dc.rights.license | Atribución-NoComercial 4.0 Internacional |
dc.contributor.advisor | Molina Herrera, Maritzabel |
dc.contributor.author | Hernández Segura, Luis Carlos |
dc.date.accessioned | 2020-07-29T17:34:39Z |
dc.date.available | 2020-07-29T17:34:39Z |
dc.date.issued | 2020-07-27 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/77873 |
dc.description.abstract | Throughout this study, a method for damage detection and localization in a twodimensional system to metallic structures is proposed through the Damage Localization
Criterion by frequencies analysis (CLDF), in order to reduce costs and avoid the
implementation of invasive methods in buildings. Likewise, it seeks to preserve the qualified
inspector’s integrity at the time of an aftershock appearance in buildings with structural
deficiencies; and finally, to reduce the evaluation time of the current services conditions
and functionality of the structures.
The methodology is based on the natural frequencies analysis of structures. It
contemplates three approaches: the theoretical analysis of the variation of eigenvalues due
to simulation of damage in the structure using the finite element method; the experimental
scale analysis of the selected problem situation; and the analysis of the variability of the
results obtained by experimental tests and the ones obtained with theoretical tests.
To evaluate the efficiency of the proposed method, two models are analyzed: a cantilever
beam scale model without damage and a beam model with induced damage, with the same
geometric and mechanical characteristics of the health beam. The specimen is subjected
to forced vibration, where the natural frequencies of the structure are obtained using a
spectral analysis of the accelerations signals, to finally be implemented the CLDF method
between the computational models and the experimental measurements, in order to detect
the geometrical variations simulated as structural damage. In addition, Through the
analysis process, a numerical model will be available on order to validate the procedures
of data acquisition. |
dc.description.abstract | A través del presente estudio se plantea una metodología para detección y localización de
daño en un sistema bidimensional en estructuras metálicas a través del Criterio de
Localización de Daño por análisis de Frecuencias (DLAC), con el fin de reducir costos y
evitar la implementación de métodos de inspección invasivos en edificaciones para evaluar
su estado estructural. Así mismo, se busca reducir el tiempo de evaluación de las
condiciones actuales de servicio y funcionabilidad de las estructuras.
La metodología se basa en el análisis de frecuencias naturales de las estructuras. Para
ello, contempla 3 enfoques: el análisis teórico de la variación de valores propios debido a
simulación de daño en la estructura empleando el método de elementos finitos; el análisis
experimental a escala de la situación problema seleccionada; y el análisis de variabilidad
de los resultados obtenidos por pruebas experimentales con los resultados obtenidos de
pruebas teóricas.
Para evaluar la eficiencia de la metodología propuesta se analizan dos modelos: una viga
en voladizo sin daño y una viga con daño que tiene la mismas características geométricas
y mecánicas de la viga sana (sin daño). Las dos vigas fueron sometidas a una vibración
forzada en las que se registraron las señales de aceleración para determinar las
frecuencias de vibración de la estructura. Luego se implementó la metodología DLAC en
los modelos computacionales y las mediciones experimentales, con el objetivo de detectar
la zona de daño a través de un análisis de variación de frecuencias. Adicionalmente, para
validación de los procedimientos de adquisición de datos, se compararon los resultados
obtenidos con los generados por la simulación numérica de los dos modelos. |
dc.format.extent | 186 |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ |
dc.title | Detección y localización de daño en secciones prismáticas utilizando metodologías de correlación basadas en parámetros dinámicos |
dc.type | Documento de trabajo |
dc.rights.spa | Acceso abierto |
dc.description.additional | Magíster en Ingeniería Estructuras. Línea de Investigación: Estructuras . |
dc.type.driver | info:eu-repo/semantics/workingPaper |
dc.type.version | info:eu-repo/semantics/publishedVersion |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Estructuras |
dc.contributor.corporatename | Universidad Nacional de Colombia |
dc.contributor.researchgroup | GIES |
dc.description.degreelevel | Maestría |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.references | Allemang, A. J. (2003). The Modal Assurance Criterion (MAC): Twenty Years of
Use and Abuse. SOUND VIB, 14--21. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.582.30 |
dc.relation.references | Avitabile, P. (2001). Often times, people ask some simple questions regarding
modal analysis and how structures vibrate. |
dc.relation.references | Bossi, R. H., Iddings, F. A., & Wheeler, G. C. (2002). Nondestructive Testing
Handbook. (A. S. for N. Testing, Ed.). Columbua , OH: Moore editorial.
Retrieved from
https://www.asnt.org/Store/ProductDetail?productKey=83ea27b3-d68f-483d-
9354-e447ef2b3915 |
dc.relation.references | Cawley, P., & Adams, R. D. (1979). The location of defects in structures from
measurements of natural frequencies. The Journal of Strain Analysis for
Engineering Design, 14(2), 49–57. https://doi.org/10.1243/03093247V142049 |
dc.relation.references | Chopra, A. K. (2016). Dynamics of Structures (5th ed.). New Jersey: Pearson. |
dc.relation.references | Clough, R. W., & Penzien, J. (1975). Dynamic of structures. McGraw-Hill. |
dc.relation.references | Conturi, T., Messina, A., & Williams, E. J. (1998). A multiple damage location
assurance criterion based on natural frequency changes. Journal of Vibration
and Control, 619–633. |
dc.relation.references | Dziedziech, K., Staszewski, W. J., & Uhl, T. (2014). Wavelet-Based Frequency
Response Function: Comparative Study of Input Excitation. Shock and
Vibration, 11. |
dc.relation.references | Evon, A. (2010). Vibration Based Damage Detection Using Modal Assurance
Criterion and Coordinate Modal Assurance Criterion. Universiti Teknologi
Malaysia. |
dc.relation.references | Friswella, M. I., Pennyb, J. E. T., & Garveyb, S. D. (1998). A combined genetic
and eigensensitivity algorithm for the location of damage in structures.
Computers & Structures, 69(5), 547–556. https://doi.org/10.1016/S0045-
7949(98)00125-4 |
dc.relation.references | Hassiotis, S. (2000). Identification of damage using natural frequencies and
Markov parameters. Computers and Structures, 74(3), 365–373.
https://doi.org/10.1016/S0045-7949(99)00034-6 |
dc.relation.references | He, J., & Fu, Z. (2001). Modal Analysis. Butterworth-Heinemann. |
dc.relation.references | Henao, D., Botero, J. C., & Muriá, D. (2014). Identificación de propiedades
dinámicas de un modelo estructural sometido a vibración ambiental y
vibración forzada empleando mesa vibratoria. Revista de Ingeniería Sísmica,
91(17 Mayo 2014), 54–73. |
dc.relation.references | Hernández, L., & Molina, M. (2019). APLICACIÓN DE LA DINÁMICA
ESTRUCTURAL EN EL ANÁLISIS DE DAÑO DE ESTRUCTURAS
METÁLICAS. Bogotá, Colombia. |
dc.relation.references | Ishida, Y., & Chiba, N. (1999). Contact surface damage evaluation by infrared
thermography. In The ninth international symposium on nondestructive
characterization of materials. AIP Conference Proceedings (pp. 355–360).
AIP. https://doi.org/10.1063/1.1302027 |
dc.relation.references | Jang, S., Li, J., & Spencer, B. F. (2013). Corrosion Estimation of a Historic Truss
Bridge Using Model Updating. Journal of Bridge Engineering, 18(7), 678–689.
https://doi.org/10.1061/(ASCE)BE.1943-5592.0000403 |
dc.relation.references | Kachanov, L. M. (1999). Rupture time under creep conditions. In International
Journal of Fracture (Vol. 97). Kluwer Academic Publishers.
https://doi.org/10.1023/A:1018671022008 |
dc.relation.references | Khatir, S., Belaidi, I., Serra, R., Benaissa, B., & Ait Saada, A. (2015). Genetic
Algorithm Based Objective Functions Comparative Study for Damage
Detection and Localization in Beam Structures. Journal of Physics:
Conference Series, 628(1), 012035. https://doi.org/10.1088/1742-
6596/628/1/012035 |
dc.relation.references | Kolman, B., & Hill, D. (2010). Algebra lineal. Pearson. |
dc.relation.references | Lam, H. F., & Wong, M. T. (2011). Railway Ballast Diagnose through Impact
Hammer Test. Procedia Engineering, 14, 185–194.
https://doi.org/10.1016/J.PROENG.2011.07.022 |
dc.relation.references | Maia, N., Silva, J., Almas, E., & Sampaio, R. (2003). Damage detection in
structures: from mode shape to frequency response function methods.
Mechanical Systems and Signal Processing, 17(3), 489–498.
https://doi.org/10.1006/MSSP.2002.1506 |
dc.relation.references | Mendes M., N. M. (1988). Extraction of valid modal properties from measured data
in structural vibrations. University of London. |
dc.relation.references | Messina, A., Williams, E. J., & Contursi, T. (1996). Damage Detection and
localization using natural frequency changes. In Proceedings of the
conference on identification in engineering systems (pp. 67–76). Swansea,
U.K. |
dc.relation.references | Oppenheim, A. V., & Shafer, R. W. (1989). Discrete time signal processing.
Englewood Cliffs: Prentice-Hall. |
dc.relation.references | Pastor, M., Binda, M., & Harčarik, T. (2012). Modal Assurance Criterion. Procedia
Engineering, 48, 543–548. https://doi.org/10.1016/J.PROENG.2012.09.551 |
dc.relation.references | Randall, J. A. (2003). Historical Development of the MAC. In IMAC-XX the 20th
International Modal Analysis Conference (pp. 14–21). Los Angeles ,CA:
Sound and Vibration. Retrieved from
http://www.sandv.com/downloads/0308alle.pdf |
dc.relation.references | Rongsheng, G. (2006). Modern acoustic emission technique and its application in
aviation industry. Ultrasonics, 44, 1025–1029.
https://doi.org/10.1016/J.ULTRAS.2006.05.092 |
dc.relation.references | Rytter, A. (1993). Vibrational Based Inspection of Civil Engineering Structures.
Aalborg: Dept. of Building Technology and Structural Engineering, Aalborg
University. |
dc.relation.references | Sohn, H., Allen, D. W., Worden, K., & Farrar, C. R. (2005). Structural Damage
Classification Using Extreme Value Statistics. Journal of Dynamic Systems,
Measurement, and Control ASME, 125–132. |
dc.relation.references | Yang, Q. W. (2009). A numerical technique for structural damage detection.
Applied Mathemathics and Computation, 215, 2775–2780.
https://doi.org/10.1016/j.amc.2009.08.039 |
dc.relation.references | Zienkiewickz, O. (2000). The finite element method. Vol 1 Fundamentals. Oxford:
Butterworth Heinemann. |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.proposal | detección de daño |
dc.subject.proposal | damage detection |
dc.subject.proposal | detection methodology |
dc.subject.proposal | metodología de detección |
dc.subject.proposal | seismic hazard |
dc.subject.proposal | amenaza sísmica |
dc.subject.proposal | natural frequencies |
dc.subject.proposal | frecuencias Naturales |
dc.type.coar | http://purl.org/coar/resource_type/c_8042 |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/WP |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |