Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorAraque, Javier Leonardo
dc.contributor.authorCepeda Solarte, Juan David
dc.date.accessioned2020-05-19T20:32:35Z
dc.date.available2020-05-19T20:32:35Z
dc.date.issued2019-12-13
dc.identifier.citationJ. Cepeda, "Diseño de un sistema transceptor para comunicaciones usando una multiplexación para 5G sobre Radio definido por software", 2019.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77536
dc.description.abstractEl trabajo realizado expone el estudio de una multiplexación candidata para 5G teniendo como objetivo su implementación en una plataforma de radio definido por software (SDR). Se define la forma de onda Universal Filtered Multi-carrier (UFMC) como el objeto de estudio y se realizan simulaciones sobre su desempeño. Adicionalmente se proponen métodos para la implementación en un sistema real como sincronización y estimación de canal. Se elige una plataforma de desarrollo de SDR conocida como GNU Radio y se trabaja con la API y bloques existentes para construir un prototipo de transceptor. Finalmente se selecciona el hardware USRP para la puesta prueba del sistema con un canal real y se realizan mediciones experimentales iniciales en laboratorio para contrastar los resultados con la teoría. Se comprueba el desempeño espectral de UFMC de forma experimental y se perfila como una candidata sucesora a OFDM. Se logra establecer que aunque los efectos de offset de frecuencia y tiempo, y canal deben compensarse, el efecto no lineal del amplificador de la mano con el alto PAPR de la señal son los principales contribuyentes en el desempeño de la transmisión y de las curvas de BER vs Eb/N0.
dc.description.abstractThe present work reports the study of a candidate waveform for 5G, aiming at its implementation in a software-defined radio platform (SDR). The Universal Filtered Multi-carrier (UFMC) waveform is selected as the object of this study, alongside which some simulations are carried out to verify its performance. Additionally, we propose methods for implementation in a real system such as synchronization and channel estimation. The GNU Radio SDR platform is chosen for development in order to work with its API and signal processing blocks to build a transceiver prototype. Finally, the USRP hardware is selected to test the system with a real channel and initial experimental measurements are made in the laboratory to contrast the results with the theory. The spectral efficiency of UFMC is verified experimentally and is outlined as a successor candidate to OFDM. It was possible to establish that although the effects of offset of frequency and time, and channel must be compensated, the non-linear effect of the amplifier alongside with the high PAPR of the signal are the main contributors in the performance of the transmission and the curves of BER vs Eb / N0.
dc.format.extent91
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)
dc.titleDiseño de un sistema transceptor para comunicaciones usando una multiplexación para 5G sobre Radio definido por software
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalMaestría en Ingeniería - Telecomunicaciones
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Telecomunicaciones
dc.contributor.researchgroupGrupo de Investigación en Electrónica de Alta Frecuencia y Telecomunicaciones (CMUN)
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references5GNOW, “Ufmc (matlab files),” in http: // www. 5gnow. eu/ ?page_ id= 424 .
dc.relation.references[1] F. Schaich and T. Wild, “Waveform contenders for 5g — ofdm vs. fbmc vs. ufmc,” in 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP), pp. 457–460, May 2014. [2] 5GNOW, “Ufmc (matlab files),” in http: // www. 5gnow. eu/ ?page_ id= 424 . [3] 3GPP (TS 25.401), “Utran overall description,” in Technical Specification, Sophia An- tipolis, France, 2002. [4] ITU, “5g basics,” p. 39, 2017.
dc.relation.references[5] M. M. et all, “5g ppp use cases and performance evaluation models,” pp. 1–10, Abril, 2016. [6] N. Alliance, “Ngmn 5g white paper,” p. 13, Febrero, 2015. [7] “5g and beyond waveforms,” in 2017 24th International Conference on Telecommuni- cations (ICT), pp. 1–42, May 2017.
dc.relation.references[8] M. Matthe, D. Zhang, F. Schaich, T. Wild, R. Ahmed, and G. Fettweis, “A reduced com- plexity time-domain transmitter for uf-ofdm,” in 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), pp. 1–5, May 2016. [9] N. Michailow, M. Matth´e, I. S. Gaspar, A. N. Caldevilla, L. L. Mendes, A. Festag, and G. Fettweis, “Generalized frequency division multiplexing for 5th generation cellular networks,” IEEE Transactions on Communications, vol. 62, pp. 3045–3061, Sep. 2014. [10] Y. Qi and M. Al-Imari, “An enabling waveform for 5g — qam-fbmc: Initial analysis,” in 2016 IEEE Conference on Standards for Communications and Networking (CSCN), pp. 1–6, Oct 2016. [11] J. P. L. Jim´enez, “Modulaci´on multiportadora ofdm”. Ingenier´ıa, 2001-00-00. Vol 6. Nu´mero 2,” in http: // revistas. udistrital. edu. co/ ojs/ index. php/ reving/ article/ view/ 2699/ 3891 , pp. 30–34.
dc.relation.references[12] F. Schaich, T. Wild, and Y. Chen, “Waveform contenders for 5g - suitability for short packet and low latency transmissions,” in 2014 IEEE 79th Vehicular Technology Con- ference (VTC Spring), pp. 1–5, May 2014.
dc.relation.references[13] G. P. Fettweis, “5g and the future of iot,” in ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference, pp. 21–24, Sep. 2016.
dc.relation.references[14] U. L. Rohde, A. K. Poddar, and S. K. Koul, “Modern radios: 5g and sdr emerging trends,” in 2016 Asia-Pacific Microwave Conference (APMC), pp. 1–4, Dec 2016.
dc.relation.references[15] ITU-R, “Imt vision - framework and overall objectives of the future development of imt for 2020 and beyond,” p. 13, Junio, 2015. [16] Y. S. et all, “Mimo-ofdm wireless communications with matlabⓍR ,” pp. 111–151, 2010. [17] K. Fazel and S. Kaiser, “Multi-carrier and spread spectrum systems,” pp. 25–34, 2004.
dc.relation.references[18] A. S. S. S. Kaur, C. Singh, “Effects and estimation techniques of symbol timing offset and carrier frequency offset in ofdm system: Simulation and analysis,” 2016. [19] E. McCune, “Practical digital wireless signals,” pp. 204–220, 2010.
dc.relation.references[20] P. Banelli, S. Buzzi, G. Colavolpe, A. Modenini, F. Rusek, and A. Ugolini, “Modulation formats and waveforms for 5g networks: Who will be the heir of ofdm?: An overview of alternative modulation schemes for improved spectral efficiency,” IEEE Signal Proces- sing Magazine, vol. 31, pp. 80–93, Nov 2014.
dc.relation.references[21] G. M. Hassan, M. R. Mokhtar, and K. A. A. Bakar, “Symbol time offset synchroni- zation based on training sequence,” in 2018 International Conference on Advance of Sustainable Engineering and its Application (ICASEA), pp. 115–120, March 2018.
dc.relation.references[22] Juan Wei, Juanjuan Hu, and Jing Chen, “An improved algorithm based on training symbol for ofdm symbol synchronization,” in 10th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM 2014), pp. 105–108, Sep. 2014.
dc.relation.references[23] V. Savaux, “Contribution a` modulation ofdm,” 2013. l’estimation de canal multi-trajets dans un contexte de
dc.relation.references[24] P. Cruz, N. Carvalho, and K. Remley, “Designing and Testing Software-Defined Radios,” IEEE Microwave Magazine, vol. 11, pp. 83–94, jun 2010. [25] E. McCune, Practical digital wireless signals. Cambridge University Press, 2010. [26] B. Farhang-Boroujeny and H. Moradi, “OFDM Inspired Waveforms for 5G,” IEEE Communications Surveys & Tutorials, vol. 18, no. 4, pp. 2474–2492, 2016. [27] B. Farhang-Boroujeny, “Ofdm versus filter bank multicarrier,” IEEE Signal Processing Magazine, vol. 28, pp. 92–112, May 2011. 80 Bibliograf´ıa
dc.relation.references[28] N. Michailow, M. Matth´e, I. S. Gaspar, A. N. Caldevilla, L. L. Mendes, A. Festag, and G. Fettweis, “Generalized frequency division multiplexing for 5th generation cellular networks,” IEEE Transactions on Communications, vol. 62, pp. 3045–3061, Sept 2014.
dc.relation.references[29] V. Vakilian, T. Wild, F. Schaich, S. ten Brink, and J. F. Frigon, “Universal-filtered multi- carrier technique for wireless systems beyond lte,” in 2013 IEEE Globecom Workshops (GC Wkshps), pp. 223–228, Dec 2013.
dc.relation.references[30] F. Schaich and T. Wild, “Waveform contenders for 5g ofdm vs. fbmc vs. ufmc,” in 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP), pp. 457–460, May 2014.
dc.relation.references[31] T. Wild and F. Schaich, “A reduced complexity transmitter for uf-ofdm,” in 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–6, May 2015.
dc.relation.references[32] X. Zhang, M. Jia, L. Chen, J. Ma, and J. Qiu, “Filtered-ofdm - enabler for flexible wa- veform in the 5th generation cellular networks,” in 2015 IEEE Global Communications Conference (GLOBECOM), pp. 1–6, Dec 2015.
dc.relation.references[33] Qualcomm, “Making 5g nr a reality,” in https: // www. qualcomm. com/ media/ documents/ files/ whitepaper-making-5g-nr-a-reality. pdf , 2016.
dc.relation.references[34] Huawei, “5g: New air interface and radio access virtualization,” in https: // www. huawei. com/ minisite/ has2015/ img/ 5g_ radio_ whitepaper. pdf , 2015.
dc.relation.references[35] S. G¨okceli, B. Canli, and G. K. Kurt, “Universal filtered multicarrier systems: Testbed deployment of a 5g waveform candidate,” in 2016 IEEE 37th Sarnoff Symposium, pp. 94– 99, Sept 2016.
dc.relation.references[36] X. Yu, T. Wild, and F. Schaich, “Impact of rf transmitter hardware on 5g waveforms: Signal conditionings for uf-ofdm,” in 2016 International Symposium on Wireless Com- munication Systems (ISWCS), pp. 153–157, Sept 2016.
dc.relation.references[37] D. Garcia-Roger, J. F. de Valgas, J. F. Monserrat, N. Cardona, and N. Incardona, “Hardware testbed for sidelink transmission of 5g waveforms without synchronization,” in 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1–6, Sept 2016.
dc.relation.references[38] P. Weitkemper, J. Koppenborg, J. Bazzi, R. Rheinschmitt, K. Kusume, D. Samardzija, R. Fuchs, and A. Benjebbour, “Hardware experiments on multi-carrier waveforms for 5g,” in 2016 IEEE Wireless Communications and Networking Conference, pp. 1–6, April 2016.
dc.relation.references[39] J. J. H. Almeida, C. Akamine, and P. B. Lopes, “A proposal for the next generation of isdb-tb using fbmc in a sdr implementation on gnu radio environment,” in 2016 8th IEEE Latin-American Conference on Communications (LATINCOM), pp. 1–6, Nov 2016.
dc.relation.references[40] B. Bloessl, M. Segata, C. Sommer, and F. Dressler, “Towards an open source ieee 802.11p stack: A full sdr-based transceiver in gnu radio,” in 2013 IEEE Vehicular Networking Conference, pp. 143–149, Dec 2013.
dc.relation.references[41] C. Pradhan and G. R. Murthy, “Analysis of path loss mitigation through dynamic spec- trum access: Software defined radio,” in 2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE), pp. 110–113, Dec 2015.
dc.relation.references[42] M. Danneberg, R. Datta, A. Festag, and G. Fettweis, “Experimental testbed for 5g cognitive radio access in 4g lte cellular systems,” in 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 321–324, June 2014.
dc.relation.references[43] J. Cepeda, “Comparaci´on de dos t´ecnicas de generaci´on de forma de onda ofdm y ufmc para un enlace de lte sobre fibra ´optica,” pp. 1–44, 2016. [44] P. H. Moose, “A technique for orthogonal frequency division multiplexing frequency offset correction,” IEEE Transactions on Communications, vol. 42, pp. 2908–2914, Oct 1994.
dc.relation.references[45] G. Radio, “Outoftreemodules,” in https: // wiki. gnuradio. org/ index. php/ OutOfTreeModules# gr_ modtool_ -_ The_ swiss_ army_ knife_ of_ module_ editing , March, 2019. [46] G. Radio, “Gnu radio manual and c++ api reference,” in https: // www. gnuradio. org/ doc/ doxygen/ index. html , March, 2019. [47] Ettus Research, “Usrp b210 sdr kit,” in https: // www. ettus. com/ all-products/ ub210-kit/ .
dc.relation.references[48] E. research, “Usrp hardware driver and usrp manual,”
dc.relation.references[49] O. Olukoya and D. Budimir, “Evaluation of waveform candidates for 5g wireless com- munications,” in 2019 European Microwave Conference in Central Europe (EuMCE), pp. 347–349, May 2019.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalSistemas multiportadora
dc.subject.proposalMulticarrier systems
dc.subject.proposalUFMC
dc.subject.proposalUFMC
dc.subject.proposalSynchronization
dc.subject.proposalSincronización
dc.subject.proposalSDR
dc.subject.proposalSDR
dc.subject.proposalUSRP
dc.subject.proposalUSRP
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit