Aportes al desarrollo de un sistema nanoestructurado incorporando un extracto de frutos de Physalis peruviana con posible actividad antidiabética
dc.rights.license | Atribución-SinDerivadas 4.0 Internacional |
dc.contributor.advisor | Baena Aristizábal, Yolima |
dc.contributor.author | Moreno Echeverri, Aura Maria |
dc.date.accessioned | 2020-07-15T23:08:32Z |
dc.date.available | 2020-07-15T23:08:32Z |
dc.date.issued | 2020-07-15 |
dc.identifier.citation | Moreno-Echeverri A. M. (2020). Aportes al desarrollo de un sistema nanoestructurado incorporando un extracto de frutos de Physalis peruviana con posible actividad antidiabética (Tesis de maestría). Universidad Nacional de Colombia, Bogotá. |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/77783 |
dc.description.abstract | Se prepararon nanopartículas poliméricas (NPs) a partir de un copolímero de mPEG-b-PCL de ~46 kDa, vacías y cargadas con un extracto etanólico estandarizado de frutos de Physalis peruviana, mediante una metodología modificada de doble emulsificación evaporación del solvente, utilizando como estabilizantes de la segunda emulsión PVA 2 %, mPEG-b-PCL de 8 KDa a diferentes concentraciones: 0.01, 0.03, 0.05, 0.1 %. Para la elaboración de las nanopartículas tanto vacías como con el extracto, se realizaron las siguientes etapas de investigación: la primera consistió en la obtención de materiales, así se llevó a cabo la síntesis del copolímero de mPEG-b-PCL~46 KDa por apertura de anillo, el cual fue caracterizado por espectroscopia Infrarroja (FT-IR), resonancia magnética nuclear (RMN) y calorimetría diferencial de barrido (DSC). Asimismo, se obtuvo el extracto etanólico estandarizado de frutos de Physalis peruviana, el cual fue caracterizado con su índice de refracción y sólidos totales; además se identificó una molécula trazadora de este por RMN, y se evaluó su actividad biológica in vitro mediante la evaluación del efecto sobre la actividad de la enzima alfa amilasa. Seguido de esto, ya con las materias primas obtenidas, se continuó con dos etapas más: en primer lugar, la elaboración de las NPs copoliméricas vacías variando el tipo de estabilizante de la segunda emulsión, realizando su caracterización de forma (TEM), tamaño, índice de polidispersidad y potencial ζ (DLS); el segundo paso correspondió a la realización de las NPs cargadas con el extracto etanólico, estas fueron caracterizadas de la misma forma que las NPs vacías. Para conocer la influencia del agente estabilizante en la encapsulación del extracto de frutos de Physalis peruviana, se emplearon las pruebas de DSC e IR y se confirmó la carga del extracto dentro de las nanopartículas por RMN. Como resultado, se obtuvieron nanopartículas esféricas de tamaños comprendidos entre aproximadamente 150 nm a 250 nm. Un potencial ζ entre aproximadamente -10 y -23 mV. El PdI estuvo en un rango de 0.146 a 0.280, sugiriendo una distribución ligeramente polidispersa. Además, se compararon los resultados del extracto libre (no encapsulado) con el extracto etanólico una vez liberado de las NPs mediante un estudio de liberación por membrana de diálisis de 3500 Da, al cual se le hizo seguimiento durante 72 h, evaluando su efecto en el porcentaje de inhibición de la alfa amilasa. Adicionalmente, el estudio de la liberación se complementó al evaluar el contenido de azúcares reductores en función del tiempo. De esa manera se demostró su posible actividad antidiabética. |
dc.description.abstract | It was done polymeric nanoparticles (NPs) based on copolymer of mPEG-b-PCL of ~46 kDa, empty and loaded with and standard ethanolic extract made of the fruit Physalis peruviana, with a modified methodology by double solvent evaporation emulsification, using 2% PVA and 8 KDa mPEG-b-PCL as stabilizers of the second emulsion, at different concentrations: 0.01, 0.03, 0.05, 0.1%. For the elaboration of the nanoparticles both empty and with the extract, the following investigation stages were carried out: the first one It consisted of obtaining materials, thus the synthesis of the mPEG-b-PCL copolymer ~46 KDa was carried out by opening of ring, which it was characterized by Infrared spectroscopy (FT-IR), nuclear magnetic resonance imaging (NMR) and differential scanning calorimetry (DSC). Likewise, the standardized ethanolic extract of Physalis peruviana fruits was obtained, which it was characterized with its refractive index and total solids; In addition, a tracer molecule was identified by NMR and its biological activity was evaluated in vitro by evaluating the effect on the activity of the enzyme alpha amylase. Following this, with the raw materials obtained, two more stages were continued: first, the elaboration of the empty copolymeric NPs it was varying the type of stabilizer of the second emulsion, making its characterization of form (TEM), size, polydispersity index and potential ζ (DLS); the second step corresponded to the realization of the NPs loaded with the ethanolic extract, these were characterized in the same way as the empty NPs. In order to know the influence of the stabilizing agent on the encapsulation of the Physalis peruviana fruit extract, the DSC and IR tests were used and the loading of the extract into the nanoparticles was confirmed by NMR. As a result, spherical nanoparticles of sizes between about 150 nm to 250 nm were obtained. A potential ζ between approximately -10 and -23 mV. The PdI was in the range of 0.146 to 0.280, suggesting a slightly polydisperse distribution. In addition, the results of the free extract (not encapsulated) were compared with the ethanolic extract once released from the NPs by a release study with a 3500 Da dialysis membrane, which it was monitored for 72 hours, evaluating its effect on percent inhibition of alpha amylase. Additionally, the study of the release was complemented by evaluating the content of reducing sugars as a function of time. In that way its possible antidiabetic activity was demonstrated. |
dc.description.sponsorship | Minciencias |
dc.format.extent | 157 |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ |
dc.subject.ddc | 610 - Medicina y salud::615 - Farmacología y terapéutica |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades |
dc.title | Aportes al desarrollo de un sistema nanoestructurado incorporando un extracto de frutos de Physalis peruviana con posible actividad antidiabética |
dc.type | Trabajo de grado - Maestría |
dc.rights.spa | Acceso abierto |
dc.description.project | Contrato 187-2019 |
dc.description.additional | Magíster en Ciencias Farmacéuticas. Línea de Investigación: Diseño y desarrollo de productos fitofarmacéuticos |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias Farmacéuticas |
dc.contributor.researchgroup | GRUPO DE INVESTIGACIÓN EN TECNOLOGÍA DE PRODUCTOS NATURALES - TECPRONA |
dc.description.degreelevel | Maestría |
dc.publisher.department | Departamento de Farmacia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.references | Abu Hassan, N. A., Sahudin, S., Hussain, Z., & Hussain, M. (2018). Self-Assembled Chitosan Nanoparticles for Percutaneous Delivery of Caffeine: Preparation, Characterization and in Vitro Release Studies. International Journal of Applied Pharmaceutics, 10(4). https://doi.org/10.22159/ijap.2018v10i4.25947 |
dc.relation.references | Agronegocios (2016). Uchuva, el fruto que rompe fronteras. Recuperado de https://www.agronegocios.co/agricultura/uchuva-el-fruto-que-rompe-fronteras-2622244 |
dc.relation.references | Al haushey, L., Bolzinger, M. A., Bordes, C., Gauvrit, J. Y., & Briançon, S. (2007). Improvement of a bovine serum albumin microencapsulation process by screening design. International Journal of Pharmaceutics, 344(1–2), 16-25. https://doi.org/10.1016/j.ijpharm.2007.05.067 |
dc.relation.references | Alberto, C., & Rodríguez, B. (2012). Contribución al estudio farmacotécnico del extracto estandarizado de frutos de Physalis peruviana L. con miras a la obtención de un producto fitoterapéutico (Tesis de maestría). Universidad Nacional de Colombia, Bogotá. Recuperado de http://bdigital.unal.edu.co/9016/1/192546.2012.pdf |
dc.relation.references | Alfonso, K. (2017a). Frutas exóticas viven su cuarto de hora en el mercado de Europa. Recuperado de https://www.agronegocios.co/agricultura/frutas-exoticas-viven-su-cuarto-de-hora-en-el-mercado-de-europa-2622992 |
dc.relation.references | Alfonso, K. (2017b). La uchuva duplica exportaciones a EE.UU. Recuperado de http://www.agronegocios.co/noticia/la-uchuva-duplica-exportaciones-eeuu. |
dc.relation.references | Alvarez, R., Gómez, M. (2009). Influencia del estado de maduración sobre la composición y las Características de Calidad de frutos de Physalis peruviana como materia prima para la elaboración de fitoterapéutico (Tesis de pregrado). Universidad Nacional de Colombia, Bogotá. |
dc.relation.references | American Diabetes Association (2019). 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2019. Diabetes Care, 42(1), S13-S28. https://doi.org/10.2337/dc19-S002 |
dc.relation.references | Amuri, B., Maseho, M., Simbi, L., Okusa, P., Duez, P., & Byanga, K. (2017). Hypoglycemic and Antihyperglycemic Activities of Nine Medicinal Herbs Used as Antidiabetic in the Region of Lubumbashi (DR Congo). Phytotherapy Research, 31(7), 1029-1033. https://doi.org/10.1002/ptr.5814 |
dc.relation.references | AOAC (2005). AOAC Official Method 923.09. "Invert sugar in sugars and syrups. Lane-Eynon General Volumetric Method. Final action. AOAC |
dc.relation.references | Arana, L., Salado, C., Vega, S., Aizpurua-olaizola, O., De, I., Suarez, T., … Alkorta, I. (2015). Colloids and Surfaces B : Biointerfaces Solid lipid nanoparticles for delivery of Calendula officinalis extract. Colloids and Surfaces B: Biointerfaces, 135, 18-26. https://doi.org/10.1016/j.colsurfb.2015.07.020 |
dc.relation.references | Ascher, K. R., Nemny, N. E., Eliyahu, M., Kirson, I., Abraham, A., & Glotter, E. (1980). Insect antifeedant properties of withanolides and related steroids from Solanaceae. Experientia, 36(8), 998-999. https://doi.org/10.1007/BF01953844 |
dc.relation.references | Bach, J. F. (1994). Insulin-dependent diabetes mellitus as an autoimmune disease. Endocrine Reviews, 15(4), 516-542. https://doi.org/10.1210/edrv-15-4-516 |
dc.relation.references | Baena Aristizábal, C. M. (2015). Vectorización del extracto de Physalis peruviana L. en nuevos sistemas de liberación de uso farmacéutico (Tesis doctoral). Universidad Nacional de Colombia, Bogotá. Recuperado de http://www.bdigital.unal.edu.co/52419/ |
dc.relation.references | Baena-Aristizábal, C. M., Fessi, H., Elaissari, A., & Mora-Huertas, C. E. (2016). Biodegradable microparticles preparation by double emulsification-Solvent extraction method: A Systematic study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 492, 213–229. doi: 10.1016/j.colsurfa.2015.11.067 |
dc.relation.references | Bagheri, L., Madadlou, A., Yarmand, M., & Mousavi, M. E. (2014). Spray-dried alginate microparticles carrying caffeine-loaded and potentially bioactive nanoparticles. Food Research International, 62, 1113-1119. https://doi.org/10.1016/j.foodres.2014.05.040 |
dc.relation.references | Ballesteros, L. F., Ramirez, M. J., Orrego, C. E., Teixeira, J. A., & Mussatto, S. I. (2017). Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chemistry, 237, 623-631. https://doi.org/10.1016/j.foodchem.2017.05.142 |
dc.relation.references | Bazana, M. T., da Silva, S. S., Codevilla, C. F., de Deus, C., Lucas, B. N., Ugalde, G. A., … de Menezes, C. R. (2019). Development of nanoemulsions containing Physalis peruviana calyx extract: A study on stability and antioxidant capacity. Food Research International, 125. https://doi.org/10.1016/j.foodres.2019.108645 |
dc.relation.references | Bell, J. G. (2019). En lo corrido del año colombia ha exportado 122 toneladas de uchuva a Estados Unidos. Recuperado de https://www.agronegocios.co/agricultura/en-lo-corrido-del-ano-colombia-ha-exportado-122-toneladas-de-uchuva-a-estados-unidos-2841318 |
dc.relation.references | Benzie, I. F., & Wachtel-Galor, S. (Eds.) (2011). Herbel Medicine Biomolecular and clinical aspects. Herbel Medicine Biomolecular and clinical aspects. Taylor & Francis Group. https://doi.org/10.1063/1.2756553 |
dc.relation.references | Bernal, C. A. (2016). Desarrollo de un sistema de liberación modificada de un extracto estandarizado de Physalis peruviana L. aplicando el método de secado. (Tesis Doctoral). Universidad Nacional de Colombia, Bogotá. Recuperado de http://bdigital.unal.edu.co/62574/1/Carlos%20Bernal%2080049977.pdf |
dc.relation.references | Bernal, C. A., Castellanos, L., Aragón, D. M., Martínez-Matamoros, D., Jiménez, C., Baena, Y., & Ramos, F. A. (2018). Peruvioses A to F, sucrose esters from the exudate of Physalis peruviana fruit as α-amylase inhibitors. Carbohydrate Research, 461, 4-10. https://doi.org/10.1016/j.carres.2018.03.003 |
dc.relation.references | Bernal, C. A., Aragón, M., & Baena, Y. (2016). Dry powder formulation from fruits of Physalis peruviana L. standardized extract with hypoglycemic activity. Powder Technology, 301, 839–847. https://doi.org/10.1016/j.powtec.2016.07.008 |
dc.relation.references | Bernal, C. A., Ramos, F. A., & Baena, Y. (2019). Dry powder formulation from Physalis peruviana L. fruits extract with antidiabetic activity formulated via co-spray drying. International Journal of Applied Pharmaceutics, 11(3), 109-117. https://doi.org/10.22159/ijap.2019v11i3.29520 |
dc.relation.references | Bhattacharjee, S. (2016). Review article DLS and zeta potential – What they are and what they are not ? Journal of Controlled Release, 235, 337-351. https://doi.org/10.1016/j.jconrel.2016.06.017 |
dc.relation.references | Bischoff, H. (1994). Pharmacology of α-glucosidase inhibition. European Journal of Clinical Investigation, 24(3), 3-10. https://doi.org/10.1111/j.1365-2362.1994.tb02249.x |
dc.relation.references | Bula, J., & Cruz, A. (1993). Comprobación de la actividad hipoglicemiante por vía oral de Physalis peruviana (Tesis de pregrado). Universidad Nacional de Colombia, Bogotá. |
dc.relation.references | Cagel, M., Tesan, F. C., Bernabeu, E., Salgueiro, M. J., Zubillaga, M. B., Moretton, M. A., & Chiappetta, D. A. (2017). Polymeric mixed micelles as nanomedicines: Achievements and perspectives. European Journal of Pharmaceutics and Biopharmaceutics, 113, 211-228. https://doi.org/10.1016/j.ejpb.2016.12.019 |
dc.relation.references | Calixto, J. B. (2000). Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Brazilian Journal of Medical and Biological Research, 33(2), 179-189. https://doi.org/10.1590/S0100-879X2000000200004 |
dc.relation.references | Cañari, C., Nieva, A., & Maruenda, H. (2012). NMR Metabolic Profiling of Two Exotic Native Fruits from Peru: Vanilla pompona ssp Grandiflora and Physalis peruviana L. En SMASH 2012 NMR Conference, september 9th-12th, Providence, Rhode Island (p. 127). SMASH-NMR |
dc.relation.references | Chiang, C. S., Hu, S. H., Liao, B. J., Chang, Y. C., & Chen, S. Y. (2013). Enhancement of cancer therapy efficacy by trastuzumab-conjugated and pH-sensitive nanocapsules with the simultaneous encapsulation of hydrophilic and hydrophobic compounds. Nanomedicine: Nanotechnology, Biology, and Medicine, 10, 1-9. https://doi.org/10.1016/j.nano.2013.07.009 |
dc.relation.references | Cohen-Sela, E., Chorny, M., Koroukhov, N., Danenberg, H. D., & Golomb, G. (2009). A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. Journal of Controlled Release, 133(2), 90–95. https://doi.org/10.1016/j.jconrel.2008.09.073 |
dc.relation.references | Crucho, C. I., & Barros, M. T. (2017). Polymeric nanoparticles: A study on the preparation variables and characterization methods. Materials Science and Engineering C, 80, 771-784. https://doi.org/10.1016/j.msec.2017.06.004 |
dc.relation.references | Date, A., Hanes, J., & Ensign, L. M. (2016). Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. Journal of Controlled Release, 240, 504-526. https://doi.org/10.1016/j.jconrel.2016.06.016 |
dc.relation.references | Dewi, L., Sulchan, M., & Kisdjamiatun. (2018). Potency of cape gooseberry (Physalis peruviana ) juice in improving antioxidant and adiponectin level of high fat diet streptozotocin rat model. Rom J Diabetes Nutr Metab Dis., 25(3), 253-260. https://doi.org/10.2478/rjdnmd-2018-0029 |
dc.relation.references | Ding, S., Serra, C. A., Vandamme, T. F., Yu, W., & Anton, N. (2018). Double emulsions prepared by two–step emulsification: History, state-of-the-art and perspective. Journal of Controlled Release, 235, 31-49. https://doi.org/10.1016/j.jconrel.2018.12.037 |
dc.relation.references | Dubey, N., Varshney, R., Shukla, J., Ganeshpurkar, A., Hazari, P. P., Bandopadhaya, G. P., … Trivedi, P. (2012). Synthesis and evaluation of biodegradable PCL/PEG nanoparticles for neuroendocrine tumor targeted delivery of somatostatin analog. Drug Delivery, 19(3), 132-142. https://doi.org/10.3109/10717544.2012.657718 |
dc.relation.references | Echeverry, S. M., Valderrama, I. H., Costa, G. M., Ospina-Giraldo, L. F., & Aragón, D. M. (2018). Development and optimization of microparticles containing a hypoglycemic fraction of calyces from Physalis peruviana. Journal of Applied Pharmaceutical Science, 8(5), 10-18. https://doi.org/10.7324/JAPS.2018.8502 |
dc.relation.references | Esfanjani, A. F., Jafari, S. M., Assadpoor, E., & Mohammadi, A. (2015). Nano-encapsulation of saffron extract through double-layered multiple emulsions of pectin and whey protein concentrate. Journal of Food Engineering, 165, 149-155. https://doi.org/10.1016/j.jfoodeng.2015.06.022 |
dc.relation.references | Esmaeili, A., & Asgari, A. (2015). In vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles. International Journal of Biological Macromolecules, 81, 283–290. https://doi.org/10.1016/j.ijbiomac.2015.08.010 |
dc.relation.references | Espectros de Resonancia Magnética Nuclear (RMN) de ácido cítrico (n.d.). Recuperado de https://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi |
dc.relation.references | Fievez, V., Plapied, L., des Rieux, A., Pourcelle, V., Freichels, H., Wascotte, V., … Préat, V. (2009). Targeting nanoparticles to M cells with non-peptidic ligands for oral vaccination. European Journal of Pharmaceutics and Biopharmaceutics, 73(1), 16-24. https://doi.org/10.1016/j.ejpb.2009.04.009 |
dc.relation.references | Flórez, V., Fisher, G., & Sora, Á. (2000). Producción, poscosecha y exportación de la uchuva (Physalis peruviana L.). Bogotá: Universidad Nacional de Colombia. |
dc.relation.references | Forero, D. (2008). Desarrollo de una metodologia para la obtencion y caracterizacion de un extracto estandarizado de Physalis peruviana L. y propuesta para su adecuaciòn tecnológica (Tesis de pregrado). Universidad Nacional de Colombia, Bogotá. |
dc.relation.references | Furniss, B., Hannaford, A., Smith, P., & Tatchell, A. (1990). Vogel’s textbook of practical organic chemistry (5th ed.). New York: Longman scientific & Technical. |
dc.relation.references | Gaignaux, A., Réeff, J., Siepmann, F., Siepmann, J., De Vriese, C., Goole, J., & Amighi, K. (2012). Development and evaluation of sustained-release clonidine-loaded PLGA microparticles. International Journal of Pharmaceutics, 437, 20-28. https://doi.org/10.1016/j.ijpharm.2012.08.006 |
dc.relation.references | Gamboa Ortiz, J. (2010). Ensayo clínico patogenésico sobre los cálices de Physalis peruviana L (Tesis de maestría). Universidad Nacional de Colombia, Bogotá. Recuperado de http://bdigital.unal.edu.co/3797/1/598305.2010.pdf |
dc.relation.references | Gao, X., Gou, B., Huang, M., Huang, N., Qian, F., Wei, F., … Liu, Y. (2013). Preparation, characterization and application of star-shaped PCL/PEG micelles for the delivery of doxorubicin in the treatment of colon cancer. International Journal of Nanomedicine, 8(1), 971-982. https://doi.org/10.2147/IJN.S39532 |
dc.relation.references | García, A. T., & Súa, S. (1997). Evaluación de la actividad hipoglicemiante de algunas fracciones obtenidas de frutos de Physalis peruviana (Tesis de pregrado). Universidad Nacional de Colombia, Bogotá. |
dc.relation.references | Garti, N. (1997). Double emulsions -scope, limitations and new achievements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 233-246 |
dc.relation.references | Garti, N., & Bisperink, C. (1998). Double emulsions : progress and applications. Current Opinion in Colloid & Interface Science, 3(6), 657-667. https://doi.org/10.1016/S1359-0294(98)80096-4 |
dc.relation.references | González, I., Cabrera, M., & Bermejo, M. (2015). Metodologías Biofarmacéuticas en el Desarrollo de Medicamentos. Elche: Universidad Miguel Hernández |
dc.relation.references | Grossen, P., Witzigmann, D., Sieber, S., & Huwyler, J. (2017). PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application. Journal of Controlled Release, 260, 46-60. https://doi.org/10.1016/j.jconrel.2017.05.028 |
dc.relation.references | Guirguis, O. W., & Moselhey, M. T. (2012). Thermal and structural studies of poly(vinyl alcohol) and hydroxypropyl cellulose blends. Natural Science, 4(1), 57-67. https://doi.org/10.4236/ns.2012.41009 |
dc.relation.references | Gumustas, M., Sengel-turk, C. T., & Gumustas, A. (2017). Effect of Polymer-Based Nanoparticles on the Assay of Antimicrobial Drug Delivery Systems. Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics. Elsevier Inc. https://doi.org/10.1016/B978-0-323-52725-5/00005-8 |
dc.relation.references | Hansawasdi, C., Kawabata, J., & Kasai, T. (2000). α-amylase inhibitors from roselle (Hibiscus sabdariffa Linn.) Tea. Bioscience, Biotechnology, and Biochemistry, 64(5), 1041-1043. https://doi.org/10.1271/bbb.64.1041 |
dc.relation.references | Hassan, H. A., Serag, H. M., Qadir, M. S., & Ramadan, M. F. (2017). Cape gooseberry (Physalis peruviana) juice as a modulator agent for hepatocellular carcinoma-linked apoptosis and cell cycle arrest. Biomedicine and Pharmacotherapy, 94, 1129-1137. https://doi.org/10.1016/j.biopha.2017.08.014 |
dc.relation.references | Hillery, A., Lloyd, A., & Swarbrick, J. (2001). Drug Delivery and Targeting; for Pharmacists and Pharmaceutical Scientists. Drug Targeting, 10(8), 637. https://doi.org/10.1080/1061186021000040848 |
dc.relation.references | Holt, P. R., Atillasoy, E., Lindenbaum, J., Ho, S. B., Lupton, J. R., McMahon, D., & Moss, S. F. (1996). Effects of acarbose on fecal nutrients, colonic pH, and short-chain fatty acids and rectal proliferative indices. Metabolism, 45(9), 1179-1187. https://doi.org/https://doi.org/10.1016/S0026-0495(96)90020-7 |
dc.relation.references | Hoyos, T. N., Arteaga, M. V., & Muñoz, M. (2011). Factores de no adherencia al tratamiento en personas con Diabetes Mellitus tipo 2 en el domicilio. La visión del cuidador familiar. Investigación y Educación en Enfermería, 29(2), 194-203. |
dc.relation.references | Huang, Y., Li, L., & Li, G. (2015). An enzyme-catalysed access to amphiphilic triblock copolymer of PCL-b-PEG-b-PCL: Synthesis, characterization and self-assembly properties. Designed Monomers and Polymers, 18(8), 799-806. https://doi.org/10.1080/15685551.2015.1078113 |
dc.relation.references | Ibraheem, D., Iqbal, M., Agusti, G., Fessi, H., & Elaissari, A. (2014). Effects of process parameters on the colloidal properties of polycaprolactone microparticles prepared by double emulsion like process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 445, 79-91. https://doi.org/10.1016/j.colsurfa.2014.01.012 |
dc.relation.references | IDF (International Diabetes Federation) (2019). IDF Diabetes Atlas 2019 (9th ed.). Bélgica: IDF. https://doi.org/10.1289/image.ehp.v119.i03 |
dc.relation.references | Iqbal, M., Zafar, N., Fessi, H., & Elaissari, A. (2015). Double emulsion solvent evaporation techniques used for drug encapsulation. International Journal of Pharmaceutics, 496, 173-190. https://doi.org/10.1016/j.ijpharm.2015.10.057 |
dc.relation.references | Izunobi, J. U., & Higginbotham, C. L. (2011). Polymer molecular weight analysis by 1H NMR spectroscopy. Journal of Chemical Education, 88(8), 1098-1104. https://doi.org/10.1021/ed100461v |
dc.relation.references | Jenkins, S. (2011). Hansen solubility parameters (HSP). Chemical Engineering (118) (2a ed.). New York: Taylor & Francis Group. |
dc.relation.references | Jeong, Y. Il, Na, H. S., Seo, D. H., Kim, D. G., Lee, H. C., Jang, M. K., … Nah, J. W. (2008). Ciprofloxacin-encapsulated poly(dl-lactide-co-glycolide) nanoparticles and its antibacterial activity. International Journal of Pharmaceutics, 352, 317-323.https://doi.org/10.1016/j.ijpharm.2007.11.001 |
dc.relation.references | Kasali, F. M., Kadima, J. N., Mpiana, P. T., Ngbolua, K., & Tshibangu, D. S. (2013). Assessment of antidiabetic activity and acute toxicity of leaf extracts from Physalis peruviana L. in guinea-pig. Asian Pacific Journal of Tropical Biomedicine, 3(11), 841-846. https://doi.org/10.1016/S2221-1691(13)60166-5 |
dc.relation.references | Kazeem, M. I., Adamson, J. O., & Ogunwande, I. A. (2013). Modes of Inhibition of α-Amylase and α-Glucosidase by Aqueous Extract of Morinda lucida Benth Leaf. BioMed Research International, (3), 1-6. |
dc.relation.references | Khoee, S., & Yaghoobian, M. (2008). An investigation into the role of surfactants in controlling particle size of polymeric nanocapsules containing penicillin-G in double emulsion. European Journal of Medicinal Chemistry, 44, 2392-2399. https://doi.org/10.1016/j.ejmech.2008.09.045 |
dc.relation.references | Kidane, Y., Bokrezion, T., Mebrahtu, J., Mehari, M., Gebreab, Y. B., Fessehaye, N., & Achila, O. O. (2018). In vitro inhibition of α-amylase and α-glucosidase by extracts from Psiadia punctulata and Meriandra bengalensis. Evidence-Based Complementary and Alternative Medicine, 2018. https://doi.org/10.1155/2018/2164345 |
dc.relation.references | Kim, Y., Sc, M., Jeong, Y., Sc, M., … Wang, M. (2005). Inhibitory effect of pine extract on alpha-glucosidase activity and postprandial hyperglycemia, 21, 756-761. https://doi.org/10.1016/j.nut.2004.10.014 |
dc.relation.references | Krentz, A. J., & Bailey, C. J. (2005). Oral antidiabetic agents: Current role in type 2 diabetes mellitus. Drugs, 65(3), 385-411. https://doi.org/10.2165/00003495-200565030-00005 |
dc.relation.references | Kwon, Y. I., Vattem, D. A., & Shetty, K. (2006). Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia Pacific Journal of Clinical Nutrition, 15(1), 107-118. https://doi.org/10.1210/er.19.5.583 |
dc.relation.references | Lamprecht, A., Ubrich, N., Hombreiro Pérez, M., Lehr, C.-M., Hoffman, M., & Maincent, P. (2000). Influences of process parameters on nanoparticle preparation performed by a double emulsion pressure homogenization technique. International Journal of Pharmaceutics, 196(2), 17-182. https://doi.org/https://doi.org/10.1016/S0378-5173(99)00422-6 |
dc.relation.references | Leung, L., Birtwhistle, R., Kotecha, J., Hannah, S., & Cuthbertson, S. (2009). Anti-diabetic and hypoglycaemic effects of Momordica charantia (bitter melon): A mini review. British Journal of Nutrition, 102(12), 1703-1708.https://doi.org/10.1017/S0007114509992054 |
dc.relation.references | Li, R., Li, X., Xie, L., Ding, D., Hu, Y., Qian, X., … Liu, B. (2009). Preparation and evaluation of PEG-PCL nanoparticles for local tetradrine delivery. International Journal of Pharmaceutics, 379(1-2), 158-166. https://doi.org/10.1016/j.ijpharm.2009.06.007 |
dc.relation.references | Liang, Y., Peng, X., Chen, Y., Deng, X., Gao, W., Cao, J., … He, B. (2015). Chain length effect on drug delivery of chrysin modified mPEG–PCL micelles. RSC Advances, 5(73), 59014-59021. https://doi.org/10.1039/C5RA09650B |
dc.relation.references | Lin, P. C., Lin, S., Wang, P. C., & Sridhar, R. (2014). Techniques for physicochemical characterization of nanomaterials. Biotechnology Advances, 32, 711-726. https://doi.org/10.1016/j.biotechadv.2013.11.006 |
dc.relation.references | Liu, Z., Jiang, M., Kang, T., Miao, D., Gu, G., Song, Q., … Chen, J. (2013). Lactoferrin-modified PEG-co-PCL nanoparticles for enhanced brain delivery of NAP peptide following intranasal administration. Biomaterials, 34(15), 3870-3881. https://doi.org/10.1016/j.biomaterials.2013.02.003 |
dc.relation.references | Lourenco, C., Teixeira, M., Simões, S., & Gaspar, R. (1996). Steric stabilization: size and surface properties. International Journal of Pharmaceutics, 138(1), 1-2. |
dc.relation.references | Lu, Z., Bei, J., & Wang, S. (1999). A method for the preparation of polymeric nanocapsules without stabilizer. Journal of Controlled Release, 61(1-2), 107-112. |
dc.relation.references | Ma, J., Feng, P., Ye, C., Wang, Y., & Fan, Y. (2001). An improved interfacial coacervation technique to fabricate biodegradable nanocapsules of an aqueous peptide solution from polylactide and its block copolymers with poly(ethylene glycol). Colloid and Polymer Science, 279, 387-392. https://doi.org/10.1007/s003960000467 |
dc.relation.references | MacLean, D. B., & Luo, L. G. (2004). Increased ATP content/production in the hypothalamus may be a signal for energy-sensing of satiety: Studies of the anorectic mechanism of a plant steroidal glycoside. Brain Research, 1020, 1-11. https://doi.org/10.1016/j.brainres.2004.04.041 |
dc.relation.references | Mahmoudi, R., Tajali Ardakani, M., Hajipour Verdom, B., Bagheri, A., Mohammad-Beigi, H., Aliakbari, F., Bardania, H. (2019). Chitosan nanoparticles containing Physalis alkekengi L. extract: preparation, optimization and their antioxidant activity. Bulletin of Materials Science, 42(3), 131. https://doi.org/10.1007/s12034-019-1815-3 |
dc.relation.references | Maldonado, E., Torres, F. R., Martínez, M., & Perz-Castorena, A. L. (2006). Sucrose esters from the fruits of Physalis nicandroides var. attenuata. Journal of Natural Products, 69(19), 1511-1513. |
dc.relation.references | Mardiyanto, V. (2013). Investigation of Nanoparticulate Formulation Intended for Caffeine Delivery to Hair Follicles (Tesis de doctorado). Universidad de Sarres. Saarland. Alemania. |
dc.relation.references | Marques, T. A., Rampazo, É. M., Zilliani, R. R., Marques, P. A., & Benincasa, F. (2016). Automated sugar analysis. Food Science and Technology, 36(1). https://doi.org/10.1590/1678-457X.0012 |
dc.relation.references | Martinez, N. Y., Andrade, P. F., Durán, N., & Cavalitto, S. (2017). Development of double emulsion nanoparticles for the encapsulation of bovine serum albumin. Colloids and Surfaces B: Biointerfaces, 158, 190-196. https://doi.org/10.1016/j.colsurfb.2017.06.033 |
dc.relation.references | Maruenda, H., Cabrera, R., Cañari-chumpitaz, C., Lopez, J. M., & Toubiana, D. (2018). NMR-based metabolic study of fruits of Physalis peruviana L . grown in eight different Peruvian ecosystems. Food Chemistry, 262, 94-101. https://doi.org/10.1016/j.foodchem.2018.04.032 |
dc.relation.references | Medina, D. . (2012). Implementación de una metodología para la obtención de metabolitos secundarios que pueden ser utilizados como marcadores a partir de los frutos de Physalis peruviana (solanaceae), y evaluación de actividad hipoglucemiante (Tesis de Maestría). Universidad Nacional de Colombia, Bogotá |
dc.relation.references | Melo, A., & Urrea, J. (2009). Determinación de la influencia de las variables de extracción sobre el contenido de marcadores (witanolidos y glicoalcaloides) y el rendimiento en la obtención de un extracto de Physalis peruviana (uchuva) (Tesis de pregrado). Universidad Nacional de Colombia, Bogotá. |
dc.relation.references | Méndez-Sánchez, N., & Chávez Tapia, N. (2010). Gastroenterología (2ª ed.). McGraw Hill. Recuperado de https://accessmedicina.mhmedical.com/content.aspx?bookid=1480§ionid=92819827 |
dc.relation.references | Ministerio de la protección social. (2008). Vademécum colombiano de plantas medicinales. Recuperado de https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SA/vademecum-colombiano-plantas-medicinales.pdf |
dc.relation.references | Ministerio de Salud y de Protección Social. (2015). Diabetes mellitus tipo 1 mayores de 15 años. Bogotá: Ministerio de Salud y de Protección Social. |
dc.relation.references | Mohammed, Z. H., & Ibraheem, R. M. (2015). Anti-oxidant Activity of Methanol Extracts of Arum maculatum L. and Physalis peruviana L. Plants. Ibn Al-Haitham Journal for Pure and Applied Science, 28(2), 1-7. |
dc.relation.references | Mora-Huertas, C. E., Fessi, H., & Elaissari, A. (2010). Polymer-based nanocapsules for drug delivery. International Journal of Pharmaceutics, 385, 113142. https://doi.org/10.1016/j.ijpharm.2009.10.018 |
dc.relation.references | Mora, Á. C., Aragón, D. M., & Ospina, L. F. (2010). Effects of Physalis peruviana fruit extract on stress oxidative parameters in streptozotocin-diabetic rats. Latin American Journal of Pharmacy, 29(7), 1132-1136 |
dc.relation.references | Mu, J., Meng, X., Chen, L., Lu, Z., Mou, Q., Li, X., … Yue, H. (2017). Highly stable and biocompatible W18O49@PEG-PCL hybrid nanospheres combining CT imaging and cancer photothermal therapy. RSC Advances, 7(18), 10692-10699. https://doi.org/10.1039/c6ra28161c |
dc.relation.references | Nair, S. S., Kavrekar, V., & Mishra, A. (2013). In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts. European Journal of Experimental Biology, 3(1), 128-132. |
dc.relation.references | Narkhede, A., Nirmal, P., Tupe, R., Kulkarni, O., Harsulkar, A., & Jagtap, S. (2012). In vitro Antioxidant, Antiglycation and α - amylase inhibitory potential of Eulophia ochreata L . Journal of Pharmacy Research, 5(5), 2532-2537. |
dc.relation.references | National Institute of Diabetes and Digestive and Kidney Diseases. (2017). Prediabetes & Insulin Resistance. Recuperado de http://pacificschoolserver.org/content/_public/Health%20and%20Safety/Non-Communicable%20Diseases/Diabetes%2C%20Prediabetes%20_%20Insulin%20Resistance%20_%20NIDDK.pdf |
dc.relation.references | Nogueira de Assis, D., Mosqueira, V. C., Vilela, J. M., Andrade, M. S., & Cardoso, V. N. (2008). Release profiles and morphological characterization by atomic force microscopy and photon correlation spectroscopy of 99mTechnetium-fluconazole nanocapsules. International Journal of Pharmaceutics, 349(1-2), 152-160. https://doi.org/10.1016/j.ijpharm.2007.08.002 |
dc.relation.references | Noor, N., Shah, A., Gani, A., Gani, A., & Masoodi, F. A. (2018). Microencapsulation of caffeine loaded in polysaccharide based delivery systems. Food Hydrocolloids, 82,312-321. https://doi.org/10.1016/j.foodhyd.2018.04.001 |
dc.relation.references | Olivares, M. (2017). Exploring the potential of an Andean fruit: An interdisciplinary study on the cape gooseberry (Physalis peruviana L.) value chain. https://doi.org/http://dx.doi.org/10.18174/393622 |
dc.relation.references | Organización Mundial de la Salud. (2013). Estrategia de la OMS sobre medicina tradicional 2014-2023. Organización Mundial de la Salud. Recuperado de https://apps.who.int/medicinedocs/documents/s21201es/s21201es.pdf |
dc.relation.references | Ortiz, F. (2010). Implementación de metodologías analíticas para la identificación y cuantificación de glicoalcaloides presentes en frutos de uchuva (Physalis peruviana L.) (Tesis de pregrado). Universidad Nacional de Colombia, Bogotá. |
dc.relation.references | Oviedo, J. (2009). Implementación aislamiento y purificación de glicoalcaloides a partir de frutos de Physalis peruviana L. (uchuva) (Tesis de pregrado). Universidad Nacional de Colombia, Bogotá. |
dc.relation.references | Ozturk, A., Özdemİr, Y., Albayrak, B., Simsek, M., & Yildirim, K. (2017). Some nutrient characteristics of goldenberry ( Physalis peruviana l .) cultivar candidate from turkey. Scientific Papers, Series B, Horticulture, 61, 293-298. |
dc.relation.references | Pancreatic cancer action network. (2018). El Páncreas. Recuperado de https://www.pancan.org/section_en_espanol/learn_about_pan_cancer/what_is_the_pancreas.php |
dc.relation.references | Pérez, C., De Jesús, P., & Griebenow, K. (2002). Preservation of lysozyme structure and function upon encapsulation and release from poly(lactic-co-glycolic) acid microspheres prepared by the water-in-oil-in-water method. International Journal of Pharmaceutics, 248, 193-206. https://doi.org/10.1016/S0378-5173(02)00435-0 |
dc.relation.references | Perez, C., Sanchez, A., Putnam, D., Ting, D., Langer, R., & Alonso, M. J. (2001). Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. Journal of Controlled Release, 75, 211-224. https://doi.org/10.1016/S0168-3659(01)00397-2 |
dc.relation.references | Petitti, M., Barresi, A. A., & Vanni, M. (2009). Controlled release of vancomycin from PCL microcapsules for an ophthalmic application. Chemical Engineering Research and Design, 87, 859-866. https://doi.org/10.1016/j.cherd.2008.12.008 |
dc.relation.references | Pisani, E., Fattal, E., Paris, J., Ringard, C., Rosilio, V., & Tsapis, N. (2008). Surfactant dependent morphology of polymeric capsules of perfluorooctyl bromide : Influence of polymer adsorption at the dichloromethane-water interface. Journal of Colloid and Interface Science, 326(1), 66-71. https://doi.org/10.1016/j.jcis.2008.07.013 |
dc.relation.references | Prabakar, K., Sivalingam, P., Mohamed Rabeek, S. I., Muthuselvam, M., Devarajan, N., Arjunan, A., … Wembonyama, J. P. (2013). Evaluation of antibacterial efficacy of phyto fabricated silver nanoparticles using Mukia scabrella (Musumusukkai) against drug resistance nosocomial gram negative bacterial pathogens. Colloids and Surfaces B: Biointerfaces, 104, 282-288. https://doi.org/10.1016/j.colsurfb.2012.11.041 |
dc.relation.references | Puente, L. A., Pinto-Muñoz, C. A., Castro, E. S., & Cortés, M. (2011). Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Research International, 44(7), 1733-1740. https://doi.org/10.1016/j.foodres.2010.09.034 |
dc.relation.references | Ramadan, M. F. (2011). Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview. Food Research International, 44(7), 1830–1836. https://doi.org/10.1016/j.foodres.2010.12.042 |
dc.relation.references | Ramadan, M. F., Hassan, N. A., Elsanhoty, R. M., & Sitohy, M. Z. (2012). Goldenberry (Physalis peruviana) juice rich in health-beneficial compounds suppresses high-cholesterol diet-induced hypercholesterolemia in Rats. Journal of Food Biochemistry, 37, 708-722. doi: 10.1111/j.1745-4514.2012.00669.x |
dc.relation.references | Ramírez, M. E., Rodríguez, O. Y., Hernández, O. S., Chel-Guerrero, L., & Aguilar, M. (2016). Estudio de la actividad hipoglucemiante y antioxidante de tronadora, raíz de wereque y raíz de nopal. En M. E. Ramírez Ortiz (Ed.), Propiedades funcionales de hoy (pp. 143–180). Barcelona, España: OmniaScience |
dc.relation.references | Ramírez, D. (2013). Evaluación en pequeños roedores de laboratorio del efecto hipoglicemiante de micropartículas conteniendo un extracto vegetal (Tesis de Pregrado). Universidad Nacional de Colombia, Bogotá |
dc.relation.references | Rather, M. A., Bhat, B. A., & Qurishi, M. A. (2013). Multicomponent phytotherapeutic approach gaining momentum: Is the “one drug to fit all” model breaking down? Phytomedicine, 21(1), 1-14. https://doi.org/10.1016/j.phymed.2013.07.015 |
dc.relation.references | Rey, D. P. (2013). Evaluación in vitro del efecto de un extracto de frutos de Physalis peruviana sobre algunas carbohidrasas intestinales (Tesis de maestría). Universidad Nacional de Colombia, Bogotá. Recuperado de http://bdigital.unal.edu.co/58053/1/1014182296.2014.pdf |
dc.relation.references | Rey, D. P., Ospina, L. F., & Aragón, D. M. (2015). Inhibitory effects of an extract of fruits of Physalis peruviana on some intestinal carbohydrases. Revista Colombiana de Ciencias Químico-Farmacéuticas, 44(1), 72-89. https://doi.org/10.15446/rcciquifa.v44n1.54281 |
dc.relation.references | Rizkalla, N., Range, C., Lacasse, F. X., & Hildgen, P. (2006). Effect of various formulation parameters on the properties of polymeric nanoparticles prepared by multiple emulsion method. Journal of Microencapsulation, 23(1), 39–57. https://doi.org/10.1080/02652040500286185 |
dc.relation.references | Rodríguez Arévalo, A. L. (2019). Establecimiento de las condiciones para la obtención de sistemas nanoestructurados empleando polietilenglicol-b-poli(ε-caprolactona) (PEG-b-PCL) (Trabajo de grado). Universidad Nacional de Colombia. |
dc.relation.references | Rodriguez Bernal, C.-A., Linck, V., Castellanos, L., Ramos, F. A., & Baena, Y. (2019). Development of an oral control release system from Physalis peruviana L . fruits extract based on the co-spray-drying method, 354, 676-688. https://doi.org/10.1016/j.powtec.2019.06.024 |
dc.relation.references | Sahoo, S. K., Panyam, J., Prabha, S., & Labhasetwar, V. (2002). Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. Journal of Controlled Release, 82, 105-114. https://doi.org/10.1016/S0168-3659(02)00127-X |
dc.relation.references | Selvamani, V. (2019). Stability Studies on Nanomaterials Used in Drugs. Characterization and Biology of Nanomaterials for Drug Delivery. Elsevier Inc. https://doi.org/10.1016/b978-0-12-814031-4.00015-5 |
dc.relation.references | Sharma, N., Bano, A., Dhaliwal, H. S., & Sharma, V. (2015). Perspectives and possibilities of Indian species of genus Physalis (L.)-a comprehensive review. European Journal of Pharmaceutical and Medical Research, 2(2), 326-353. |
dc.relation.references | Shen, C., Guo, S., & Lu, C. (2008). Degradation behaviors of monomethoxy poly(ethylene glycol)-b-poly(e-caprolactone) nanoparticles in aqueous solution. Polymers for Advanced Technologies, 19(1), 66–72. https://doi.org/10.1002/pat.975 |
dc.relation.references | Shimada S, (inventor) (2008). 20080254126. United Statates,Patent. Shuai, X., Ai, H., Nasongkla, N., Kim, S., & Gao, J. (2004). Micellar carriers based on block copolymers of poly(ε-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. Journal of Controlled Release, 98, 415-426. https://doi.org/10.1016/j.jconrel.2004.06.003 |
dc.relation.references | Shuai, X., Merdan, T., Unger, F., Wittmar, M., & Kissel, T. (2003). Novel biodegradable ternary copolymers hy-PEI-g-PCL-b-PEG: Synthesis, characterization, and potential as efficient nonviral gene delivery vectors. Macromolecules, 36(15), 5751-5759. https://doi.org/10.1021/ma034390w |
dc.relation.references | Silva Pinto, M., Galvez Ranilla, L., Apostolidis, E., Maria Lajolo, F., Genovese, M. I., & Shetty, K. (2009). Evaluation of Antihyperglycemia and Antihypertension Potential of Native Peruvian Fruits Using In Vitro Models. Journal of Medicinal Food, 12(2). https://doi.org/10.1089/jmf.2008.0113 |
dc.relation.references | Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R., & Rudzinski, W. E. (2001). Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release, 70(1-2), 1-20. https://doi.org/10.1016/S0168-3659(00)00339-4 |
dc.relation.references | Steppan, C., Bailey, S., Bhat, S., Brown, E., Banerjee, R., Wright, C., … Lazar, R. (2001). The hormone resistin links obesity to diabetes. Nature, 409, 307-312. Recuperado de https://www.nature.com/articles/35053000 |
dc.relation.references | Stewart, G. L. (2009). Diabetes mellitus: clasificación, fisiopatología y diagnóstico Diabetes mellitus: classification, pathophysiology, and diagnosis. Medwave, 9(12). Recuperado de http://www.medwave.cl/link.cgi/Medwave/PuestaDia/APS/4315?tab=metrica |
dc.relation.references | Su, Y. L., Fu, Z. Y., Zhang, J. Y., Wang, W. M., Wang, H., Wang, Y. C., & Zhang, Q. J. (2008). Microencapsulation of Radix salvia miltiorrhiza nanoparticles by spray-drying. Powder Technology, 184, 114-121. https://doi.org/10.1016/j.powtec.2007.08.014 |
dc.relation.references | Subramanian, R., Asmawi, M. Z., & Sadikun, A. (2008). In vitro α-glucosidase and α-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide, 55(2), 391-398. |
dc.relation.references | Tacx, J. C. J. F., Schoffeleers, H. M., Brands, A. G. M., & Teuwen, L. (2000). Dissolution behavior and solution properties of polyvinylalcohol as determined by viscometry and light scattering in DMSO, ethyleneglycol and water. Polymer, 41(3), 947-957. |
dc.relation.references | The United States Pharmacopeial Convention (2015). The United States pharmacopeia: the national formulary. Maryland: United States Pharmacopeial Convention. |
dc.relation.references | Tolosa, L. I. (2016). Super cuaderno FIRP SC280-R. |
dc.relation.references | Tomar, P., Jain, N., & Dixit, V. K. (2013). Nanoparticulate delivery of LHRH analogue for the treatment of prostate cancer. Pharmaceutical Development and Technology, 18(3), 645-652. https://doi.org/10.3109/10837450.2012.663389 |
dc.relation.references | Tundis, R., Loizzo, M. R., & Menichini, F. (2010). Natural Products as α-Amylase and α-Glucosidase Inhibitors and their Hypoglycaemic Potential in the Treatment of Diabetes: An Update. Mini-Reviews in Medicinal Chemistry, 10, 315-331. https://doi.org/10.2174/138955710791331007 |
dc.relation.references | Vauthier, C., & Bouchemal, K. (2009). Methods for the preparation and manufacture of polymeric nanoparticles. Pharmaceutical Research, 26(5), 1025-1058. https://doi.org/10.1007/s11095-008-9800-3 |
dc.relation.references | Vila Jato, J. L. (2006). Nanotecnología Farmacéutica:una Galénica emergente. Discurso. Madrid: Real Academia Nacional de Farmacia. |
dc.relation.references | Villamil, J. C., Parra, C. M., & Pérez, L. D. (2019). Enhancing the performance of PEG-b-PCL copolymers as precursors of micellar vehicles for amphotericin B through its conjugation with cholesterol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 572, 79-87. https://doi.org/10.1016/j.colsurfa.2019.03.086 |
dc.relation.references | Wilczewska, A. Z., Niemirowicz, K., Markiewicz, K. H., & Car, H. (2012). Nanoparticles as drug delivery systems. Pharmacological Reports, 64(5), 1020-1037. https://doi.org/10.1016/S1734-1140(12)70901-5 |
dc.relation.references | Yadav, A. K., Mishra, P., Jain, S., Mishra, P., Mishra, A. K., & Agrawal, G. P. (2008). Preparation and characterization of HA-PEG-PCL intelligent core corona nanoparticles for delivery of doxorubicin. Journal of Drug Targeting, 16(6), 464-478. https://doi.org/10.1080/10611860802095494 |
dc.relation.references | Yamauchi, T., Kamon, J., Ito, Y., TsuchLabela, A., Yokomizo, T., Kita, S., … Kadowaki, T. (2003). Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature, 423(6941), 762-769. https://doi.org/10.1038/nature01683.1. |
dc.relation.references | Yang, J., Hou, Y., Ji, G., Song, Z., Liu, Y., Dai, G., … Chen, J. (2014). Targeted delivery of the RGD-labeled biodegradable polymersomes loaded with the hydrophilic drug oxymatrine on cultured hepatic stellate cells and liver fibrosis in rats. European Journal of Pharmaceutical Sciences, 52(1), 180-190. https://doi.org/10.1016/j.ejps.2013.11.017 |
dc.relation.references | Yen, F. L., Wu, T. H., Lin, L. T., Cham, T. M., & Lin, C. C. (2008). Nanoparticles formulation of Cuscuta chinensis prevents acetaminophen-induced hepatotoxicity in rats. Food and Chemical Toxicology, 46, 1771-1777. https://doi.org/10.1016/j.fct.2008.01.021 |
dc.relation.references | Zakeri-Milani, P., Loveymi, B. D., Jelvehgari, M., & Valizadeh, H. (2013). The characteristics and improved intestinal permeability of vancomycin PLGA-nanoparticles as colloidal drug delivery system. Colloids and Surfaces B: Biointerfaces, 103, 174-181. https://doi.org/10.1016/j.colsurfb.2012.10.021 |
dc.relation.references | Zamarioli, C. M., Martins, R. M., Carvalho, E. C., & Freitas, L. A. P. (2015). Nanoparticles containing curcuminoids (Curcuma longa): Development of topical delivery formulation. Brazilian Journal of Pharmacognosy, 25(1), 53-60. https://doi.org/10.1016/j.bjp.2014.11.010 |
dc.relation.references | Zambaux, M. F., Bonneaux, F., Gref, R., Maincent, P., Dellacherie, E., Alonso, M. J., … Vigneron, C. (1998). Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. Journal of Controlled Release, 50(1-3), 31-40. https://doi.org/10.1016/S0168-3659(97)00106-5 |
dc.relation.references | Zamora, D., Chávez, N. C., & Méndez, N. (2004). Mecanismos moleculares de resistencia a la insulina. Gaceta Medica de México, 11(13), 149-159. Recuperado de http://www.medigraphic.com/pdfs/medsur/ms-2004/ms043b.pdf |
dc.relation.references | Zhang, Y.-J., Deng, G.-F., Xu, X.-R., Wu, S., Li, S., & Li, H.-B. (2013). Chemical Components and Bioactivities of Cape Gooseberry (Physalis peruviana). International Journal of Food Nutrition and Safety, 3(1), 15-24. |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.proposal | Nanopartículas poliméricas |
dc.subject.proposal | Polymeric nanoparticles |
dc.subject.proposal | Physalis peruviana |
dc.subject.proposal | Physalis peruviana |
dc.subject.proposal | Doble emulsificación modificada |
dc.subject.proposal | Modified double emulsification |
dc.subject.proposal | Evaporación de solvente |
dc.subject.proposal | Solvent evaporation |
dc.subject.proposal | Diabetes |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Files in this item
This item appears in the following Collection(s)
This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit