Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorMolina Herrera, Maritzabel
dc.contributor.authorHernández Segura, Luis Carlos
dc.date.accessioned2020-07-29T17:34:39Z
dc.date.available2020-07-29T17:34:39Z
dc.date.issued2020-07-27
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77873
dc.description.abstractThroughout this study, a method for damage detection and localization in a twodimensional system to metallic structures is proposed through the Damage Localization Criterion by frequencies analysis (CLDF), in order to reduce costs and avoid the implementation of invasive methods in buildings. Likewise, it seeks to preserve the qualified inspector’s integrity at the time of an aftershock appearance in buildings with structural deficiencies; and finally, to reduce the evaluation time of the current services conditions and functionality of the structures. The methodology is based on the natural frequencies analysis of structures. It contemplates three approaches: the theoretical analysis of the variation of eigenvalues due to simulation of damage in the structure using the finite element method; the experimental scale analysis of the selected problem situation; and the analysis of the variability of the results obtained by experimental tests and the ones obtained with theoretical tests. To evaluate the efficiency of the proposed method, two models are analyzed: a cantilever beam scale model without damage and a beam model with induced damage, with the same geometric and mechanical characteristics of the health beam. The specimen is subjected to forced vibration, where the natural frequencies of the structure are obtained using a spectral analysis of the accelerations signals, to finally be implemented the CLDF method between the computational models and the experimental measurements, in order to detect the geometrical variations simulated as structural damage. In addition, Through the analysis process, a numerical model will be available on order to validate the procedures of data acquisition.
dc.description.abstractA través del presente estudio se plantea una metodología para detección y localización de daño en un sistema bidimensional en estructuras metálicas a través del Criterio de Localización de Daño por análisis de Frecuencias (DLAC), con el fin de reducir costos y evitar la implementación de métodos de inspección invasivos en edificaciones para evaluar su estado estructural. Así mismo, se busca reducir el tiempo de evaluación de las condiciones actuales de servicio y funcionabilidad de las estructuras. La metodología se basa en el análisis de frecuencias naturales de las estructuras. Para ello, contempla 3 enfoques: el análisis teórico de la variación de valores propios debido a simulación de daño en la estructura empleando el método de elementos finitos; el análisis experimental a escala de la situación problema seleccionada; y el análisis de variabilidad de los resultados obtenidos por pruebas experimentales con los resultados obtenidos de pruebas teóricas. Para evaluar la eficiencia de la metodología propuesta se analizan dos modelos: una viga en voladizo sin daño y una viga con daño que tiene la mismas características geométricas y mecánicas de la viga sana (sin daño). Las dos vigas fueron sometidas a una vibración forzada en las que se registraron las señales de aceleración para determinar las frecuencias de vibración de la estructura. Luego se implementó la metodología DLAC en los modelos computacionales y las mediciones experimentales, con el objetivo de detectar la zona de daño a través de un análisis de variación de frecuencias. Adicionalmente, para validación de los procedimientos de adquisición de datos, se compararon los resultados obtenidos con los generados por la simulación numérica de los dos modelos.
dc.format.extent186
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.titleDetección y localización de daño en secciones prismáticas utilizando metodologías de correlación basadas en parámetros dinámicos
dc.typeDocumento de trabajo
dc.rights.spaAcceso abierto
dc.description.additionalMagíster en Ingeniería Estructuras. Línea de Investigación: Estructuras .
dc.type.driverinfo:eu-repo/semantics/workingPaper
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Estructuras
dc.contributor.corporatenameUniversidad Nacional de Colombia
dc.contributor.researchgroupGIES
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAllemang, A. J. (2003). The Modal Assurance Criterion (MAC): Twenty Years of Use and Abuse. SOUND VIB, 14--21. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.582.30
dc.relation.referencesAvitabile, P. (2001). Often times, people ask some simple questions regarding modal analysis and how structures vibrate.
dc.relation.referencesBossi, R. H., Iddings, F. A., & Wheeler, G. C. (2002). Nondestructive Testing Handbook. (A. S. for N. Testing, Ed.). Columbua , OH: Moore editorial. Retrieved from https://www.asnt.org/Store/ProductDetail?productKey=83ea27b3-d68f-483d- 9354-e447ef2b3915
dc.relation.referencesCawley, P., & Adams, R. D. (1979). The location of defects in structures from measurements of natural frequencies. The Journal of Strain Analysis for Engineering Design, 14(2), 49–57. https://doi.org/10.1243/03093247V142049
dc.relation.referencesChopra, A. K. (2016). Dynamics of Structures (5th ed.). New Jersey: Pearson.
dc.relation.referencesClough, R. W., & Penzien, J. (1975). Dynamic of structures. McGraw-Hill.
dc.relation.referencesConturi, T., Messina, A., & Williams, E. J. (1998). A multiple damage location assurance criterion based on natural frequency changes. Journal of Vibration and Control, 619–633.
dc.relation.referencesDziedziech, K., Staszewski, W. J., & Uhl, T. (2014). Wavelet-Based Frequency Response Function: Comparative Study of Input Excitation. Shock and Vibration, 11.
dc.relation.referencesEvon, A. (2010). Vibration Based Damage Detection Using Modal Assurance Criterion and Coordinate Modal Assurance Criterion. Universiti Teknologi Malaysia.
dc.relation.referencesFriswella, M. I., Pennyb, J. E. T., & Garveyb, S. D. (1998). A combined genetic and eigensensitivity algorithm for the location of damage in structures. Computers & Structures, 69(5), 547–556. https://doi.org/10.1016/S0045- 7949(98)00125-4
dc.relation.referencesHassiotis, S. (2000). Identification of damage using natural frequencies and Markov parameters. Computers and Structures, 74(3), 365–373. https://doi.org/10.1016/S0045-7949(99)00034-6
dc.relation.referencesHe, J., & Fu, Z. (2001). Modal Analysis. Butterworth-Heinemann.
dc.relation.referencesHenao, D., Botero, J. C., & Muriá, D. (2014). Identificación de propiedades dinámicas de un modelo estructural sometido a vibración ambiental y vibración forzada empleando mesa vibratoria. Revista de Ingeniería Sísmica, 91(17 Mayo 2014), 54–73.
dc.relation.referencesHernández, L., & Molina, M. (2019). APLICACIÓN DE LA DINÁMICA ESTRUCTURAL EN EL ANÁLISIS DE DAÑO DE ESTRUCTURAS METÁLICAS. Bogotá, Colombia.
dc.relation.referencesIshida, Y., & Chiba, N. (1999). Contact surface damage evaluation by infrared thermography. In The ninth international symposium on nondestructive characterization of materials. AIP Conference Proceedings (pp. 355–360). AIP. https://doi.org/10.1063/1.1302027
dc.relation.referencesJang, S., Li, J., & Spencer, B. F. (2013). Corrosion Estimation of a Historic Truss Bridge Using Model Updating. Journal of Bridge Engineering, 18(7), 678–689. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000403
dc.relation.referencesKachanov, L. M. (1999). Rupture time under creep conditions. In International Journal of Fracture (Vol. 97). Kluwer Academic Publishers. https://doi.org/10.1023/A:1018671022008
dc.relation.referencesKhatir, S., Belaidi, I., Serra, R., Benaissa, B., & Ait Saada, A. (2015). Genetic Algorithm Based Objective Functions Comparative Study for Damage Detection and Localization in Beam Structures. Journal of Physics: Conference Series, 628(1), 012035. https://doi.org/10.1088/1742- 6596/628/1/012035
dc.relation.referencesKolman, B., & Hill, D. (2010). Algebra lineal. Pearson.
dc.relation.referencesLam, H. F., & Wong, M. T. (2011). Railway Ballast Diagnose through Impact Hammer Test. Procedia Engineering, 14, 185–194. https://doi.org/10.1016/J.PROENG.2011.07.022
dc.relation.referencesMaia, N., Silva, J., Almas, E., & Sampaio, R. (2003). Damage detection in structures: from mode shape to frequency response function methods. Mechanical Systems and Signal Processing, 17(3), 489–498. https://doi.org/10.1006/MSSP.2002.1506
dc.relation.referencesMendes M., N. M. (1988). Extraction of valid modal properties from measured data in structural vibrations. University of London.
dc.relation.referencesMessina, A., Williams, E. J., & Contursi, T. (1996). Damage Detection and localization using natural frequency changes. In Proceedings of the conference on identification in engineering systems (pp. 67–76). Swansea, U.K.
dc.relation.referencesOppenheim, A. V., & Shafer, R. W. (1989). Discrete time signal processing. Englewood Cliffs: Prentice-Hall.
dc.relation.referencesPastor, M., Binda, M., & Harčarik, T. (2012). Modal Assurance Criterion. Procedia Engineering, 48, 543–548. https://doi.org/10.1016/J.PROENG.2012.09.551
dc.relation.referencesRandall, J. A. (2003). Historical Development of the MAC. In IMAC-XX the 20th International Modal Analysis Conference (pp. 14–21). Los Angeles ,CA: Sound and Vibration. Retrieved from http://www.sandv.com/downloads/0308alle.pdf
dc.relation.referencesRongsheng, G. (2006). Modern acoustic emission technique and its application in aviation industry. Ultrasonics, 44, 1025–1029. https://doi.org/10.1016/J.ULTRAS.2006.05.092
dc.relation.referencesRytter, A. (1993). Vibrational Based Inspection of Civil Engineering Structures. Aalborg: Dept. of Building Technology and Structural Engineering, Aalborg University.
dc.relation.referencesSohn, H., Allen, D. W., Worden, K., & Farrar, C. R. (2005). Structural Damage Classification Using Extreme Value Statistics. Journal of Dynamic Systems, Measurement, and Control ASME, 125–132.
dc.relation.referencesYang, Q. W. (2009). A numerical technique for structural damage detection. Applied Mathemathics and Computation, 215, 2775–2780. https://doi.org/10.1016/j.amc.2009.08.039
dc.relation.referencesZienkiewickz, O. (2000). The finite element method. Vol 1 Fundamentals. Oxford: Butterworth Heinemann.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposaldetección de daño
dc.subject.proposaldamage detection
dc.subject.proposaldetection methodology
dc.subject.proposalmetodología de detección
dc.subject.proposalseismic hazard
dc.subject.proposalamenaza sísmica
dc.subject.proposalnatural frequencies
dc.subject.proposalfrecuencias Naturales
dc.type.coarhttp://purl.org/coar/resource_type/c_8042
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/WP
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit