Show simple item record

dc.contributor.advisorNarváez Tovar, Carlos Alberto
dc.creatorVelásquez Morales, Sebastián
dc.descriptionLos equipos de elevación de carga son ampliamente usados en todas las industrias en general como asistencia mecánica para operadores y como parte fundamental de procesos industriales. Dentro de estos equipos se resaltan los puentes grúas y sus afines, los cuales siempre se acompañan de un polipasto. Estos equipos de izaje suelen ser robustos, pesados, su montaje en campo tiende a ser complejo y requiere mucho esfuerzo para su instalación. Es así que se desarrolló la optimización del diseño de un polipasto de cable colgante con capacidad de carga de 2t y clasificación FEM 3m, con el objetivo de reducir su masa sujeto a las condiciones de servicio esperadas en los estándares internacionales. Esta optimización se realizó mediante el uso de herramientas CAD y un algoritmo que permite maximizar de la rigidez estructural de tal forma que se redujo el peso de la estructura del equipo mencionado en un 25%.
dc.description.abstractLoad lifting equipment is widely used in all industries in general as mechanical assistance for operators and as an essential part of industrial processes. Within these equipments, the overhead cranes and their related are highlighted, which are always accompanied by a hoist. These lifting equipment are usually robust, heavy, field mounting tends to be complex and requires a lot of effort for installation. Thus, the optimization of the design of a underhung cable hoist with a lift load capacity of 2 t and 3m FEM classification was developed, with the aim of reducing its mass subject to the expected service conditions in international standards. This optimization was carried out using CAD tools and an algorithm that maximizes structural rigidity in such a way that the weight of the mentioned equipment structure was reduced by 25%
dc.subjectEuropean Materials Handling Federation (FEM)
dc.subjectOptimización topológica
dc.subjectDistribución de esfuerzo
dc.subjectElementos finitos
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleOptimización del diseño de un polipasto de clasificación 3m enfocado en la reducción de masa
dc.rights.spaAcceso abierto
dc.contributor.institutionUniversidad Nacional de Colombia - Sede Bogotá
dc.subject.keywordeffort distribution
dc.subject.keywordEuropean Materials Handling Federation (FEM)
dc.subject.keywordTopological optimization
dc.subject.keywordFinite elements
dc.type.hasversionAccepted Version
dc.description.additionalLínea de Investigación: Optimización en ingeniería
dc.rights.accessRightsOpen Access
dc.rights.ccAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.identifier.bibliographicCitationAbbey, T. (2017) Topology Optimization Methods -
dc.identifier.bibliographicCitationASTM A36 / A36M-08, Standard Specification for Carbon Structural Steel, ASTM International, West Conshohocken, PA, 2008,
dc.identifier.bibliographicCitationASTM A572 / A572M-18, Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel, ASTM International, West Conshohocken, PA, 2018,
dc.identifier.bibliographicCitationASTM A354-17e2, Standard Specification for Quenched and Tempered Alloy Steel Bolts, Studs, and Other Externally Threaded Fasteners, ASTM International, West Conshohocken, PA, 2017,
dc.identifier.bibliographicCitationBathe, K. J. (2006). Finite element procedures. Second edition. Retrieved from
dc.identifier.bibliographicCitationBhatia, A. (2014). Overview of Electric Overhead Traveling (Eot) Cranes. CED Engineering, (877), 202.
dc.identifier.bibliographicCitationCamacho, C. J. (2011). Optimización Topológica Estructural de Ensambles. 92. Retrieved from
dc.identifier.bibliographicCitationCasteblanco, A & Velasquez, S. (2019). SGC Manual Manejo Puentes Grúa. Bogotá Colombia.
dc.identifier.bibliographicCitationChaudhary, D. K. (2017). Optimization Techniques for Engineering Design. International Journal for Research in Applied Science and Engineering Technology, pp. 886–898.
dc.identifier.bibliographicCitationChen, Z., Li, Z., Huang, C., Zhang, G., & Yu, H. (2018). Safety assessment method of bridge crane based on cluster analysis and neural network. Procedia Computer Science, 131, 477–484.
dc.identifier.bibliographicCitationDIN 15018. (2003). Cranes Steel structures Verification and Analyses. DIN, 19(8), 1–38.
dc.identifier.bibliographicCitationHere, D. (2004). Introduction To Optimum Design - Jasbir Arora.
dc.identifier.bibliographicCitationHU, J., LI, J.-C., HE, X., \& CAO, J.-C. (2018). Large Mine Hoist Drum Topology Optimization Design. DEStech Transactions on Environment, Energy and Earth Science, (edep), 2–8.
dc.identifier.bibliographicCitationJiang, F., Zhu, Z., Li, W., Xia, S., & Zhou, G. (2017). Lifting load monitoring of mine hoist through vibration signal analysis with variational mode decomposition. Journal of Vibroengineering, 19(8), 3021–6035.
dc.identifier.bibliographicCitationKazakis, G.; Kanellopoulos, I.; Sotiropoulos, S.; Lagaros, N.D. Topology optimization aided structural design: Interpretation, computational aspects and 3D printing. Heliyon 2017, 3, e00431
dc.identifier.bibliographicCitationLIFT-TECH, Y. (2007). Yale Hoist Global King Wire Rope Hoist. (118175).
dc.identifier.bibliographicCitationMacrimmon, R. A. (2009). Guide for the design of crane-supporting steel structures (Second Ed.; C. I. of S. C. All, ed.). Canada.
dc.identifier.bibliographicCitationManee-Ngam, A., Saisirirat, P., & Suwankan, P. (2017). Hook Design Loading by the Optimization Method with Weighted Factors Rating Method. Energy Procedia, 138, 337–342.
dc.identifier.bibliographicCitationNam, M., Kim, J., Lee, J., Kim, D., Lee, D., & Lee, J. (2018). Cooperative control system of the floating cranes for the dual lifting. International Journal of Naval Architecture and Ocean Engineering, 10(1), 95–102.
dc.identifier.bibliographicCitationNarváez T, Carlos A. . (2003). Aplicaciones de los elementos finitos en optimización topológica estructural . Universidad Nacional de Colombia.
dc.identifier.bibliographicCitationNiu, C. M., & Ouyang, H. (2015). Calculation of dynamic loads on lifitng mechanism of overhead cranes in emergency break. (July 2017).
dc.identifier.bibliographicCitationPeng, B., Flager, F. L., & Wu, J. (2018). A method to optimize mobile crane and crew interactions to minimize construction cost and time. Automation in Construction, 95(May), 10–19.
dc.identifier.bibliographicCitationRusiński, E., Iluk, A., Malcher, K., \& Pietrusiak, D. (2013). Failure analysis of an overhead traveling crane lifting system operating in a turbogenerator hall. Engineering Failure Analysis, 31, 90–100.
dc.identifier.bibliographicCitationSaitou, K., Izui, K., Nishiwaki, S., & Papalambros, P. (2005). A Survey of Structural Optimization in Mechanical Product Development. Journal of Computing and Information Science in Engineering, 5(3), 214.
dc.identifier.bibliographicCitationSavković, M. M., Bulatović, R. R., Gašić, M. M., Pavlović, G. V., & Stepanović, A. Z. (2017). Optimization of the box section of the main girder of the single-girder bridge crane by applying biologically inspired algorithms. Engineering Structures, 148, 452–465.
dc.identifier.bibliographicCitationSzpytko, J., & Schab, J. (2005). Rapid Prototyping of Overhead Crane Dynamics for Operation Use. In IFAC Proceedings Volumes (Vol. 38).
dc.identifier.bibliographicCitationThejomurthy, M. C., & Ramakrishn, D. S. (2018). Topology Optimization and Analysis of Crane Hook Model. 60–64.
dc.identifier.bibliographicCitationPaipetis, S. A.; Ceccarelli, Marco (2010). The Genius of Archimedes -23 Centuries of Influence on Mathematics, Science and Engineering: Proceedings of an International Conference held at Syracuse, Italy, June 8-10, 2010. Springer Science & Business Media. p. 416. ISBN 9789048190911.
dc.identifier.bibliographicCitationWire, E., & Hoist, R. (2011). Hoist With Motor-Driven Trolley ( HD ) Hoist With Motor-Driven Trolley ( HD ). 12–13.
dc.identifier.bibliographicCitationWu, J. J. (2004). Finite element modelling and experimental modal testing of a three-dimensional framework. International Journal of Mechanical Sciences, 46(8), 1245–1266.
dc.identifier.bibliographicCitationYamada, T., Izui, K., Nishiwaki, S., & Takezawa, A. (2010). A topology optimization method based on the level set method incorporating a fictitious interface energy. Computer Methods in Applied Mechanics and Engineering, 199(45–48), 2876–2891.
dc.identifier.bibliographicCitationYifei, T., Zhaohui, T., Wei, Y., & Zhen, Y. (2013). Research on energy-saving optimization design of bridge crane. Eksploatacja i Niezawodnosc, 15(4), 449–457.
dc.identifier.bibliographicCitationZrnić, N. D., Gašić, V. M., & Bošnjak, S. M. (2015). Dynamic responses of a gantry crane system due to a moving body considered as moving oscillator. Archives of Civil and Mechanical Engineering, 15(1), 243–250.
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica

Files in this item


This item appears in the following Collection(s)

Show simple item record work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit