Show simple item record

dc.contributor.advisorMurillo Feo, Carol Andrea
dc.creatorHernández Morales, Joan Nicolás
dc.date.accessioned2020-05-19T20:41:07Z
dc.date.available2020-05-19T20:41:07Z
dc.date.created2020-02-01
dc.identifier.citationHernández, N., & Murillo, C. (2020). Correlación del estado superficial y estructural de las estructuras de pavimento. Universidad Nacional de Colombia. Bogotá D.C..
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77537
dc.descriptionLa evaluación estructural y superficial en las estructuras de pavimento, es fundamental para establecer los criterios de gestión y administración vial a cargo de las entidades gubernamentales. En este trabajo de investigación se evalúa la correlación existente entre la evaluación del estado superficial con el Perfilometro Laser PL y la evaluación del estado estructural mediante el deflectómetro de impacto FWD; haciendo énfasis no solo en el Índice de Regularidad Internacional IRI sino además en el análisis de señales mediante transformaciones matemáticas como la Transformada Rápida de Fourier FFT, análisis de Densidad Espectral de Potencia PSD y Transformadas Discretas Wavelet DWT, análisis de parámetros de cuenco de deflexión y metodologías de retrocalculo AASHTO y YONAPAVE. Para esto, se realiza un estudio de las características y condiciones de servicio de segmentos viales con tres (3) niveles de deterioro, teniendo en cuenta variables como la velocidad de ejecución de ensayos con el PL. Asimismo, se hace una evaluación de serviciabilidad mediante el índice de condición PCI complementado con ensayos de macrotextura superficial, y la medición del espesor de las capas de las estructuras de pavimento con el Georradar GPR. Finalmente, se obtienen buenos resultados del análisis espectral con mayor precisión en la identificación de irregularidades mediante las Transformadas Wavelet. Además, se establecen los rangos o umbrales de medición para cada uno de los parámetros tenidos en cuenta junto con el Índice de Condición ICN, encontrando una correlación en la evaluación estructural y superficial de las estructuras de pavimento.
dc.description.abstractThe structural and superficial evaluation of pavement structures is essential to establish the criteria for Pavement Management System by government entities. In this research the correlation between the evaluation of the surface state with Profilometer Laser PL and the evaluation of the structural state through FWD impact deflectometer is evaluated; emphasizing not only in the International Regularity Index IRI but also in the analysis of signals through mathematical transformations such as Fast Fourier Transformation FFT, Power Spectral Density Analysis PSD and Discrete Wave Transformations DWT, analysis of deflection bowl parameters and retro calculation methodologies AASHTO and YONAPAVE. For this purpose, a study of the characteristics and service conditions of the road sections with three (3) levels of deterioration is carried out, considering variables such as the speed of execution with PL test, among others. Similarly, serviceability assessment is performed using Pavement Condition Index PCI complementary with Surface Macrotexture tests, and the measurement of the thickness of the layers of the pavement structures with Georradar GPR. Finally, good results of the spectral analysis are obtained with greater precision in the identification of irregularities by means of Wavelet Transforms. Also, the ranges or thresholds for each of the parameters considered together with the ICN condition index are established finding a correlation in the structural and superficial evaluation of pavement structures.
dc.format.extent170
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.subjectPerfilómetro láser
dc.subjectFWD
dc.subjectIRI
dc.subjectRetrocálculo
dc.subjectAnálisis espectral
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleCorrelación del estado superficial y estructural de las estructuras de pavimento
dc.typeOther
dc.rights.spaAcceso abierto
dc.contributor.institutionUniversidad Nacional de Colombia - Sede Bogotá
dc.subject.keywordLaser Profilometer
dc.subject.keywordFWD
dc.subject.keywordIRI
dc.subject.keywordRetrocalculation
dc.subject.keywordSpectral Analysis
dc.type.spaOtro
dc.type.hasversionAccepted Version
dc.contributor.gruplacGRUPO DE GEOTECNIA GENKI "Geotechnical Knowledge and Innovation"
dc.description.additionalMagíster en Ingeniería - Geotecnia. Línea de Investigación: Materiales y pavimentos
dc.coverage.modalityMaestria
dc.rights.accessRightsOpen Access
dc.identifier.bibliographicCitationAbelló, N. (2015). Una infraestructura vial que avanza y se afianza. In Ministerio de Transporte de la Republica de Colombia. Bogotá: Publicacion, La Republica.
dc.identifier.bibliographicCitationAlhasan, A., White, D. J., & De Brabanterb, K. (2016). Continuous wavelet analysis of pavement profiles. Automation in Construction, 63, 134–143. https://doi.org/10.1016/j.autcon.2015.12.013
dc.identifier.bibliographicCitationAmerican Association of State Highway and Transportation Officials, W. D. (1993). AASHTO Guide For Design Of Pavement Structures. Washington D.C.
dc.identifier.bibliographicCitationAmerican Society for Testing and Materials ASTM D 6433. (2007). Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys. West Conshohocken.
dc.identifier.bibliographicCitationAmerican Society for Testing and Materials ASTM D950. (2004). Standard Test Method for Measuring the Longitudinal Profile of Traveled Surfaces with an Accelerometer Established Inertial Profiling. West Conshohocken.
dc.identifier.bibliographicCitationAndren, P. (2015). Power spectral density approximations of longitudinal road profiles. International Journal of Vehicle Design, 40(No 1/2/3, January 2006). https://doi.org/10.1504/IJVD.2006.008450
dc.identifier.bibliographicCitationApuntesDeSeñales. (2006). Introducción a la Transformada Wavelet Introducción. Pamplona, España. Retrieved from http://www.exa.unicen.edu.ar/escuelapav/cursos/wavelets/apunte.pdf
dc.identifier.bibliographicCitationArriaga Patiño, M. C., Anguas, P. G., & Rico Rodriguez, A. (1998). Índice Internacional De Rugosidad En La Red Carretera De México, (108), 1–57. Retrieved from http://imt.mx/archivos/Publicaciones/PublicacionTecnica/pt108.pdf
dc.identifier.bibliographicCitationBenedetto, A., & Tosti, F. (2013). Inferring bearing ratio of unbound materials from dialectric properties using GPR : the case of Runaway Safety Areas. Airfield and Highway Pavement 2013: Sustainable and Efficient Pavements, ASCE, 1336–1347.
dc.identifier.bibliographicCitationBenedetto, A., Tosti, F., Schettini, G., & Twizere, C. (2011). Evaluation of geotechnical stability of road using GPR. 2011 6th International Workshop on Advanced Ground Penetrating Radar, IWAGPR 2011, 1–6. https://doi.org/10.1109/IWAGPR.2011.5963858
dc.identifier.bibliographicCitationCaicedo, B., Murillo, C. A., & Tristancho, J. A. (2017). “Medida Perfil Longitudinal de un Pavimento Mediante Navegacion Inercial,” (September 2017), 19–26.
dc.identifier.bibliographicCitationCaro, F., & Peña, G. (2012). Análisis y criterios para el cálculo del Índice de Rugosidad Internacional (IRI) en vías urbanas colombianas que orienten la elaboración de una especificación técnica. Intekhnia, 7(51), 57–72.
dc.identifier.bibliographicCitationChen, D., Roohi Sefidmazgi, N., & Bahia, H. (2015). Exploring the feasibility of evaluating asphalt pavement surface macro-texture using image-based texture analysis method. Road Materials and Pavement Design, 16(2), 405–420. https://doi.org/10.1080/14680629.2015.1016547
dc.identifier.bibliographicCitationCote, L. J., Kozin, F., & Bogdanoff, J. L. (1996). `Introduction to a statistical theory of land locomotion - I’. Journal of Terramechanics, 2, 17–23.
dc.identifier.bibliographicCitationGoenaga, B., Fuentes, L., & Mora, O. (2017). Evaluation of the methodologies used to generate random pavement profiles based on the power spectral density : a n approach based on the International Roughness Index Análisis de las metodologías utilizadas para generar perfiles aleatorios, 2017, 49–57. https://doi.org/10.15446/ing.investig.v37n1.57277
dc.identifier.bibliographicCitationGomez, O., & Murillo, C. (2015). Criterios de optimización del diseño de sobrecarpetas asfálticas para Bogotá, basados en ensayos no destructivos. Universidad Nacional de Colombia. Retrieved from http://www.bdigital.unal.edu.co/48570/
dc.identifier.bibliographicCitationHasanuddin, Setyawan, A., & Yulianto, B. (2018). Evaluation of Road Performance Based on International Roughness Index and Falling Weight Deflectometer. IOP Conference Series: Materials Science and Engineering, 333(1). https://doi.org/10.1088/1757-899X/333/1/012090
dc.identifier.bibliographicCitationHassan, R., & Kerry, M. (2001). Estimating dynamic loading of pavements from surface profile properties. Road and Transport Research, 10(3).
dc.identifier.bibliographicCitationHoffman, M. S. (2003). A Direct Method for Evaluating the Structural Needs of Flexible Pavements Based on FWD Deflections. Engineering Consulting, Israel, 1–13.
dc.identifier.bibliographicCitationHoffman, M. S., & Aguila, P. M. D. E. L. (1985). Estudios de evaluación estructural de pavimentos basados en la interpretación de curvas de deflexiones (ensayos no destructivos).
dc.identifier.bibliographicCitationHorak, E. (2008). Benchmarking the structural condition of flexible pavements with deflection bowl parameters. South African Institute of Civil Engineering Journal, 50(2), 2–9.
dc.identifier.bibliographicCitationHorak, E., & Emery, S. (2006). Falling Weight Deflectometer Bowl Parameters as Analysis Tool for Pavement Structural Evaluations. 22nd Australian Road Research Board Conference, 15. Retrieved from https://trid.trb.org/view.aspx?id=795808
dc.identifier.bibliographicCitationHoubolt, J. C., Walls, J. ., & Smiley, R. F. (1955). “On spectral analysis of runway roughness and loads developed during taxiing.” Technical Note 348, Langley Aeronautical Laboratory, National Advisory Committee for Aeronautics, Langley Field, VA.
dc.identifier.bibliographicCitationHu, F. (2006). Development and evaluation of an inertial based pavement roughness measuring system. University of South Florida.
dc.identifier.bibliographicCitationISO. (2016). Mechanical vibration - Road surface profiles - Reporting of measured data - International Organization For Standardization, 2016.
dc.identifier.bibliographicCitationJ.C. Wambold, L.E. Defrain, R.R. Hegmon, K. Mcghee, J. Reichert, E. B. S. (1981). State of the Art of Measurement and Analysis of Road Roughness. Transportation Research Procedia.
dc.identifier.bibliographicCitationJames, J. F. (2011). A Student´s Guide to Fourier Transforms (3th editon). New York: Cambridge University Press.
dc.identifier.bibliographicCitationLiu, B. (2009). 159.735 Studies in Parallel and Distributed System-Parallel Fast Fourier Transform. University of New Zealand.
dc.identifier.bibliographicCitationLosa, M., Leandri, P., & Bacci, R. (2008). Monitoring and Evaluating Performance Requirements of Flexible Road Pavements. Transportation and Development Innovative Best Practices, 2008, 1–6.
dc.identifier.bibliographicCitationLushnikov, N., & Lushnikov, P. (2017). Methods of Assessment of Accuracy of Road Surface Roughness Measurement with Profilometer. Transportation Research Procedia, 20(September 2016), 425–429. https://doi.org/10.1016/j.trpro.2017.01.069
dc.identifier.bibliographicCitationMeier, R. W. (1995). Backcalculation of flexible pavement moduli from falling weight deflectometer data using artificial neural networks. ProQuest Dissertations and Theses, (April), 239-239 p. Retrieved from http://search.proquest.com/docview/304208449?accountid=41453
dc.identifier.bibliographicCitationMichael W Sayers, Thomas D. Gillespie, and W. D. 0. P. (1986). Guidelines for Conducting and Calibrating Road Roughness Measurements. World Bank Technical Paper Number 46. Retrieved from https://deepblue.lib.umich.edu/bitstream/handle/2027.42/3133/72764.pdf?sequence=2
dc.identifier.bibliographicCitationMiller, T., Swiertz, D., Tashman, L., Tabatabaee, N., & Bahia, H. (2012). Characterization of Asphalt Pavement Surface Texture. Transportation Research Record: Journal of the Transportation Research Board, 2295, 19–26. https://doi.org/10.3141/2295-03
dc.identifier.bibliographicCitationMoreno, L. J. (2016). Influencia de la velocidad en la medición de IRI con el equipo perfilometro láser. Universidad Militar Nueva Granada.
dc.identifier.bibliographicCitationOsgood, B. (2019). Lectures on the Fourier Transform and its Applications. (Committee, Ed.). Providence Rhode Island: American Mathematical Society.
dc.identifier.bibliographicCitationPark, S. S., Bobet, A., & Nantung, T. E. (2018). Correlation between Resilient Modulus (MR) of Soil, Light Weight Deflectometer (LWD), and Falling Weight Deflectometer (FWD). West Lafayette-Join Transportation Research Program Publication No. FHWA/IN/TRP-201/08. https://doi.org/10.5703/1288284316651
dc.identifier.bibliographicCitationPawar, P. R., Tom, A., & Saraf, M. R. (2018). IRI ( International Roughness Index ): An Indicator Of Vehicle Response. Materials Today: Proceedings, 5(5), 11738–11750. https://doi.org/10.1016/j.matpr.2018.02.143
dc.identifier.bibliographicCitationPoularikas, A. D. (2010). Transforms and Applications Handbook. (T. and F. Group, Ed.) (3rd ed). New York.
dc.identifier.bibliographicCitationPraticò, F. G., & Vaiana, R. (2015). A study on the relationship between mean texture depth and mean profile depth of asphalt pavements. Construction and Building Materials, 101, 72–79. https://doi.org/10.1016/j.conbuildmat.2015.10.021
dc.identifier.bibliographicCitationRajaei, M., Sefidmazgi, N., & Bahia, H. (2014). Establishment of Relationship Between Pavement Surface Friction and Mixture Design Properties. Transportation Research Record: Journal of the Transportation Research Board, 2457(1), 114–120. https://doi.org/10.3141/2457-12
dc.identifier.bibliographicCitationSayers, M W, & Karamihas, S. M. (1998). The little book of profiling. Basic Information about Measuring and Interpreting Road Profiles.
dc.identifier.bibliographicCitationSayers, Michael W. (1986). On the Calculation of International Roghness Index from Longitudinal Road Profile. Transportation Research Record, 12.
dc.identifier.bibliographicCitationSayers, Michael W., Gillespie, T. D., & Queiroz, C. a V. (1986). The International Road Roughness Experiment - Establishing Correlation and a Calibration Standard for Measurements. The World Bank Technical Paper.
dc.identifier.bibliographicCitationStéphane, M. (2009). The Fourier Kingdom. A Wavelet Tour of Signal Processing. https://doi.org/10.1016/B978-0-12-374370-1.00006-9
dc.identifier.bibliographicCitationStokoe, H., Hudson, R., & Miner, B. F. (1991). The Falling Weight Deflectometer And Spectral Analysis of Surface Waves Test For Characterizing Pavement Moduli: A Case Study. Center for Transportation Research The University of Texas, Austin-Texas.
dc.identifier.bibliographicCitationThenoux, G., & Gaete, R. (1995). Evaluación Técnica Del Pavimento Y De Refuerzo Asfáltico. Revista Ingeniería de Construcción, (14), 22. https://doi.org/10.7764/ricuc.0.14.364
dc.identifier.bibliographicCitationUniversidad Nacional de Colombia, I., & INVIAS, I. (2006). Estudio e investigación del estado actual de manual para la inspección visual de las obras. Convenio Interadministrativo 0587-03, Bogotá D.C.
dc.identifier.bibliographicCitationVargas, G. B., & Obando, D. S. (2010). Definición De Rangos Para La Clasificación Estructural Y Funcional De La Red Vial Nacional De Costa Rica, 20, 109–119.
dc.identifier.bibliographicCitationVilla, C. A. C. (2007). Predicción del indice de rugosidad internacional en pavimentos flexibles usado redes neuronales artificiales, 71, 39–47. https://doi.org/10.1016/j.clinbiochem.2008.04.008
dc.identifier.bibliographicCitationW. Carey, H. Huckins, R. L. (1962). Slope Variance as a Measure of Roughness And the CHLOE Profilometer. Highway Research Board Conference on the AASHO Road Test, (St Louis MO United States).
dc.identifier.bibliographicCitationWei, L., Fwa, T. F., & Zhe, Z. (2005). Wavelet Analysis and Interpretation of Road Roughness. Journal of Transportation Engineering, 131(2), 120–130. https://doi.org/10.1061/(ASCE)0733-947X(2005)131:2(120)
dc.contributor.generoMasculino
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Geotecnia


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record