clin Diagn Res. 2017 Apr;11(4):ZC01-ZC04.
dc.relation.referencesBallal NV, Khandewal D, Karthikeyan S, Somayaji K, Foschi F. Evaluation of Chlorine Dioxide Irrigation Solution on the Microhardness and Surface Roughness of Root Canal Dentin. Eur J Prosthodont Restor Dent. 2015 Dec; 23(4):173-8.
dc.relation.referencesCullen JK, Wealleans JA, Kirkpatrick TC, Yaccino JM. The effect of 8.25% sodium hypochlorite on dental pulp dissolution and dentin flexural strength and modulus. J Endod. 2015 Jun; 41(6):920-4.
dc.relation.referencesKalluru RS, Kumar ND, Ahmed S, Sathish ES, Jayaprakash T, Garlapati R, et. al. Comparative Evaluation of the Effect of EDTA, EDTAC, NaOCl and MTAD on Microhardness of Human Dentin - An In-vitro Study. J Clin Diagn Res. 2014 Apr; 8(4):ZC39-41.
dc.relation.referencesPatil CR, Uppin V. Effect of endodontic irrigating solutions on the microhardness and roughness of root canal dentin: an in vitro study. Indian J Dent Res. 2011 Jan-Feb; 22(1):22-7.
dc.relation.referencesHu X, Ling J, Gao Y. Effects of irrigation solutions on dentin wettability and roughness. J Endod. 2010 Jun; 36(6):1064-7.
dc.relation.referencesOzdemir HO, Buzoglu HD, Çalt S, Çehreli ZC, Varol E, Temel A. Chemical and Ultramorphologic Effects of Ethylenediaminetetraacetic Acid and Sodium Hypochlorite in Young and Old Root Canal Dentin. J Endod. 2012; 38(2), 204–208.
dc.relation.referencesZhang YR, Du W, Zhou XD, Yu HY. Review of research on the mechanical properties of the human tooth. Int J Oral Sci. 2014; 6(2):61–69.
dc.relation.referencesPlotino G, Grande NM, Bedini R, Pameijer CH, Somma F. Flexural properties of endodontic posts and human root dentin. Dental materials. 2007; 23 (9) 1129–1135.
dc.relation.referencesSim TPC, Knowles JC, Ng Y-L, Shelton J, Gulabivala K. Effect of sodium hypochlorite on mechanical properties of dentine and tooth surface strain. Int Endod J. 2001; 34:120–32.
dc.relation.referencesMarending M, Luder HU, Brunner TJ, Knecht S, Stark WJ, Zehnder M. Effect of sodium hypochlorite on human root dentine—mechanical, chemical and structural evaluation. Int Endod J. 2007; 40:786–93.
dc.relation.referencesTartari T, Bachmann L, Maliza AG, Andrade FB, Duarte MA, Bramante CM. Tissue dissolution and modifications in dentin composition by different sodium hypochlorite concentrations. J Appl Oral Sci. 2016 May-Jun; 24(3):291-8.
dc.relation.referencesHu X, Peng Y, Sum C, Ling J. Effects of Concentrations and Exposure Times of Sodium Hypochlorite on Dentin Deproteination: Attenuated Total Reflection Fourier Transform Infrared Spectroscopy Study. J Endod. 2010; 36(12), 2008–2011.
dc.relation.referencesKishen A, Shrestha S, Shrestha A, Cheng C, Goh C. Characterizing the collagen stabilizing effect of crosslinked chitosan nanoparticles against collagenase degradation. Dental Materials. 2016; 32(8), 968–977.
dc.relation.referencesErsahan S, Alakus Sabuncuoglu F. Effect of surface treatment on enamel surface roughness. J Istanb Univ Fac Dent. 2016 Jan 12; 50(1):1-8.
dc.relation.referencesTartari T, Duarte Junior AP, Silva Junior JO, Klautau EB, Silva E Souza Junior MH, Silva E Souza Junior P de A. Etidronate from Medicine to Endodontics: effects of different irrigation regimes on root dentin roughness. J. Appl Oral Sci. 2013; 21: 409-415
dc.relation.referencesHuang X, Zhang J, Huang C, Wang Y, Pei D. Effect of intracanal dentine wettability on human dental pulp cell attachment. Int Endod J. 2011; 45(4), 346–353.
dc.relation.referencesRanc V, Žižka R, Chaloupková Z, Ševčík J, Zbořil R. Imaging of growth factors on a human tooth root canal by surface-enhanced Raman spectroscopy. Anal Bioanal Chem. 2018.
dc.relation.referencesGaller KM, Buchalla W, Hiller K-A, Federlin M, Eidt A, Schiefersteiner M, Schmalz G. Influence of Root Canal Disinfectants on Growth Factor Release from Dentin. J Endod. 2015; 41(3), 363–368.
dc.relation.referencesSungur DD, Aksel H, Ozturk S, Yılmaz Z, Ulubayram K. Effect of dentine conditioning with phytic acid or etidronic acid on growth factor release, dental pulp stem cell migration and viability. Int Endod J. 2018.
dc.relation.referencesYeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton. 2005; 60:24-34.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalRoot canal irrigants
dc.subject.proposalTécnicas in vitro
dc.subject.proposalDentina
dc.subject.proposalBiomechanic phenomena
dc.subject.proposalIn vitro techniques
dc.subject.proposalIrrigantes del conducto radicular
dc.subject.proposalFenómenos biomecánicos
dc.subject.proposalDentine
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit