Show simple item record

dc.contributor.advisorRestrepo Parra, Elisabeth
dc.contributor.advisorEscobar Rincón, Daniel
dc.creatorMendoza Rincón, Sebastian Camilo
dc.date.accessioned2020-08-13T16:44:04Z
dc.date.available2020-08-13T16:44:04Z
dc.date.created2020
dc.identifier.citationMendoza-Rincon, S-M. (2020). EFECTO DE LA ROTACIÓN DEL SUSTRATO SOBRE LOS EXPONENTES DE ESCALAMIENTO DE LA RUGOSIDAD EN PELÍCULAS CRECIDAS MEDIANTE LA TÉCNICA GLAD (Tesis de Maestria). Universidad Nacional de Colombia sede Manizales, Manizales, Caldas, Colombia
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78027
dc.descriptionEl presente trabajo es un estudio de la influencia de la rotación del sustrato, sobre los exponentes de escalamiento de la rugosidad de películas delgadas de circonio (Zr). Películas de Zr fueron depositadas mediante la técnica magnetron sputtering, acoplando la técnica GLAD (del ingles, Glancing Angle Deposition); esta última inclina y rota el sustrato durante el proceso de deposición. Se varió la velocidad de rotación del sustrato y el tiempo de deposición. Por otra parte, para implementar la técnica GLAD, se diseñó y se construyó un sistema de movimiento para manipular el sustrato durante el crecimiento. Posteriormente, se caracterizó la morfología superficial mediante microscopia de fuerza atómica (AFM), con el fin de extraer los exponentes de escalamiento de rugosidad αloc, crecimiento β y dinámico 1/z. Se evidenció que los exponentes de αloc y 1/z no son influenciados por la rotación; sin embargo, el exponente de crecimiento β aumentó con la rotación, el cual fue estudiado a través de simulaciones de Monte Carlo cinético, haciendo uso de códigos establecidos. En consecuencia, se estableció que el aumento de β es debido a que la rotación puede disminuir la energía de difusión de los átomos entrantes, generando superficies más rugosas. Ademas, las películas exhibieron exponentes de escalamiento adicionales, debido a la formación de una superficie montañosa, la cual tiene una longitud característica y una longitud de correlación, que disminuyeron con la rotación.
dc.description.abstractIn the present work, it was studied the substrate rotation influence over the roughness scaling exponents of zirconium (Zr) thin films. The thin films were grown by magnetron sputtering coupled with GLAD (Glancing Angle Deposition) technique. On the experiments, substrate rotation and deposition time were varied. To implement GLAD technique, it was designed and built a motion system to manipulate the substrate. Later, superficial morphology was carried out by atomic force microscopy (AFM) to obtain the scaling exponents of roughness αloc, growth β and dynamic 1/z. It was found that the coatings exhibit additional scaling exponents due to the formation of a mounded surface, which has a characteristic length that decreases as rotation speed increases. Moreover, it was proved the dynamic1/z and roughness αloc exponents do not change with rotation speed. However, β exponent increases with rotation speed, this change was studied by Monte Carlo Kinetic simulation with existing codes. It was established that the increment of β is due to rotation speed could reduce diffusion energy of incident atoms generating rougher surfaces.
dc.format.extent121
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.subjectTécnica GLAD
dc.subjectMagnetron sputtering
dc.subjectExponentes de escalamiento
dc.subjectRugosidad
dc.subjectAFM
dc.subjectMateriales nanoestructurados
dc.subjectNanoestructuras
dc.subject.ddc530 - Física
dc.titleEfecto de la rotación del sustrato sobre los exponentes de escalamiento de la rugosidad en películas crecidas mediante la técnica GLAD
dc.title.alternativeSubstrate rotation effect over roughness scaling exponents in thin films grown by GLAD technique
dc.typeOther
dc.rights.spaAcceso abierto
dc.contributor.institutionUniversidad Nacional de Colombia - Sede Manizales
dc.subject.keywordGLAD technique
dc.subject.keywordmagnetron sputtering
dc.subject.keywordscaling exponents
dc.subject.keywordroughness
dc.subject.keywordAFM
dc.subject.keywordNanostructured materials
dc.subject.keywordNanostructures
dc.type.spaOtro
dc.type.hasversionAccepted Version
dc.coverage.programDepartamento de Física y Química
dc.contributor.gruplacLaboratorio de Física del Plasma
dc.description.additionalTesis presentada como requisito parcial para optar al título de: Magíster en Ciencias - Física. -- Línea de Investigación: Recubrimientos por técnicas PVD.
dc.coverage.modalityMaestria
dc.rights.accessRightsOpen Access
dc.rights.ccAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.ccAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.identifier.bibliographicCitationW. Steckelmacher, “Handbook of plasma processing technology: Fundamentals, etching, deposition and surface interactions,” Vacuum, vol. 42, no. 12, p. 779, 2012.
dc.identifier.bibliographicCitationP. K. Chu and X. Lu, Low Temperature Plasma Technology, P. K. Chu and X. Lu, Eds. CRC Press, 2013.
dc.identifier.bibliographicCitationJ. Harry, Introduction to Plasma Technology: Science, Engineering and Applications, Wiley-VCH, Ed. Wiley-VCH Verlag GmbH & Co. KGaA, 2010.
dc.identifier.bibliographicCitationC. S. Wong and R. Mongkolnavin, Elements of Plasma Technology, ser. Springer- Briefs in Applied Sciences and Technology. Singapore: Springer Singapore, 2016.
dc.identifier.bibliographicCitationP. M. Martin, Handbook of Deposition Technologies for Films and Coatings - Science, Applications and Technology. Elsevier, 2009.
dc.identifier.bibliographicCitationS. Swann, “Magnetron sputtering,” Physics in Technology, vol. 19, no. 6, pp. 67–75, 1988.
dc.identifier.bibliographicCitationK. Wasa, M. Kitabatake, and H. Adachi, Thin Film Materials Technology. William Andrew, 2004.
dc.identifier.bibliographicCitationM. W. Thompson, “Atomic collision cascades in solids,” Vacuum, vol. 66, no. 2, pp. 99–114, 2002.
dc.identifier.bibliographicCitationR. Alvarez, J. M. Garcia-Martin, A. Garcia-Valenzuela, M. Macias-Montero, F. J. Ferrer, J. Santiso, V. Rico, J. Cotrino, A. R. Gonzalez-Elipe, and A. Palmero, “Nanostructured Ti thin films by magnetron sputtering at oblique angles,” Journal of Physics D: Applied Physics, vol. 49, no. 4, p. 45303, 2015.
dc.identifier.bibliographicCitationK. Van Aeken, S. Mahieu, and D. Depla, “The metal flux from a rotating cylindrical magnetron: A Monte Carlo simulation,” Journal of Physics D: Applied Physics, vol. 41, no. 20, 2008.
dc.identifier.bibliographicCitationM. M. Hawkeye, M. T. Taschuk, and M. J. Brett, Glancing Angle Deposition of Thin Films Engineering the Nanoscale, 1st ed. JohnWiley & Sons, Ltd, 2014.
dc.identifier.bibliographicCitationK. Oura, M. Katayama, A. V. Zotov, V. G. Lifshits, and A. A. Saranin, Surface Science, ser. Advanced Texts in Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.
dc.identifier.bibliographicCitationM. A. M. José, S. O., and J. I., Láminas delgadas y recubrimientos: preparación, propiedades y aplicaciones. Consejo Superior de Investigaciones Científicas, 2003.
dc.identifier.bibliographicCitationS. Mukherjee and D. Gall, “Structure zone model for extreme shadowing conditions,” Thin Solid Films, vol. 527, pp. 158–163, 2013.
dc.identifier.bibliographicCitationM. Pelliccione, T. Karabacak, and T. M. Lu, “Breakdown of dynamic scaling in surface growth under shadowing,” Physical Review Letters, vol. 96, no. 14, 2006.
dc.identifier.bibliographicCitationM. Pelliccione and T. M. Lu, Evolution of Thin Film Morphology. Springer, 2008.
dc.identifier.bibliographicCitationB. Movchan and A. Demchishin, “Structure and properties of thick condensates of nickel, titanium, tungsten, aluminum oxides, and zirconium dioxide in vacuum.” Fiz. Metal. Metalloved. 28: 653-60, 1969.
dc.identifier.bibliographicCitationJ. A. Thornton, “Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings.” J Vac Sci Technol, vol. 11, no. 4, pp. 666–670, 1974.
dc.identifier.bibliographicCitationC. Eisenmenger-Sittner, “Growth Control and Thickness Measurement of Thin Films,” in digital Encyclopedia of Applied Physics. Weinheim, Germany: Wiley- VCH Verlag GmbH & Co. KGaA, 2019, pp. 1–44.
dc.identifier.bibliographicCitationA. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics. SPIE Publications, 2005.
dc.identifier.bibliographicCitationJ. M. Siewert, J. M. Laforge, M. T. Taschuk, and M. J. Brett, “Disassembling glancing angle deposited films for high throughput, single post growth scaling measurements.” Microscopy and microanalysis, vol. 18, no. 5, pp. 1135–42, 2012.
dc.identifier.bibliographicCitationA. Soni and K. R. Mavani, “Controlling porosity and ultraviolet photoresponse of crystallographically oriented ZnO nanostructures grown by pulsed laser deposition,” Scripta Materialia, vol. 162, pp. 24–27, 2019.
dc.identifier.bibliographicCitationM. Martín, P. Salazar, R. Álvarez, A. Palmero, C. López-Santos, J. L. González- Mora, and A. R. González-Elipe, “Cholesterol biosensing with a polydopaminemodified nanostructured platinum electrode prepared by oblique angle physical vacuum deposition,” Sensors and Actuators, B: Chemical, vol. 240, pp. 37–45, 2017.
dc.identifier.bibliographicCitationS. Sarkar and S. K. Pradhan, “Silica-based antireflection coating by glancing angle deposition,” Surface Engineering, vol. 35, no. 11, pp. 1–4, 2019.
dc.identifier.bibliographicCitationP. A. Cormier, J. Dervaux, N. Szuwarski, Y. Pellegrin, F. Odobel, E. Gautron, M. Boujtita, and R. Snyders, “Single Crystalline-like and Nanostructured TiO2 Photoanodes for Dye Sensitized Solar Cells Synthesized by Reactive Magnetron Sputtering at Glancing Angle,” Journal of Physical Chemistry C, vol. 122, no. 36, pp. 20 661–20 668, 2018.
dc.identifier.bibliographicCitationM. M. Hawkeye and M. J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro and nanostructured thin films,” Journal of Vacuum Science & Technology a, vol. 25, no. 5, pp. 1317–1335, 2007.
dc.identifier.bibliographicCitationJ. Takadoum, Ed., Nanomaterials and Surface Engineering. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013.
dc.identifier.bibliographicCitationP. Eaton and P. West, Atomic Force Microscopy. Oxford University Press, 2010.
dc.identifier.bibliographicCitationB. Voigtländer, Atomic Force Microscopy, ser. NanoScience and Technology. Cham: Springer International Publishing, 2019.
dc.identifier.bibliographicCitationR. Reifenberger, Fundamentals of Atomic Force Microscopy. World Scientific Publishing Co. Pte. Ltda, 2016.
dc.identifier.bibliographicCitationP. Klapetek, Quantitative Data Processing in Scanning Probe Microscopy, 1st ed. Elsevier, 2013, vol. 1, no. 4.
dc.identifier.bibliographicCitationD. Vick, T. Smy, and M. J. Brett, “Growth behavior of evaporated porous thin films,” Journal of Materials Research, vol. 17, no. 11, pp. 2904–2911, 2011.
dc.identifier.bibliographicCitationY. Zhao, G. C. Wang, and T. M. Lu, Characterization of Amorphous and Crystalline Rough Surface Principles and Applications. Academic Press, 2001.
dc.identifier.bibliographicCitationA. L. Barabasi and H. E. Stanley, Fractal Concepts in Surface Growth. Cambridge University Press, 1995.
dc.identifier.bibliographicCitationB. B. Mandelbrot, The fractal geometry of nature. W. H. Freeman and Company, 1982.
dc.identifier.bibliographicCitationB. C. Mohanty, H. R. Choi, and Y. S. Cho, “Scaling of surface roughness in sputterdeposited ZnO:Al thin films,” Journal of Applied Physics, vol. 106, no. 5, 2009.
dc.identifier.bibliographicCitationT. Merkh, R. Spivey, and T. M. Lu, “Time Invariant Surface Roughness Evolution during Atmospheric Pressure Thin Film Depositions,” Scientific Reports, vol. 6, pp. 1–6, 2016.
dc.identifier.bibliographicCitationM. Kardar, G. Parisi, and Y. C. Zhang, “Dynamic scaling of growing interfaces,” Physical Review Letters, vol. 56, no. 9, pp. 889–892, 1986.
dc.identifier.bibliographicCitationT. D. Jacobs, T. Junge, and L. Pastewka, “Quantitative characterization of surface topography using spectral analysis,” Surface Topography: Metrology and Properties, vol. 5, no. 1, 2017.
dc.identifier.bibliographicCitationR. A. L. Almeida, “Kardar-Parisi-Zhang Universality, Anomalous Scaling and Crossover Effects in the Growth of Cdte Thin Films,” Ph.D. dissertation, Universidade Federal de Vicosa, 2015.
dc.identifier.bibliographicCitationG. Pradhan, P. P. Dey, and A. K. Sharma, “Anomalous kinetic roughening in growth of MoS 2 films under pulsed laser deposition,” RSC Advances, vol. 9, no. 23, pp. 12 895–12 905, 2019.
dc.identifier.bibliographicCitationJ. F. Ziegler, J. P. Biersack, and M. D. Ziegler, SRIM The Stopping and Range of Ions in Matter. SRIM, 2008.
dc.identifier.bibliographicCitationS. Lucas and P. Moskovkin, “Simulation at high temperature of atomic deposition, islands coalescence, Ostwald and inverse Ostwald ripening with a general simple kinetic Monte Carlo code,” Thin Solid Films, vol. 518, no. 18, pp. 5355–5361, 2010.
dc.identifier.bibliographicCitationD. O. Smith, M. S. Cohen, and G. P. Weiss, “Oblique-incidence anisotropy in evaporated permalloy films,” Journal of Applied Physics, vol. 31, no. 10, pp. 1755–1762, 1960.
dc.identifier.bibliographicCitationJ. M. Nieuwenhuizen and H. B. Haanstra, “Microfractography of thin films,” Philips Tech Rev, vol. 1965, no. 3, pp. 1–2, 1966.
dc.identifier.bibliographicCitationN. G. Nakhodkin and A. I. Shaldervan, “Effect of vapour incidence angles on profile and properties of condensed films,” Thin Solid Films, vol. 10, no. 1, pp. 109–122, 1972.
dc.identifier.bibliographicCitationY. Taga and T. Motohiro, “Growth of birefringent films by oblique deposition,” Journal of Crystal Growth, vol. 99, no. 1-4, pp. 638–642, 1990.
dc.identifier.bibliographicCitationK. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin films with highly porous microstructures,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 13, no. 3, pp. 1032–1035, 1995.
dc.identifier.bibliographicCitationJ. M. García-Martín, R. Alvarez, P. Romero-Gómez, A. Cebollada, and A. Palmero, “Tilt angle control of nanocolumns grown by glancing angle sputtering at variable argon pressures,” Applied Physics Letters, vol. 97, no. 17, pp. 97–100, 2010.
dc.identifier.bibliographicCitationS. Mukherjee and D. Gall, “Anomalous scaling during glancing angle deposition,” Applied Physics Letters, vol. 95, no. 17, pp. 1–3, 2009.
dc.identifier.bibliographicCitationS. Mukherjee, C. M. Zhou, and D. Gall, “Temperature-induced chaos during nanorod growth by physical vapor deposition,” Journal of Applied Physics, vol. 105, no. 9, 2009.
dc.identifier.bibliographicCitationA. Dolatshahi-Pirouz, M. B. Hovgaard, K. Rechendorff, J. Chevallier, M. Foss, and F. Besenbacher, “Scaling behavior of the surface roughness of platinum films grown by oblique angle deposition,” Physical Review B - Condensed Matter and Materials Physics, vol. 77, no. 11, pp. 1–5, 2008.
dc.identifier.bibliographicCitationA. Siad, A. Besnard, C. Nouveau, and P. Jacquet, “Critical angles in DC magnetron glad thin films,” Vacuum, vol. 131, pp. 305–311, 2016.
dc.identifier.bibliographicCitationB. Dick, M. J. Brett, and T. Smy, “Investigation of substrate rotation at glancing incidence on thin-film morphology,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 21, no. 6, p. 2569, 2003.
dc.identifier.bibliographicCitationS. Liedtke, C. Grüner, A. Lotnyk, and B. Rauschenbach, “Glancing angle deposition of sculptured thin metal films at room temperature,” Nanotechnology, vol. 28, no. 38, 2017.
dc.identifier.bibliographicCitationC. Patzig, A. Miessler, T. Karabacak, and B. Rauschenbach, “Arbitrarily shaped Si nanostructures by glancing angle ion beam sputter deposition,” Physica Status Solidi (B) Basic Research, vol. 247, no. 6, pp. 1310–1321, 2010.
dc.identifier.bibliographicCitationF. Liu, C. Yu, L. Shen, J. Barnard, and G. J. Mankey, “The magnetic properties of cobalt films produced by glancing angle deposition,” IEEE Transactions on Magnetics, vol. 36, no. 5 I, pp. 2939–2941, 2000.
dc.identifier.bibliographicCitationC. Buzea, G. Beydaghyan, C. Elliott, and K. Robbie, “Control of power law scaling in the growth of silicon nanocolumn pseudo regular arrays deposited by glancing angle deposition,” Nanotechnology, vol. 16, no. 10, pp. 1986–1992, 2005.
dc.identifier.bibliographicCitationT. Karabacak, P. Singh, Y. P. Zhao, G. C. Wang, and T. M. Lu, “Scaling during shadowing growth of isolated nanocolumns,” Physical Review B - Condensed Matter and Materials Physics, vol. 68, no. 12, pp. 1–5, 2003.
dc.identifier.bibliographicCitationK. Kaminska, A. Amassian, L. Martinu, and K. Robbie, “Growth of vacuum evaporated ultraporous silicon studied with spectroscopic ellipsometry and scanning electron microscopy,” Journal of Applied Physics, vol. 97, no. 1, 2005.
dc.identifier.bibliographicCitationR. B. Tokas, S. Jena, J. Misal, K. Rao, S. Polaki, C. Pratap, D. Udupa, S. Thakur, S. Kumar, and N. Sahoo, “Study of ZrO2 thin films deposited at glancing angle by radio frequency magnetron sputtering under varying substrate rotation,” Thin Solid Films, vol. 645, no. 2017, pp. 290–299, 2018.
dc.identifier.bibliographicCitationM. Backholm, M. Foss, and K. Nordlund, “Roughness of glancing angle deposited titanium thin films: An experimental and computational study,” Nanotechnology, vol. 23, no. 38, 2012.
dc.identifier.bibliographicCitationR. Gavrila, A. Dinescu, and D. Mardare, “A Power Spectral Density Study of Thin Films Morphology Based on AFM Profiling,” Romanian Journal of Information Science and Technology, vol. 10, no. 3, pp. 291–300, 2007.
dc.identifier.bibliographicCitationD. Nečas and P. Klapetek, “Gwyddion: An open-source software for SPM data analysis,” Central European Journal of Physics, vol. 10, no. 1, pp. 181–188, 2012.
dc.identifier.bibliographicCitationY. Gan, “Atomic and subnanometer resolution in ambient conditions by atomic force microscopy,” Surface Science Reports, vol. 64, no. 3, pp. 99–121, 2009.
dc.identifier.bibliographicCitationJ. E. Miranda, M. J. Goeckner, J. Goree, and T. E. Sheridan, “Monte Carlo simulation of ionization in a magnetron plasma,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 8, no. 3, p. 1627, 1990.
dc.identifier.bibliographicCitationD. Kumičáková, V. Tlach, and M. Císar, “Testing the Performance Characteristics of Manipulating Industrial Robots,” Transactions of the VŠB - Technical University of Ostrava, Mechanical Series, vol. 62, no. 1, pp. 39–50, 2016.
dc.identifier.bibliographicCitationR. Kesarwani, P. P. Dey, and A. Khare, “Correlation between surface scaling behavior and surface plasmon resonance properties of semitransparent nanostructured Cu thin films deposited via PLD,” RSC Advances, vol. 9, no. 14, pp. 7967–7974, 2019.
dc.identifier.bibliographicCitationN. Sharma, K. Prabakar, S. Dash, and A. K. Tyagi, “Growth kinetics of ion beam sputtered Al thin films by dynamic scaling theory,” Thin Solid Films, vol. 573, pp. 84–89, 2014.
dc.identifier.bibliographicCitationM. Backholm, M. Foss, and K. Nordlund, “Roughness scaling in titanium thin films: A three-dimensional molecular dynamics study of rotational and static glancing angle deposition,” Applied Surface Science, vol. 268, pp. 270–273, 2012.
dc.identifier.bibliographicCitationD. K. Goswami and B. N. Dev, “Observation of smoothing and self-affine fractal roughness on MeV ion-irradiated Si surfaces,” Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, vol. 212, no. 1-4, pp. 253–257, 2003.
dc.identifier.bibliographicCitationT. J. Oliveira and F. D. Aarão Reis, “Roughness exponents and grain shapes,” Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 83, no. 4, pp. 1–7, 2011.
dc.identifier.bibliographicCitationT. J. Oliveira and F. D. Aarao Reis, “Effects of grains’ features in surface roughness scaling,” Journal of Applied Physics, vol. 101, no. 6, 2007.
dc.identifier.bibliographicCitationM. A. Auger, L. Vázquez, R. Cuerno, M. Castro, M. Jergel, and O. Sánchez, “Intrinsic anomalous surface roughening of TiN films deposited by reactive sputtering,” Physical Review B - Condensed Matter and Materials Physics, vol. 73, no. 4, pp. 1–7, 2006.
dc.identifier.bibliographicCitationT. Karabacak, “Thin-film growth dynamics with shadowing and re-emission effects,” Journal of Nanophotonics, vol. 5, no. 1, p. 052501, 2011.
dc.identifier.bibliographicCitationT. Karabacak, G.-C. Wang, and T.-M. Lu, “Quasi-periodic nanostructures grown by oblique angle deposition,” Journal of Applied Physics, vol. 94, no. 12, p. 7723, 2003.
dc.identifier.bibliographicCitationT. Karabacak, G. Wang, and T. Lu, “Physical self-assembly and the nucleation of three-dimensional nanostructures by oblique angle deposition,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 22, no. 4, pp. 1778– 1784, 2004.
dc.identifier.bibliographicCitationY. Zhang, E. Barrena, X. Zhang, A. Turak, F. Maye, and H. Dosch, “New insight into the role of the interfacial molecular structure on growth and scaling in organic heterostructures,” Journal of Physical Chemistry C, vol. 114, no. 32, pp. 13 752– 13 758, 2010.
dc.identifier.bibliographicCitationM. Pelliccione, T. Karabacak, C. Gaire, G. C. Wang, and T. M. Lu, “Mound formation in surface growth under shadowing,” Physical Review B - Condensed Matter and Materials Physics, vol. 74, no. 12, pp. 1–10, 2006.
dc.identifier.bibliographicCitationS. Thomas, S. H. Al-Harthi, R. V. Ramanujan, Z. Bangchuan, L. Yan, W. Lan, and M. R. Anantharaman, “Surface evolution of amorphous nanocolumns of Fe-Ni grown by oblique angle deposition,” Applied Physics Letters, vol. 94, no. 6, 2009.
dc.identifier.bibliographicCitationA. Gambardella, M. Berni, G. Graziani, A. Kovtun, A. Liscio, A. Russo, A. Visani, and M. Bianchi, “Nanostructured Ag thin films deposited by pulsed electron ablation,” Applied Surface Science, vol. 475, pp. 917–925, 2019.
dc.identifier.bibliographicCitationA. M. Rosa, E. P. Da Silva, E. Amorim, M. Chaves, A. C. Catto, P. N. Lisboa-Filho, and J. R. Bortoleto, “Growth evolution of ZnO thin films deposited by RF magnetron sputtering,” Journal of Physics: Conference Series, vol. 370, no. 1, 2012.
dc.identifier.bibliographicCitationF. Tang, T. Karabacak, L. Li, M. Pelliccione, G.-C. Wang, and T.-M. Lu, “Powerlaw scaling during shadowing growth of nanocolumns by oblique angle deposition,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 25, no. 1, p. 160, 2007.
dc.identifier.bibliographicCitationJ. R. Bortoleto, M. Chaves, A. M. Rosa, E. P. Da Silva, S. F. Durrant, L. D. Trino, and P. N. Lisboa-Filho, “Growth evolution of self-textured ZnO films deposited by magnetron sputtering at low temperatures,” Applied Surface Science, vol. 334, pp. 210–215, 2015.
dc.identifier.bibliographicCitationJ.-S. Liang, S.-H. Chen, E.-Y. Lin, D.-F. Luo, and S.-J. Jiang, “Morphology evolution of glancing angle deposition Ag films on nanosphere-array substrates: Kinetic Monte Carlo simulation,” Computational Materials Science, vol. 79, pp. 31–35, 2013.
dc.identifier.bibliographicCitationY. Shim, V. Borovikov, and J. G. Amar, “Effects of shadowing and steering in obliqueincidence metal (100) epitaxial growth,” Physical Review B - Condensed Matter and Materials Physics, vol. 77, no. 23, pp. 1–13, 2008.
dc.identifier.bibliographicCitationL. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M. C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO 2 thin films prepared by glancing angle deposition,” Nanotechnology, vol. 23, no. 20, 2012.
dc.identifier.bibliographicCitationG. Zhang, B. L. Weeks, and M. Holtz, “Application of dynamic scaling to the surface properties of organic thin films: Energetic materials,” Surface Science, vol. 605, no. 3-4, pp. 463–467, 2011.
dc.identifier.bibliographicCitationL. Peverini, E. Ziegler, T. Bigault, and I. Kozhevnikov, “Dynamic scaling of roughness at the early stage of tungsten film growth,” Physical Review B - Condensed Matter and Materials Physics, vol. 76, no. 4, pp. 1–5, 2007.
dc.identifier.bibliographicCitationT. Fu and Y. G. Shen, “Surface growth and anomalous scaling of sputter-deposited Al films,” Physica B: Condensed Matter, vol. 403, no. 13-16, pp. 2306–2311, 2008.
dc.identifier.bibliographicCitationT. Karabacak, Y.-P. Zhao, G.-C. Wang, and T.-M. Lu, “Growth-front roughening in amorphous silicon films by sputtering,” Physical Review B, vol. 64, no. February, pp. 1–6, 2001.
dc.identifier.bibliographicCitationM. Pelliccione and T. M. Lu, “Non-local effects in thin film growth,” pp. 1207–1225, 2007.
dc.identifier.bibliographicCitationF. Liu, C. Li, M. Zhu, J. Gu, and Y. Zhou, “Kinetic roughening and mound surface growth in microcrystalline silicon thin films,” Physica Status Solidi (C) Current Topics in Solid State Physics, vol. 7, no. 3-4, pp. 533–536, 2010.
dc.identifier.bibliographicCitationA. K. Manna, V. Solanki, D. Kanjilal, and S. Varma, “Dynamics of surface evolution of rutile TiO2(110) after ion irradiation,” Radiation Effects and Defects in Solids, vol. 0150, no. 110, 2018.
dc.identifier.bibliographicCitationJ. J. Ramasco, J. M. López, and M. A. Rodríguez, “Generic dynamic scaling in kinetic roughening,” Physical Review Letters, vol. 84, no. 10, pp. 2199–2202, 2000.
dc.identifier.bibliographicCitationJ. M. López, M. A. Rodríguez, and R. Cuerno, “Superroughening versus intrinsic anomalous scaling of surfaces,” Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, vol. 56, no. 4, pp. 3993–3998, 1997.
dc.identifier.bibliographicCitationP. Jain, J. S. Juneja, T. Karabacak, E. J. Rymaszewski, and T. M. Lu, “Surface Roughness Evolution in Amorphous Tantalum Oxide Films Deposited by Pulsed Reactive Sputtering,” MRS Proceedings, vol. 749, p. W5.11, 2002.
dc.identifier.bibliographicCitationY. Kudriavtsev, A. Villegas, A. Godines, and R. Asomoza, “Calculation of the surface binding energy for ion sputtered particles,” Applied Surface Science, vol. 239, no. 3-4, pp. 273–278, 2005.
dc.identifier.bibliographicCitationK. Obara, Z. Fu, M. Arima, T. Yamada, T. Fujikawa, N. Imamura, and N. Terada, “Collision processes between sputtered particles on high speed rotating substrate and atomic mass dependence of sticking coefficient,” Journal of Crystal Growth, vol. 237-239, no. 1-4 III, pp. 2041–2045, 2002.
dc.identifier.bibliographicCitationT. Karabacak, H. Guclu, and M. Yuksel, “Network behavior in thin film growth dynamics,” Physical Review B - Condensed Matter and Materials Physics, vol. 79, no. 19, pp. 1–11, 2009.
dc.identifier.bibliographicCitationB. Dick, M. J. Brett, and T. Smy, “Controlled growth of periodic pillars by glancing angle deposition,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 21, no. 1, p. 23, 2003.
dc.identifier.bibliographicCitationT. Karabacak, A. Mallikarjunan, J. P. Singh, D. Ye, G. C. Wang, and T. M. Lu, “BPhase Tungsten Nanorod Formation By Oblique-Angle Sputter Deposition,” Applied Physics Letters, vol. 83, no. 15, pp. 3096–3098, 2003.
dc.identifier.bibliographicCitationJ. P. Singh, F. Tang, T. Karabacak, T.-M. Lu, and G.-C. Wang, “Enhanced cold field emission from <100> oriented β–W nanoemitters,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 22, no. 3, p. 1048, 2004.
dc.identifier.bibliographicCitationJ. P. Singh, T. Karabacak, D.-X. Ye, D.-L. Liu, C. Picu, T.-M. Lu, and G.-C. Wang, “Physical properties of nanostructures grown by oblique angle deposition,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 23, no. 5, p. 2114, 2005.
dc.identifier.bibliographicCitationS. V. Kesapragada and D. Gall, “Two-component nanopillar arrays grown by Glancing Angle Deposition,” Thin Solid Films, vol. 494, no. 1-2, pp. 234–239, 2006.
dc.identifier.bibliographicCitationR. Figueroa, T. G. S. Cruz, and A. Gorenstein, “WO3 pillar-type and helical-type thin film structures to be used in microbatteries,” Journal of Power Sources, vol. 172, no. 1, pp. 422–427, 2007.
dc.identifier.bibliographicCitationC. Patzig, T. Karabacak, B. Fuhrmann, and B. Rauschenbach, “Glancing angle sputter deposited nanostructures on rotating substrates: Experiments and simulations,” Journal of Applied Physics, vol. 104, no. 9, pp. 1–9, 2008.
dc.identifier.bibliographicCitationS. V. Kesapragada, P. R. Sotherland, and D. Gall, “Ta nanotubes grown by glancing angle deposition,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 26, no. 2, p. 678, 2008.
dc.identifier.bibliographicCitationY. He and Y. Zhao, “Mg nanostructures tailored by glancing angle deposition,” Crystal Growth and Design, vol. 10, no. 1, pp. 440–448, 2010.
dc.identifier.bibliographicCitationD. Deniz, D. J. Frankel, and R. J. Lad, “Nanostructured tungsten and tungsten trioxide films prepared by glancing angle deposition,” Thin Solid Films, vol. 518, no. 15, pp. 4095–4099, 2010.
dc.identifier.bibliographicCitationK. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir, vol. 26, no. 6, pp. 4368– 4376, 2010.
dc.identifier.bibliographicCitationS. V. Kesapragada, T. J. Yim, J. S. Dordick, R. S. Kane, and D. Gall, “Selective Assembly of Multi-Component Nanosprings and Nanorods,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 3, pp. 2252–2256, 2010.
dc.identifier.bibliographicCitationG. K. Kannarpady, K. R. Khedir, H. Ishihara, J. Woo, O. D. Oshin, S. Trigwell, C. Ryerson, and A. S. Biris, “Controlled growth of self-organized hexagonal arrays of metallic nanorods using template-assisted glancing angle deposition for superhydrophobic applications,” ACS Applied Materials and Interfaces, vol. 3, no. 7, pp. 2332–2340, 2011.
dc.identifier.bibliographicCitationK. R. Khedir, G. K. Kannarpady, H. Ishihara, J. Woo, C. Ryerson, and A. S. Biris, “Design and fabrication of teflon-coated tungsten nanorods for tunable hydrophobicity,” Langmuir, vol. 27, no. 8, pp. 4661–4668, 2011.
dc.identifier.bibliographicCitationL. Chen, L. Andrea, Y. P. Timalsina, G. C. Wang, and T. M. Lu, “Engineering epitaxialnanospiral metal films using dynamic oblique angle deposition,” Crystal Growth and Design, vol. 13, no. 5, pp. 2075–2080, 2013.
dc.identifier.bibliographicCitationJ. Dervaux, P.-a. Cormier, S. Konstantinidis, R. Di Ciuccio, O. Coulembier, P. Dubois, and R. Snyders, “Deposition of porous titanium oxide thin films as anode material for dye sensitized solar cells,” Vacuum, vol. 114, no. April, pp. 213–220, 2015.
dc.identifier.bibliographicCitationS. Chatterjee, M. Kumar, S. Gohil, and T. Som, “An oblique angle radio frequency sputtering method to fabricate nanoporous hydrophobic TiO2 film,” Thin Solid Films, vol. 568, no. 1, pp. 81–86, 2014.
dc.identifier.bibliographicCitationJ. F. Gouyet and A. L. R. Bug, “Physics and Fractal Structures,” American Journal of Physics, vol. 65, no. 7, pp. 676–677, 1997.
dc.identifier.bibliographicCitationF. Family and T. Vicsek, Dynamics of Fractal Surfaces, F. Family and T. Vicsek, Eds. World Scientific Publishing Co. Pte. Ltda, 1991.
dc.identifier.bibliographicCitationD. A. Mirabella, M. P. Suárez, C. M. Aldao, and R. R. Deza, “Unstable growth and anomalous scaling,” Physica A: Statistical Mechanics and its Applications, vol. 514, pp. 79–89, 2019.
dc.identifier.bibliographicCitationJ. M. A. Siewert, “Dissassembling Glancing Angle Deposited Films for High Throughput Growth Scaling Analysis,” Ph.D. dissertation, University of Alberta, 2012.
dc.identifier.bibliographicCitationJ. Soriano, J. J. Ramasco, M. A. Rodríguez, A. Hernández-Machado, and J. Ortín, “Anomalous Roughening of Hele-Shaw Flows with Quenched Disorder,” Physical Review Letters, vol. 89, no. 2, pp. 8–11, 2002.
dc.identifier.bibliographicCitationJ. Dervaux, P. Cormier, P. Moskovskin, O. Douheret, S. Konstantinidis, R. Lazzaroni, S. Lucas, and R. Snyders, “Synthesis of nanostrutured Ti thin films by combining glancing angle deposition and magentorn sputttering : a joint experimental and modelling study,” in Preparation, vol. 636, pp. 644–657, 2017.
dc.identifier.bibliographicCitationR. Krishnan, T. M. Lu, and N. Koratkar, “Functionally strain-graded nanoscoops for high power Li-ion battery anodes,” Nano Letters, vol. 11, no. 2, pp. 377–384, 2011.
dc.contributor.generoMasculino
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Física


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/2.5/co/This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit