Show simple item record

dc.contributor.advisorDonado Garzón, Leonardo David
dc.creatorTinjacá Jiménez, Nathalia Kateryne
dc.date.accessioned2020-07-14T02:29:15Z
dc.date.available2020-07-14T02:29:15Z
dc.date.created2020-06-05
dc.identifier.citationTinjacá, N. (2020) Análisis de la influencia de la heterogeneidad del medio en fenómenos de densidad variable dentro de un acuífero insular ( Tesis de Maestría en Ingeniería-Recursos Hidráulicos). Universidad Nacional de Colombia.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77768
dc.descriptionLos estudios concernientes que existen actualmente acerca de la formación del lente de agua dulce y el fenómeno upconing en acuíferos insulares heterogéneos es escasa. El propósito general de este trabajo, consiste en analizar la influencia de la heterogeneidad del medio que se presenta en acuíferos insulares en dos principales fenómenos de densidad variable: la formación del cuerpo de agua dulce y el fenómeno de upconing o formación de un cono de salinización que tiene lugar debajo de un pozo. Se realizaron modelos físicos 2D en laboratorio con dos cajas de arena, representando cada medio de estudio, con el fin de modelar los fenómenos que se llevan a cabo dentro del acuífero. Posteriormente se simularon numéricamente los dos procesos ensayados en el modelo físico mediante la herramienta FEFLOW 7.2; para luego comparar los resultados con los obtenidos en el modelo experimental. Adicionalmente se realizó un ensayo de tomografía eléctrica al modelo físico para los dos medios simulados. Lo anterior con el objetivo de realizar un análisis comparativo junto con los resultados de los otros modelos. Los resultados del modelo físico para el medio homogéneo en la generación del cuerpo de agua dulce y upconing mostraron una similaridad en la profundidad del lente frente a los resultados calculados a partir de los modelos teóricos y simulados numéricamente; sin embargo, los resultados del modelo físico para el medio heterogéneo mostraron diferencias notables con los otros dos modelos, llegando así a concluir que los modelos analíticos no tienen aplicabilidad para medios heterogéneos y que los modelos simulados numéricamente tuvieron la necesidad de ser calibrados. Adicionalmente, la tomografía eléctrica, mostró resultados no representativos a la realidad debido a dificultades presentadas en el montaje de los equipos.
dc.description.abstractThe research about the groundwater variable-density flow is essential for the human activity and supply of water resources, thereby, the study of this phenomenon include different fields of application, for example saltwater intrusion, the generates of freshwater lenses, upconing, inland salinity, among others. The research advance allows to know variety of studies about the saltwater intrusion, however, the investigation regarding the physical model experiments for the formation of lenses and upconing in heterogeneous aquifer is reduced. This research project is focused on two important processes that take place on an insular aquifer i) the formation of freshwater bodies in the aquifer, called lenses and ii) Upconing in a well. Physical 2D experiments in laboratory were implemented to analyze the effects of the stated process were used with two sandtanks, each of two represents a homogeneous and heterogeneous media. The homogenous media was represents using sand of known gradation (size #20 grain diameter 0.85 mm) and heterogeneous media using three types of sand (sizes #20, #40 grain diameter 0.43 mm and #60 diameter 0.25mm). The hydraulic and transport parameters were estimated by experimental methods. To simulate recharge, individual freshwater drips were installed above the sand cone, connected to a peristaltic pump and with different colors, the flow path lines were seen. Tubes with different length were installed within a freshwater lens and the interface geometry was modified by experimental methods of injection and pumping of freshwater rate. The experiment was made under various freshwater rates in the recharge and the pump. Different rates of freshwater were used to created different scenarios of lenses. Results of physical model were compared to analytical model, numerical model in FEFLOW 7.2 and a geophysical model in AGI-EarthImager 2D.
dc.format.extent211
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.subjectLente de agua dulce
dc.subjectMedio heterogéneo
dc.subjectUpconing
dc.subjectSimulación
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
dc.titleAnálisis de la influencia de la heterogeneidad del medio en fenómenos de densidad variable dentro de un acuífero insular
dc.typeOther
dc.rights.spaAcceso abierto
dc.contributor.institutionUniversidad Nacional de Colombia - Sede Bogotá
dc.subject.keywordFreshwater lens
dc.subject.keywordHeterogeneous media
dc.subject.keywordUpconing
dc.subject.keywordSimulation
dc.type.spaOtro
dc.type.hasversionAccepted Version
dc.contributor.gruplacHydrodynamics of the natural media research group
dc.coverage.modalityMaestria
dc.rights.accessRightsOpen Access
dc.rights.ccAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.ccAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.ccAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.identifier.bibliographicCitationAbarca, E. (2007). Seawater intrusion in complex geological environments. In.: Universitat Politècnica de Catalunya (UPC).
dc.identifier.bibliographicCitationAbarca, E., Carrera, J., Sanchez-Vila, X., & Dentz, M. (2007). Anisotropic dispersive Henry problem. Advances in Water Resources, 30(4), 913-926.
dc.identifier.bibliographicCitationAbdoulhalik, A., Abdelgawad, A. M., & Ahmed, A. A. (2019). Impact of layered heterogeneity on transient saltwater upconing in coastal aquifers. Journal of Hydrology.
dc.identifier.bibliographicCitationBadon Ghijben, W. (1889). Nota in verband met de voorgenomen putboing nabij Amsterdam [Notas sobre los resultados probables results de un pozo perforado propuesto cerca de Amsterdam]. Tijdschrift het koninklijk Instituut voor Ingenieurs, The Hague: 8–22.
dc.identifier.bibliographicCitationBear, J., (1979). Hydraulics of Groundwater. McGraw-Hill Book Company, New York. 569pp.
dc.identifier.bibliographicCitationBear J.A., Cheng H.D., Sorek S., Ouuzar D. & Herrera I. (1999). Seawater intrusion in coastal aquifers – concepts, methods and practices. Kluwer Academic Publishers, Dordrecht, The Netherlands, p. 625.
dc.identifier.bibliographicCitationBear, J., & Dagan G. (1964). Some Exact Solutions of Interface Problems by Means of the Hodograph Method. Journal of Geophysical Research.
dc.identifier.bibliographicCitationBear, J., & Verruijt, A. (1987). Modeling Groundwater Flow and Pollution. Springer.
dc.identifier.bibliographicCitationBenson, D.A., Carey, A.E., & Wheatcraft, S.W. (1998). Numerical advective flux in highly variable velocity fields exemplified by saltwater intrusion. Journal of Contaminant. Hydrology 34(3), 207-233.
dc.identifier.bibliographicCitationBotero, A. (2015). Simulaciíon a escala de laboratorio de barreras hidráulicas contra la intrusión salina en acuíferos costeros confinados considerando los efectos de la estratificacion del medio. Tesis de Maestría en Ingeniería-Recursos Hidráulicos. Universidad Nacional de Colombia.
dc.identifier.bibliographicCitationBurnett, W. C., Bokuniewicz, H., Moore, W. S., & Taniguchi, M. (2003). Groundwater and pore water inputs to the coastal zone. Biogeochemistry 66:3-33.
dc.identifier.bibliographicCitationCarleton, G. B., Welty, C., & Buxton, H. T. (1999). Design and analysis of tracer tests to determine effective porosity and dispersivity in fractured sedimentary rocks. Newark Basin, New Jersey. Water-Resources Investigations Report, 88
dc.identifier.bibliographicCitationCastro-Alcalá, E., Fernàndez-Garcia, D., Carrera, J., & Bolster, D. (2012). Visualization of Mixing Processes in a Heterogeneous Sand Box Aquifer. Environmenta Science & Technology 46(6), 3228-3235.
dc.identifier.bibliographicCitationCustodio, E., & Llamas, M. (1996). Hidrologia Subterranea (Segunda ed). Barcelona.Ediciones Omega.
dc.identifier.bibliographicCitationDagan, G., & Bear, J. (1968). Solving the problem of local interface upconing in a coastal aquifer by the method of small perturbations. Journal of Hydraulic Research (Vol. 6). https://doi.org/10.1080/00221686809500218
dc.identifier.bibliographicCitationDiersch H. (2014). Finite element modeling of flow, mass and heat transport in porous and fractured media. Berlín, Germany:DHI-WASY. Springer.
dc.identifier.bibliographicCitationDonado, L. (2004). Modelo de conductividad hidráulica en suelos. Tesis de Maestría en Ingeniería - Recursos Hidráulicos. Universidad Nacional Sede Bogota, 180.
dc.identifier.bibliographicCitationDose, E. J., Stoeckl, L., Houben, G. J., Vacher, H. L., Vassolo, S., Dietrich, J., & Himmelsbach, T. (2013). Experiments and modeling of freshwater lenses in layered aquifers: Steady state interface geometry. Journal of Hydrology, 509, 621–630. https://doi.org/10.1016/j.jhydrol.2013.10.010
dc.identifier.bibliographicCitationFetter, C. W. (1972). Position of the Saline Water Interface beneath Oceanic Islands.Water Resources Research. 8(5), 1307–1315.
dc.identifier.bibliographicCitationFetter, C.W., (1994). Applied Hydrogeology, 3rd ed.: Macmillan College Publishing, Inc., New York, 616 p.
dc.identifier.bibliographicCitationFinger, D. (2011). Calibration of Hydrological Models. Hydrological Processes and Modelling, SS 2011. Swiss Federal Research Institute WSL. Switzerland.
dc.identifier.bibliographicCitationFreeze, R. & Cherry, J. (1979). Groundwayter. Prentice-Hall, Englewood Cliffs, NJ.
dc.identifier.bibliographicCitationGattinoni, P., & L. Scesi (2010). An empirical equation for tunnel inflow assessment: application to sedimentary rock masses. Hydrogeol Journal. 18(8), 1797-1810.
dc.identifier.bibliographicCitationGoswami, R. R., & Clement, T. P. (2007). Laboratory-scale investigation of saltwater intrusion dynamics. Water Resources Research, 43(4), 1–11. https://doi.org/10.1029/2006WR005151.
dc.identifier.bibliographicCitationGonzález, L. (2004). Ingeniería geológica. Madrid, España. Pearson Prentice Hall.
dc.identifier.bibliographicCitationGonzález, L., Ferrer, M., Ortuño, L., (2002), Ingeniería Geológica, Madrid, España: Pearson Educación.
dc.identifier.bibliographicCitationGraniel, E., Carrillo, J., Cardona, A., (2003). Dispersividad de solutos en el carts de Yucatán, México. Ingeniería, 7(3),49-56.
dc.identifier.bibliographicCitationHenry, H. R., (1964), Interfaces between salt water and fresh water in coastal aquifers, in Cooper, H. H., Jr., Kohout, F. A.,
dc.identifier.bibliographicCitationHolzbecher, E., (1998). The influence of variable viscosity in termal convection in porous media, Heat Transfer 98. Proc.
dc.identifier.bibliographicCitationHolzbecher, E., (2012). Modeling Density-Driven Flow in Porous Media: Principles, Numerics, Software. Springer Berlin Heidelberg.
dc.identifier.bibliographicCitationHouben, G. J., Stoeckl, L., Mariner, K. E., & Choudhury, A. S. (2017). The influence of heterogeneity on coastal groundwater flow - physical and numerical modeling of fringing reefs, dykes and structured conductivity fields. Advances in Water Resources, 113, 155–166. https://doi.org/10.1016/j.advwatres.2017.11.024
dc.identifier.bibliographicCitationllangasekare, T. H., J. L. Ramsey, K. H. Jensen, & M. Butt (1995), Experimental study of movement and distribution of dense organic con-taminants in heterogeneous aquifers, J. Contam. Hydrol., 20, 1 – 25.
dc.identifier.bibliographicCitationJakovovic, D., (2014). Experimental and Modelling Analyses of Saltwater Upconing. Tesis Doctoral. Flinders University, School of the Environment
dc.identifier.bibliographicCitationJakovovic, D., Werner, A. D., de Louw, P., Post, V. E. A., & Morgan, L. K. (2016). Saltwater upconing zone of influence. Advances in Water Resources, 94, 75–86
dc.identifier.bibliographicCitationKeunig, D., (1966). On the abstraction of drinking wáter from a circular área in sea. Holanda, (ciclostillado)
dc.identifier.bibliographicCitationKnodel, K.; Lange, G., & Voift, H.-J.(2007). Handbook of Field Methods and Case Studies. Environmental Geology. Springer, Germany, 1357 pp.
dc.identifier.bibliographicCitationLöke, M., & Abasiute, G. (1997). The Lichtenstein Open Tension-Free Hernioplasty. Acta Chir Hung, 36(1-4):291-3.
dc.identifier.bibliographicCitationLópez-Geta, J.A.(1995). La gestión de los acuíferos costeros como fuente de un recurso importante y estratégico; progreso y futuro. en: Las aguas subterráneas en la Ley de aguas española: un decenio de experiencia. AIH. Madrid. 221-237.
dc.identifier.bibliographicCitationLópez, J., & Gómez, J. (2007). Intrusión Marina - 2. Enseñanzas de Las Ciencias de La Tierra. IGME. 266–273.
dc.identifier.bibliographicCitationLu, C., Chen, Y., Zhang, C., & Luo, J. (2013). Steady-state freshwater-seawater mixing zone in stratified coastal aquifers. Journal of Hydrology, 505, 24–34. https://doi.org/10.1016/j.jhydrol.2013.09.017.
dc.identifier.bibliographicCitationMolnar, P. (2011). Calibration. Watershed Modelling, SS 2011. Institute of Environmental Engineering, Chair of Hydrology and Water Resources Management, ETH Zürich. Switzerland.
dc.identifier.bibliographicCitationMonachesi, L., & Guarracino, L., (2012). Conductividad hidráulica efectiva de medios porosos heterogeneous 2D y 3D. Asociación Argentina de Mécaica Computacional, 509-518.
dc.identifier.bibliographicCitationOdong, J. (2008). Evaluation of Empirical Formulae for Determination of Hydraulic Conductivity based on Grain-Size Analysis. In.: The Journal of American Science.
dc.identifier.bibliographicCitationOliviera, I.B., Demond, A.H., & Salehzadeh, A. (1996). Packing of Sands for the Production of Homogeneous Porous Media. Soil Sci. Soc. Am. J. 60(1), 49-53.
dc.identifier.bibliographicCitationPennink J.M.K., (1915). Grondwater stroombanen. Stadsdrukkerij, Amsterdam, The Netherlands, 151pp.
dc.identifier.bibliographicCitationPauw. P. (2015). Field and Model Investigation of Freshwater Lenses in Coastal Aquifers. Tesis Doctoral. Wageningen University.
dc.identifier.bibliographicCitationPiña, J. (2011). Modelación Física del transporte Reactivo multiespecie-Evaluación de un modelo Teórico. Tesis de Maestría en Ingeniería-Recursos Hidráulicos. Universidad Nacional de Colombia.
dc.identifier.bibliographicCitationPool, M., Post, V., & Simmons, C. (2015). Effects of tidal fluctuations and spatial heterogeneity on mixing and spreading in spatially heterogeneous coastal aquifers
dc.identifier.bibliographicCitationPool, M., V. E. A. Post, & C. T. Simmons (2015), Effects of tidal fluctuations and spatial heterogeneity on mixing and spreading in spatially heterogeneous coastal aquifers, Water Resour. Res., 51, 1570–1585, doi:10.1002/2014WR016068.
dc.identifier.bibliographicCitationSánchez-Vila, X., & Barbieri, M. (2007). GABARDINE, Groundwater Artificial Recharge Based on Alternative Sources of Water Advanced Integrated Technologies and Management. In.: Universitat Politècnica de Catalunya.
dc.identifier.bibliographicCitationSchiegg, H. O. (1990). Laboratory setup and results of experiments on two-dimensional multiphase flow in porous media (Engl.transl.). U.S. Dep. of Energy, Washington, DC.
dc.identifier.bibliographicCitationSchmorak, S., & Mercado, A. (1969). Upconing of Fresh Water—Sea Water Interface Below Pumping Wells, Field Study. Water Resources Research, 5(6), 1290–1311. https://doi.org/10.1029/WR005i006p01290
dc.identifier.bibliographicCitationSiena, M., Riva, M., (2018). Groundwater whithdrawal in randomly heterogeneous coastal aquifers. Hydrology and Earth System Sciences, 22, 2971-2985.
dc.identifier.bibliographicCitationSierra, A., & Escudero, K. (2016). Determinación delgrado de dispersividad en suelos caoliniticos modificados con sales de potasio y calcio. Proyecto de Grado para optar al título de Ingeniero Civil. Universidad Católica de Colombia.
dc.identifier.bibliographicCitationSnoeyink, V., & David J., (2000). Química del agua. Limusa, S.A. de C.V., Grupo Noriega Editores.
dc.identifier.bibliographicCitationStoeckl, L., Walther, M., & Graf T. (2016), A new numerical benchmark of a freshwater lens, Water Resour. Res., 52, 2474–2489, doi:10.1002/2015WR017989.
dc.identifier.bibliographicCitationStoeckl, L., & Houben, G. (2012). Flow dynamics and age stratification of freshwater lenses: Experiments and modeling. Journal of Hydrology, 458–459, 9–15. https://doi.org/10.1016/j.jhydrol.2012.05.070
dc.identifier.bibliographicCitationSuescún. L, (2016). Modelación anlítica y numérica para predicción y callibración de caudales de infiltración en obras subterráneas-Túneles. Tesis de Maestría en Ingeniería-Recursos Hidráulicos. Universidad Nacional de Colombia.
dc.identifier.bibliographicCitationThames, J.L., & D.D. Evans (1968). An analysis of the vertical infiltration of water into soil columns. Water Resouces. Research. 4:817-828.
dc.identifier.bibliographicCitationVacher, H. L. (1988). Dupuit-Ghyben-Herzberg analysis of strip-island lenses. Geological Society of America Bulletin, v.100, 580–592.
dc.identifier.bibliographicCitationVacher, H. L., Bengtsson, T. O., & Plummer, L. N. (1990). Hydrology of meteoric diagenesis: Residence time of meteoric ground water in island fresh-water lenses with application to aragonite-calcite stabilization rate in Bermuda. Bulletin of the Geological Society of America, 102(2), 223–232. https://doi.org/10.1130/0016-7606(1990)102<0223:HOMDRT>2.3.CO;2.
dc.identifier.bibliographicCitationVan Genuchten, M. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal. 44:892.898.
dc.identifier.bibliographicCitationVukovic, M., & Soro, A. (1992). Determination of Hydraulic Conductivity of Porous Media from Grain-Size Composition. Water Resources Publications, Littleton, Colorado.
dc.identifier.bibliographicCitationWerner, A. D., Sharp, H., Galvis, S., Post, V., & Sinclair, P. (2017). Hydrogeology and management of freshwater lenses on atoll islands: Review of current knowledge and research needs. Journal of Hydrology. 551 (2017), 819-844.
dc.identifier.bibliographicCitationWerner, A. D., Jakovovic, D., & Simmons, C. T. (2009). Experimental observations of saltwater up-coning. Journal of Hydrology, 373(1–2), 230–241. https://doi.org/10.1016/j.jhydrol.2009.05.004.
dc.identifier.bibliographicCitationZhao, Z., Illman, W., & Berg, S. (2016). On the importance of geological data for hydraulic tomography analysis: Laboratory sandbox study. Journal of Hydrology, 542 (2016), 156-171.
dc.contributor.generoFemenino
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Recursos Hidráulicos


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/2.5/co/This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit