Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorAragón Rodríguez, Sandra Milena
dc.contributor.advisorSinuco León, Diana Cristina
dc.contributor.authorRamírez Alarcón, Sandra Milena
dc.date.accessioned2020-08-02T16:39:53Z
dc.date.available2020-08-02T16:39:53Z
dc.date.issued2019-06-10
dc.identifier.citationRamírez Alarcón Sandra Milena. Compuestos orgánicos volátiles de Trichoderma spp. con actividad biocontroladora sobre el patógeno Fusarium oxysporum f. sp. lycopersici y el insecto plaga Trialeurodes vaporariorum en plantas de tomate. UNIVERSIDAD NACIONAL DE COLOMBIA SEDE BOGOTA. 2020
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77894
dc.description.abstractThe effect of the volatile organic compounds (VOCs) emitted by 15 strains of Trichoderma spp. was evaluated on (1) in vitro radial growth of Fusarium oxysporum f. sp. lycopersici (FoL59), (2) the severity of the disease in planta and (3) the oviposition rate of the greenhouse whitefly Trialeurodes vaporariorum. For the in vitro experiment, we used the double plate technique, where two Petri plates, one with Trichoderma spp. and other with F. oxysporum grown on PDA were placed one over the other for ten days at 25°C, the inhibition rate was registered. Seven strains showed the best inhibition rates of the pathogen: Th004 (46.1%), M44 (45,8%), Th035(40,5%), Th019(39,8%), Th007 (39,4%), 3T (39%) and M45 (37.1%). These strains were assessed in planta by exposing the roots of tomato seedling to the VOCs emitted by Trichoderma spp. in a sealed environment for 21 days. The progress and severity of the disease were assessed. Only the strain Th035 showed a significant difference compared to control plants, reducing by 31% the severity of the disease. Finally, the oviposition preference index (OPI) of the whitefly on VOCs treated tomato plants. Negative OPI values were observed with the strains Th035 (-27.30), M44 (-21.80), Th007 (-17.17) and M45(-7,46), while Th004, 3T, and Th019 showed a stimulant effect on the oviposition. These findings demonstrate a biocontrol activity generated by the fungal VOCs of Trichoderma spp. against two different tomato plant health problems and contribute to the development of biological control strategies via bioprospection of fungal metabolites.
dc.description.abstractEn esta investigación se evaluó el efecto de los compuestos orgánicos volátiles (COVs) emitidos por 15 cepas de Trichoderma spp. sobre (1) el crecimiento radial in vitro de Fusarium oxysporum f. sp.lycopersici, (2) la severidad de la enfermedad in planta y (3) la tasa de oviposición de Trialeurodes vaporariorum en tomate. En condiciones in vitro, se empleó la técnica de doble placa, donde se enfrentó una caja de Petri con Trichoderma y otra con F. oxysporum desarrollados en medio PDA, permitiendo solo el intercambio de los VOCs durante 10 días a 25°C. Los mayores porcentajes de inhibición observados fueron: Th004 (46.1%), M44 (45,8%), Th035(40,5%), Th019(39,8%), Th007 (39,4%), 3T(39%) y M45 (37.1%). Estas cepas, fueron probadas en condiciones in planta, mediante la exposición de las raíces de las plántulas de tomate inoculadas con el patógeno, a los COVs emitidos por Trichoderma spp. en un ambiente confinado durante 21 días. Se observó que la cepa Th035, disminuyó la severidad de la enfermedad en un 31%. Finalmente, se calculó el índice de preferencia de oviposición (IPO) de la mosca blanca sobre plantas tratadas con los COVs, observando valores negativos con las cepas Th035 (-27.30), M44 (-21.80), Th007 (-17.17) y M45(-7,46), mientras que las cepas Th004, 3T, y Th019 estimularon una mayor oviposición. Estos resultados demuestran el potencial biocontrolador de los compuestos orgánicos volátiles emitidos por algunas cepas del hongo Trichoderma sobre dos problemas fitosanitarios en tomate y contribuyen al desarrollo de estrategias de control biológico mediante la bioprospección de estos metabolitos.
dc.description.sponsorshipAgrosavia
dc.format.extent95
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc632 - Lesiones, enfermedades, plagas vegetales
dc.subject.ddc633 - Cultivos de campo y de plantación
dc.subject.ddc668 - Tecnología de otros productos orgánicos
dc.subject.ddc333 - Economía de la tierra y de la energía
dc.titleCompuestos orgánicos volátiles de Trichoderma spp. con actividad biocontroladora sobre el patógeno Fusarium oxysporum f. sp. lycopersici y el insecto plaga Trialeurodes vaporariorum en plantas de tomate
dc.typeDocumento de trabajo
dc.rights.spaAcceso abierto
dc.description.additionalMagíster en Ciencias, Microbiología . Línea de Investigación: Microbiología.
dc.type.driverinfo:eu-repo/semantics/workingPaper
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAgrawal, A. A. (2005). Future directions in the study of induced plant responses to herbivory. Entomologia Experimentalis et Applicata, 115(1), 97-105.
dc.relation.referencesAgronet. (2017). Producción y rendimiento de tomate 2017. ttps://www.agronet.gov.co/Documents/9- TOMATE_2017.pdf%0Ahttp://www.agronet.gov.co/Documents/TOMATE2016.pdf
dc.relation.referencesAgrios GN (2005) Plant pathology. Academic press.
dc.relation.referencesAjilogba, C. F., & Babalola, O. O. (2013). Integrated management strategies for tomato Fusarium wilt. Biocontrol science, 18(3), 117-127
dc.relation.referencesAmini, J., & Sidovich, D. (2010). The effects of fungicides on Fusarium oxysporum f. sp. lycopersici associated with Fusarium wilt of tomato. Journal of plant protection research, 50(2), 172-178.
dc.relation.referencesAragón, S., & Beltran, C. (2018). Los hongos endófitos en el control biológico de fitopatógenos e insectos plaga Endophytic fungi in biological control of phytopathogens and insect pests Contenido. Control Biológico de Fitopatógenos, Insectos y Ácaros, October 2018, 854–873.
dc.relation.referencesAregbesola, O. Z., Legg, J. P., Sigsgaard, L., Lund, O. S., & Rapisarda, C. (2019). Potential impact of climate change on whiteflies and implications for the spread of vectored viruses. Journal of Pest Science, 92(2), 381-392.
dc.relation.referencesBernal, L., Pesca, L., Rodríguez, D., Cantor, F., & Cure, J. (2008). Plan de muestreo directo para Trialeurodes vaporariorum (Westwood)(Hemiptera: Aleyrodidae) en cultivos comerciales de tomate. Agronomía colombiana, 26(2), 266-276.
dc.relation.referencesBetancur Pérez, J. F. (2012). Identificación y caracterización molecular de virus transmitidos por mosca blanca Bemisia tabaci que infectan tomate en la región andina de Colombia (para optar título de Doctoral, Universidad Nacional de Colombia-Sede Palmira).
dc.relation.referencesBlancard, D. (2011). Enfermedades del tomate: Mundi-Prensa Libros.
dc.relation.referencesBolton, M. D. (2009). Primary metabolism and plant defense—fuel for the fire. Molecular plant-microbe Interactions, 22(5), 487-497.
dc.relation.referencesBruce, A., Wheatley, R. E., Humphris, S. N., Hackett, C. A., & Florence, M. E. (2000). Production of volatile organic compounds by Trichoderma in media containing different amino acids and their effect on selected wood decay fungi. Holzforschung, 54(5), 481-486.
dc.relation.referencesChen, J.-L., Sun, S.-Z., Miao, C.-P., Wu, K., Chen, Y.-W., Xu, L.-H., Zhao, L.-X. (2016). Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng. Journal of Ginseng Research, 40(4), 315-324.
dc.relation.referencesCarmona, S. L. (2018). Sandra Lorena Carmona Gutiérrez. Universidad Nacional de Colombia.
dc.relation.referencesCarmona, S. L., Burbano-David, D., Gómez, M. R., Lopez, W., Ceballos, N., Castaño-Zapata, J., Simbaqueba, J., & Soto-Suárez, M. (2020). Characterization of pathogenic and nonpathogenic Fusarium oxysporum isolates associated with commercial tomato crops in the Andean Region of Colombia. Pathogens, 9(1). https://doi.org/10.3390/pathogens9010070
dc.relation.referencesCordovez, V., Mommer, L., Moisan, K., Lucas-Barbosa, D., Pierik, R., Mumm, R., Carrion, V. J., & Raaijmakers, J. M. (2017). Plant Phenotypic and Transcriptional Changes Induced by Volatiles from the Fungal Root Pathogen Rhizoctonia solani. Frontiers in Plant Science, 8, 1262. https://doi.org/10.3389/fpls.2017.01262
dc.relation.referencesContreras-Cornejo, H. A., Macías-Rodríguez, L., del-Val, E., & Larsen, J. (2016). Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS microbiology ecology, 92(4), fiw036.
dc.relation.referencesContreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J (2018) The root endophytic fungus Trichoderma atroviride induces foliar herbivory resistance in maize plants. Appl Soil Ecol 124:45–53. https://doi.org/10.1016/j.apsoil.2017.10.004
dc.relation.referencesContarino, R., Brighina, S., Fallico, B., Cirvilleri, G., Parafati, L., & Restuccia, C. (2019). Volatile organic compounds (VOCs) produced by biocontrol yeasts. Food microbiology, 82, 70-74.
dc.relation.referencesContreras-Cornejo, H. A., Macías-Rodríguez, L., del-Val, E., & Larsen, J. (2020). Interactions of Trichoderma with plants, insects, and plant pathogen microorganisms: chemical and molecular bases. Co-Evolution of Secondary Metabolites, 263-290.
dc.relation.referencesDarshanee, H. L., Ren, H., Ahmed, N., Zhang, Z. F., Liu, Y. H., & Liu, T. X. (2017). Volatile-mediated attraction of greenhouse whitefly Trialeurodes vaporariorum to tomato and eggplant. Frontiers in plant science, 8, 1285.
dc.relation.referencesDavis, T. S., Crippen, T. L., Hofstetter, R. W., & Tomberlin, J. K. (2013). Microbial Volatile Emissions as Insect Semiochemicals. Journal of Chemical Ecology, 39(7), 840–859. https://doi.org/10.1007/s10886-013-0306-z
dc.relation.referencesDe Granada, E. G., De Amezquita, M. C. O., Mendoza, G. R. B., & Zapata, H. A. V. (2001). Fusarium oxysporum el hongo que nos falta conocer. Acta Biológica Colombiana, 6(1), 7-25.
dc.relation.referencesDe Vos, M., Van Oosten, V. R., Van Poecke, R. M., Van Pelt, J. A., Pozo, M. J., Mueller, M. J., & Pieterse, C. M. (2005). Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Molecular plant-microbe interactions, 18(9), 923-937
dc.relation.referencesDos Reis Almeida, F. B., Cerqueira, F. M., do Nascimento Silva, R., Ulhoa, C. J., & Lima, A. L. (2007). Mycoparasitism studies of Trichoderma harzianum strains against Rhizoctonia solani: evaluation of coiling and hydrolytic enzyme production. Biotechnology letters, 29(8), 1189-1193.
dc.relation.referencesEbrahimifar, J., Jamshidnia, A., & Allahyari, H. (2017). Functional response of Eretmocerus delhiensis (Hymenoptera: Aphelinidae) on Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) by parasitism and host feeding. Journal of Insect Science, 17(2), 56.
dc.relation.referencesEffmert, U., Kalderás, J., Warnke, R., & Piechulla, B. (2012). Volatile mediated interactions between bacteria and fungi in the soil. Journal of chemical ecology, 38(6), 665-703.
dc.relation.referencesFAO (2013). El cultivo de tomate con buenas prácticas agrícolas en la agricultura urbana y periurbana. Recuperado de http://www. fao. org/3/a-i3359s. pdf.
dc.relation.referencesFAO (2018). FAOSTAT Crop statistics. http://www.fao.org/faostat/en/#data/QC
dc.relation.referencesFAO (2019). Manejo integrado de enfermidades-FAO. www.fao.org/3/a1374s/a1374s05.pdf.
dc.relation.referencesFargues, J., Vidal, C., Smits, N., Rougier, M., Boulard, T., Mermier, M., ... & Lagier, J. (2003). Climatic factors on entomopathogenic hyphomycetes infection of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) in Mediterranean glasshouse tomato. Biological Control, 28(3), 320-331.
dc.relation.referencesGómez, M. (2019). Evaluación de sustancias bioactivas como alternativa para el manejo de la marchitez vascular causada por Fusarium oxysporum f. sp. lycopersici [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/71749/1/1069723022.2019.pdf
dc.relation.referencesGonzález, I., Yailén, A., & Peteira, B. (2012). Aspectos generales de la interacción Fusarium oxysporum f. sp. lycopersici-tomate. Revista de Protección Vegetal, 27(1), 1-7
dc.relation.referencesGordon, T. R. (2017). Fusarium oxysporum and the Fusarium wilt syndrome. Annual review of phytopathology, 55, 23-39.
dc.relation.referencesGuo, Y., Ghirardo, A., Weber, B., Schnitzler, J. P., Benz, J. P., & Rosenkranz, M. (2019). Trichoderma Species Differ in Their Volatile Profiles and in Antagonism Toward Ectomycorrhiza Laccaria bicolor. Frontiers in microbiology, 10, 891.
dc.relation.referencesGupta, V. G., Schmoll, M., Herrera-Estrella, A., Upadhyay, R. S., Druzhinina, I., & Tuohy, M. (Eds.). (2014). Biotechnology and biology of Trichoderma. Newnes
dc.relation.referencesHarman, G. E. (2000). Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzinum T-22. Plant disease, 84(4), 377-393.
dc.relation.referencesHarman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species—opportunistic, avirulent plant symbionts. Nature reviews microbiology, 2(1), 43.
dc.relation.referencesHassanpour, M., Bagheri, M., Golizadeh, A., & Farrokhi, S. (2016). Functional response of Nesidiocoris tenuis (Hemiptera: Miridae) to Trialeurodes vaporariorum (Hemiptera: Aleyrodidae): effect of different host plants. Biocontrol Science and Technology, 26(11), 1489-1503.
dc.relation.referencesHung, R., Lee, S., & Bennett, J. W. (2013). Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal ecology, 6(1), 19-26.
dc.relation.referencesHung, R., Lee, S., & Bennett, J. W. (2015). Fungal volatile organic compounds and their role in ecosystems. Applied microbiology and biotechnology, 99(8), 3395-3405.
dc.relation.referencesInbar, M., & Gerling, D. (2008). Plant-mediated interactions between whiteflies, herbivores, and natural enemies. Annu. Rev. Entomol., 53, 431-448.
dc.relation.referencesJaber, L. R., & Ownley, B. H. (2018). Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biological control, 116, 36-45.
dc.relation.referencesJaramillo, J., Rodriguez, V., Gil, L., Garcia, M., Climaco, J., Quevedo, D., Sanchez, G., Aguilar, P., Pinzon, L., Zapata, M., Restrepo, J., & Guzman, M. (2013). Tecnología para el cultivo de tomate bajo condiciones protegidas. In Tecnología para el cultivo de tomate bajo condiciones protegidas. https://doi.org/10.21930/978-958-740-120-2
dc.relation.referencesKant, P.; Reinprecht, Y.; Martin, C.J.; Islam, R.; Pauls, K.P.( 2011). Integration of biotechnologies: disease resistance pathology Fusarium. In: Moo-Young M. (ed.). Comprehensive Biotechnology, second edition, Elsevier, Amsterdam. p.729-743.
dc.relation.referencesKessler, A., & Baldwin, I. T. (2002). Plant responses to insect herbivory: the emerging molecular analysis. Annual review of plant biology, 53(1), 299-328.
dc.relation.referencesLee, S., Yap, M., Behringer, G., Hung, R., & Bennett, J. W. (2016). Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal biology and biotechnology, 3(1), 7.
dc.relation.referencesLee, S., Behringer, G., Hung, R., & Bennett, J. (2019). Effects of fungal volatile organic compounds on Arabidopsis thaliana growth and gene expression. Fungal ecology, 37, 1-9.
dc.relation.referencesLeonetti, P., Zonno, M. C., Molinari, S., & Altomare, C. (2017). Induction of SA-signaling pathway and ethylene biosynthesis in Trichoderma harzianum-treated tomato plants after infection of the root-knot nematode Meloidogyne incognita. Plant cell reports, 36(4), 621-631.
dc.relation.referencesMacías-Rodríguez, L., Guzmán-Gómez, A., García-Juárez, P., & Contreras-Cornejo, H. A. (2018). Trichoderma atroviride promotes tomato development and alters the root exudation of carbohydrates, which stimulates fungal growth and the biocontrol of the phytopathogen Phytophthora cinnamomi in a tripartite interaction system. FEMS Microbiology Ecology, 94(9). https://doi.org/10.1093/femsec/fiy137
dc.relation.referencesLemfack, M. C., Nickel, J., Dunkel, M., Preissner, R., & Piechulla, B. (2013). mVOC: a database of microbial volatiles. Nucleic acids research, 42(D1), D744-D748.
dc.relation.referencesMahecha, L. M. H., & del Rosario Manzano, M. (2016). Efecto del viento en la dispersión a corta distancia del parasitoide Amitus fuscipennis MacGown y Nebeker (Hymenoptera: Platygasteridae) en cultivos de fríjol y habichuela. Acta Agronómica, 65(1), 80-86.
dc.relation.referencesMathys, J., De Cremer, K., Timmermans, P., Van Kerkhove, S., Lievens, B., Vanhaecke, M., & De Coninck, B. (2012). Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Frontiers in plant science, 3, 108.
dc.relation.referencesMayer, R. T., Inbar, M., McKenzie, C. L., Shatters, R., Borowicz, V., Albrecht, U. & Doostdar, H. (2002). Multitrophic interactions of the silverleaf whitefly, host plants, competing herbivores, and phytopathogens. Archives of Insect Biochemistry and Physiology: Published in Collaboration with the Entomological Society of America, 51(4), 151-169.
dc.relation.referencesMendoza-Mendoza, A., Zaid, R., Lawry, R., Hermosa, R., Monte, E., Horwitz, B. A., & Mukherjee, P. K. (2018). Molecular dialogues between Trichoderma and roots: role of the fungal secretome. Fungal Biology Reviews, 32(2), 62-85.
dc.relation.referencesMC Govern, R. J., & MC Sorley, R. (2012). Management of bacterial and fungal plant pathogens by soil solarization. Soil Solarization: Theory and Practice. APS Press, Minneapolis, MN, 53-62.
dc.relation.referencesMC Govern, R.J. 2015. Management of tomato diseases caused by Fusarium oxysporum. Crop Protection. 73:78-92.
dc.relation.referencesMcKee, G. J., & Zalom, F. G. (2009). A model of greenhouse whitefly Trialeurodes vaporariorum (Westwood) population development and management on Camarosa variety strawberry plants. Journal of Asia-Pacific Entomology, 12(3), 117-122.
dc.relation.referencesMcKenzie, C. L., Shatters Jr, R. G., Doostdar, H., Lee, S. D., Inbar, M., & Mayer, R. T. (2002). Effect of geminivirus infection and Bemisia infestation on accumulation of pathogenesis‐related proteins in tomato. Archives of Insect Biochemistry and Physiology: Published in Collaboration with the Entomological Society of America, 49(4), 203-214.
dc.relation.referencesMoisan, K., Cordovez, V., van de Zande, E. M., Raaijmakers, J. M., Dicke, M., & Lucas-Barbosa, D. (2019). Volatiles of pathogenic and non-pathogenic soil-borne fungi affect plant development and resistance to insects. Oecologia, 190(3), 589–604. https://doi.org/10.1007/s00442-019-04433-w
dc.relation.referencesMonteiro, V. N., do Nascimento Silva, R., Steindorff, A. S., Costa, F. T., Noronha, E. F., Ricart, C. A. O., ... & Ulhoa, C. J. (2010). New insights in Trichoderma harzianum antagonism of fungal plant pathogens by secreted protein analysis. Current microbiology, 61(4), 298-305.
dc.relation.referencesMoreno, I., Belando, A., Grávalos, C., & Bielza, P. (2018). Baseline susceptibility of Mediterranean strains of Trialeurodes vaporariorum (Westwood) to cyantraniliprole. Pest management science, 74(7), 1552-1557.
dc.relation.referencesMoreno-Velandia, C. A., Izquierdo-García, L. F., Ongena, M., Kloepper, J. W., & Cotes, A. M. (2019). Soil sterilization, pathogen and antagonist concentration affect biological control of Fusarium wilt of cape gooseberry by Bacillus velezensis Bs006. Plant and Soil, 435(1-2), 39-55.
dc.relation.referencesMorath, S. U., Hung, R., & Bennett, J. W. (2012). Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biology Reviews, 26(2-3), 73-83.
dc.relation.referencesNaher, L., Yusuf, U. K., Ismail, A., & Hossain, K. (2014). Trichoderma spp.: a biocontrol agent for sustainable management of plant diseases. Pak. J. Bot, 46(4), 1489-1493.
dc.relation.referencesNasruddin, A., & Mound, L. A. (2016). First record of Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae) severely damaging field grown potato crops in South Sulawesi, Indonesia. Journal of plant protection research, 56(2), 199-202.
dc.relation.referencesNawrocka, J., & Małolepsza, U. (2013). Diversity in plant systemic resistance induced by Trichoderma. Biological control, 67(2), 149-156.
dc.relation.referencesNaznin, H. A., Kiyohara, D., Kimura, M., Miyazawa, M., Shimizu, M., & Hyakumachi, M. (2014). Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS One, 9(1), e86882.
dc.relation.referencesPagans, E., Font, X., & Sánchez, A. (2006). Emission of volatile organic compounds from composting of different solid wastes: abatement by biofiltration. Journal of hazardous materials, 131(1-3), 179-186.
dc.relation.referencesPeralta, I. E., Spooner, D. M., & Knapp, S. (2008). Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Systematic Botany Monographs, 84.
dc.relation.referencesPineda, A., Zheng, S.-J., Van Loon, J. J. A., Pieterse, C. M. J., & Dicke, M. (2010). Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends in Plant Science, 15, 507–514. https://doi.org/10.1016/j.tplants.2010.05.007
dc.relation.referencesPym, A., Singh, K. S., Nordgren, Å., Davies, T. E., Zimmer, C. T., Elias, J., ... & Bass, C. (2019). Host plant adaptation in the polyphagous whitefly, Trialeurodes vaporariorum, is associated with transcriptional plasticity and altered sensitivity to insecticides. BMC genomics, 20(1), 1-19.
dc.relation.referencesRamyabharathi, S. A., Meena, B., & Raguchander, T. (2012). Induction of chitinase and β-1, 3-glucanase PR proteins in tomato through liquid formulated Bacillus subtilis EPCO 16 against Fusarium wilt. J Today’s Biol Sci Res Rev, 1, 50-60.
dc.relation.referencesRincon, D. F., Vasquez, D. F., Rivera-Trujillo, H. F., Beltrán, C., & Borrero-Echeverry, F. (2019). Economic injury levels for the potato yellow vein disease and its vector, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), affecting potato crops in the Andes. Crop Protection, 119(January), 52–58. https://doi.org/10.1016/j.cropro.2019.01.002
dc.relation.referencesRoberto N. Silva, Valdirene Neves Monteiro, Andrei Stecca Steindorf, Eriston Viera Gomes, Eliane Ferreira Noronha, Cirano J. Ulhoa, (2019) Trichoderma/pathogen/plant interaction in pre-harvest food security, Fungal Biology.
dc.relation.referencesRyu, C. Farag, M.A., Hu, C., Reddy, M.S., Wei, H., Pare, P.W., & Kloepper, J.W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 100(8), 4927-4932.
dc.relation.referencesSchmidt, R., Cordovez, V., De Boer, W., Raaijmakers, J., & Garbeva, P. (2015). Volatile affairs in microbial interactions. The ISME journal, 9(11), 2329-2335.
dc.relation.referencesShoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43
dc.relation.referencesSimsek, D., Pinar, H., & Mutlu, N. (2018). Development of Fusarium oxysporum f. sp. lycopersici (fol) and Fusarium oxysporum f. sp. radicis lycopersici (forl) resistant tomato lines with the aid of marker assisted selection. Current Trends in Natural Sciences Vol, 7(13), 281-285.
dc.relation.referencesSingh, B. N., Singh, A., Singh, B. R., & Singh, H. B. (2014). Trichoderma harzianum elicits induced resistance in sunflower challenged by Rhizoctonia solani. Journal of applied microbiology, 116(3), 654-666.
dc.relation.referencesSinuco, D. C., Pérez, A. C., & Moreno-Sarmiento, N. (2017). Evaluación de la actividad fungicida e identificación de compuestos orgánicos volátiles liberados por Trichoderma viride. Revista Colombiana de Biotecnología, 19(1), 63-70.
dc.relation.referencesSinuco León, D., Coconubo Guio, L.C., & Castellanos, L. (2020). Fungicidal activity of volatile organic compounds from Paenibacillus bacteria against Colletotrichum gloeosporioides. Revista Colombiana de Química, 49(1), 20-25.
dc.relation.referencesStashenko, E. E., & Martínez, J. R. (2010). Algunos aspectos prácticos para la identificación de analitos por cromatografía de gases acoplada a espectrometría de masas. Scientia Chromatographica, 2, 29–47.
dc.relation.referencesSnyder, W. C., & Hansen, H. N. (1940). The Species Concept in Fusarium. American Journal of Botany, 27(2), 64–67. https://doi.org/10.1002/j.1537-2197.1940.tb14217.x
dc.relation.referencesStoppacher, N., Kluger, B., Zeilinger, S., Krska, R., & Schuhmacher, R. (2010). Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. Journal of Microbiological Methods, 81(2), 187-193.
dc.relation.referencesToro, V. (2017). Evaluación de método de muestreo y dinámica poblacional de mosca blanca.(Tesis de grado.Ingeniero Agrónomo). Escuela Superior Politecnica de Chimborazo. Riobamba-Ecuador, Chimborazo. p. 87.
dc.relation.referencesVásquez, R. L., & Castaño, Z. J. (2017). manejo integrado de la marchitez vascular del tomate [Fusarium oxysporum f. sp. lycopersici (SACC.) WC Snyder & HN Hansen]: UNA REVISIÓN. Revista UDCA Actualidad & Divulgación Científica, 20(2), 363-374.
dc.relation.referencesVerma, M., Brar, S. K., Tyagi, R. D., Surampalli, R. Y., & Valero, J. R. (2007). Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochemical Engineering Journal, 37(1), 1-20.
dc.relation.referencesVinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry, 40(1), 1-10
dc.relation.referencesVinale, F., Ghisalberti, E. L., Sivasithamparam, K., Marra, R., Ritieni, A., Ferracane, R., & Lorito, M. (2009). Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Letters in applied microbiology, 48(6), 705-711.
dc.relation.referencesVinodkumar, S., Indumathi, T., & Nakkeeran, S. (2017). Trichoderma asperellum (NVTA2) as a potential antagonist for the management of stem rot in carnation under protected cultivation. Biological Control, 113, 58-64.
dc.relation.referencesWink, M. (2018). Plant secondary metabolites modulate insect behavior-steps toward addiction?. Frontiers in physiology, 9, 364.
dc.relation.referencesYang, Z., Yu, Z., Lei L., Xia., Z., Shao, L., Zhnag, K., & Li, G. (2012). Nematicidal effect of volatiles produced by Trichoderma sp. Journal of Asia-Pacific Entomology, 15 (4), 647–650.
dc.relation.referencesZaki, O., Weekers, F., Thonart, P., Tesch, E., Kuenemann, P., & Jacques, P. (2020). Limiting factors of mycopesticide development. Biological Control, 104220.
dc.relation.referencesZavala, J. A. (2010). Respuestas inmunológicas de las plantas frente al ataque de insectos.
dc.relation.referencesZipfel, C. (2013). Combined roles of ethylene and endogenous peptides in regulating plant immunity and growth. Proceedings of the National Academy of Sciences, 110(15), 5748-5749.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalbioprospección
dc.subject.proposalRadial growth inhibition
dc.subject.proposalmarchitez vascular
dc.subject.proposalbioprospecting
dc.subject.proposalvascular wilt
dc.subject.proposalíndice de preferencia de oviposición
dc.subject.proposalcontrol biológico
dc.subject.proposaloviposition preference index
dc.subject.proposalbiological control
dc.subject.proposalinhibición de crecimiento radial
dc.subject.proposalradial growth inhibition
dc.type.coarhttp://purl.org/coar/resource_type/c_8042
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/WP
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit