Show simple item record

dc.contributor.advisorPérez Pérez, León Darío
dc.creatorArias Patrón, Elsa Ruth
dc.date.accessioned2020-08-18T16:27:45Z
dc.date.available2020-08-18T16:27:45Z
dc.date.created2020-04-07
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78067
dc.descriptionLa Anfotericina B (AmB) es un antifúngico de amplio espectro de acción, su actual administración se encuentra limitada por su toxicidad relacionada con su autoagregación al ser una molécula anfifílica. El uso de micelas poliméricas constituye una alternativa promisoria como vehículo de AmB con toxicidad reducida. Sin embargo, los sistemas micelares reportados en la literatura muestran interacciones débiles con la AmB, originando bajos porcentajes de encapsulación y altas velocidades de liberación. En la presente investigación se caracterizaron sistemas de entrega micelar bioinspirados para AmB basados en polietilenglicol (PEG), policaprolactona (PCL) y 5-metil-5-propargiloxicarbonil-1,3-dioxan-2-ona (MCP), modificados con biomoléculas como colesterol, ácido oleico y 1,2-distearoil-sn-glicero-3-fosfoetanolamina (DSPE). Para tal fin, se estudió su capacidad de solubilizar, el estado de agregación, los perfiles de liberación y la concentración mínima inhibitoria (CMI) de los sistemas micelares. Del mismo modo se estudiaron sus propiedades térmicas y morfológicas. Se comprobó que existe una estrecha relación entre la composición química de los materiales poliméricos y su desempeño como vehículos nanoestructurados de AmB. La conjugación de dichos materiales con biomoléculas como DSPE incrementó la capacidad de encapsulación del fármaco hasta un 20%. Se determinó que segmentos de PCL cortos favorecen la encapsulación de AmB. Las formulaciones estudiadas permitieron una liberación controlada con porcentajes de liberación cercanos al 10% transcurridas 6 horas. Se logró disminuir los valores de CMI en comparación a los obtenidos para la formulación comercial de AmB (Fungizone ®). En conclusión, los materiales bioinspirados diseñados pueden ser empleados como vehículos nanoestructurados de fármacos como la AmB.
dc.description.abstractAmphotericin B (AmB) is a broad-spectrum antifungal, its current administration is limited by its toxicity related to its self-aggregation as it is an amphiphilic molecule. The use of polymeric micelles constitutes a promising alternative as an AmB vehicle with reduced toxicity. However, the micellar systems reported in the literature show weak interactions with AmB, resulting in low encapsulation percentages and high release rates. In the present investigation, bioinspired micellar delivery systems for AmB protocols were characterized in polyethylene glycol (PEG), polycaprolactone (PCL) and 5-methyl-5-propargiloxycarbonyl-1,3-dioxan-2-one (MCP), modified with biomolecules such as cholesterol, oleic acid and 1,2-distearoyl-sn-glycerol-3-phosphoethanolamine (DSPE). To this end, their ability to solubilize, the state of aggregation, release profiles and minimum inhibitory concentration (MIC) of the micellar systems was studied. In the same way its thermal and morphological properties were studied. It is proven that there is a close relationship between the chemical composition of polymeric materials and their performance as nanostructured AmB vehicles. The conjugation of these materials with biomolecules such as DSPE increased the encapsulation capacity of the drug up to 20%. It was determined that short PCL segments favor the encapsulation of AmB. The formulations studied allowed a controlled release with release rates close to 10% after 6 hours. The MIC values were reduced compared to the results for the commercial formulation of AmB (Fungizone ®). In conclusion, the proposed bioinspired materials can be used as nanostructured vehicles for drugs such as AmB.
dc.format.extent105
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/
dc.subjectmicela polimérica
dc.subjectanfotericina B
dc.subjectpolietilenglicol
dc.subjectpolicaprolactona
dc.subjectcopolímeros en bloque
dc.subjectencapsulación
dc.subject.ddc540 - Química y ciencias afines
dc.subject.ddc547 - Química orgánica
dc.titleCaracterización de copolímeros en bloque conjugados como vehículos nanoestructurados para Anfotericina B
dc.typeOther
dc.rights.spaAcceso abierto
dc.contributor.institutionUniversidad Nacional de Colombia - Sede Bogotá
dc.subject.keywordpolymeric micelle
dc.subject.keywordamphotericin B
dc.subject.keywordpolyethylene glycol
dc.subject.keywordpolycaprolactone
dc.subject.keywordaggregation
dc.subject.keywordencapsulation
dc.type.spaOtro
dc.type.hasversionAccepted Version
dc.coverage.programDepartamento de Química
dc.contributor.gruplacGrupo de Investigación en Macromoléculas
dc.description.additionalLínea de Investigación: Copolímeros funcionales
dc.coverage.modalityMaestria
dc.rights.accessRightsOpen Access
dc.rights.ccCC0 1.0 Universal
dc.identifier.bibliographicCitation[2] D. M. Kamiński, “Recent progress in the study of the interactions of amphotericin B with cholesterol and ergosterol in lipid environments,” Eur. Biophys. J., vol. 43, no. 10–11, pp. 453–467, 2014.
dc.identifier.bibliographicCitation[3] M. P. Haynes, P. L. G. Chong, H. R. Buckley, and R. A. Pieringer, “Fluorescence studies on the molecular action of amphotericin B on susceptible and resistant fungal cells,” Biochemistry, vol. 35, no. 24, pp. 7983–7992, 1996.
dc.identifier.bibliographicCitation[4] Z. Tang et al., “Polymeric nanostructured materials for biomedical applications,” Prog. Polym. Sci., vol. 60, pp. 86–128, 2016.
dc.identifier.bibliographicCitation[5] G. Vandermeulen, L. Rouxhet, A. Arien, M. E. Brewster, and V. Préat, “Encapsulation of amphotericin B in poly(ethylene glycol)-block-poly(ε- caprolactone-co-trimethylenecarbonate) polymeric micelles,” Int. J. Pharm., vol. 309, no. 1–2, pp. 234–240, 2006.
dc.identifier.bibliographicCitation[1] R. Stoodley, K. M. Wasan, and D. Bizzotto, “Fluorescence of amphotericin B-deoxycholate (Fungizone) monomers and aggregates and the effect of heat-treatment,” Langmuir, vol. 23, no. 17, pp. 8718–8725, 2007.
dc.identifier.bibliographicCitation[6] T. Ren et al., “Preparation and therapeutic efficacy of polysorbate-80-coated amphotericin B/PLA-b-PEG nanoparticles,” J. Biomater. Sci. Polym. Ed., vol. 20, no. 10, pp. 1369–1380, 2009.
dc.identifier.bibliographicCitation[7] J. C. Villamil, C. M. Parra-Giraldo, and L. D. Pérez, “Enhancing the performance of PEG-b-PCL copolymers as precursors of micellar vehicles for amphotericin B through its conjugation with cholesterol,” Colloids Surfaces A Physicochem. Eng. Asp., 2019.
dc.identifier.bibliographicCitation[8] Y. J. Rodriguez, L. F. Quejada, J. C. Villamil, Y. Baena, C. M. Parra-giraldo, and L. D. Perez, “Development of Amphotericin B Micellar Formulations Based on Copolymers of Poly ( ethylene glycol ) and Poly ( ε -caprolactone ) Conjugated with Retinol.”
dc.identifier.bibliographicCitation[9] C. Alvarez, D. H. Shin, and G. S. Kwon, “Reformulation of Fungizone by PEG-DSPE Micelles: Deaggregation and Detoxification of Amphotericin B,” Pharm. Res., vol. 33, no. 9, pp. 2098–2106, 2016.
dc.identifier.bibliographicCitation[10] R. Gref and A. Domb, “The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres,” Adv. Drug Deliv. Rev., vol. 16, no. 95, pp. 215–233, 1995.
dc.identifier.bibliographicCitation[11] R. Herbrecht, S. Natarajan-Amé, Y. Nivoix, and V. Letscher-Bru, “The lipid formulations of amphotericin B.,” Expert Opin. Pharmacother., vol. 4, no. 8, pp. 1277–1287, 2003.
dc.identifier.bibliographicCitation[12] A. del Palacio, J. Villar, and A. Alhambra, “Epidemiología de las candidiasis invasoras en población pediátrica y adulta,” Rev. Iberoam. Micol., vol. 26, no. 1, pp. 2–7, 2009.
dc.identifier.bibliographicCitation[13] J. Pemán, “Epidemiología general de la enfermedad fúngica invasora,” Enfermedades Infecc. y Microbiol. clínica, vol. 30, no. 2, pp. 90–8, 2012.
dc.identifier.bibliographicCitation[14] M. Mesquita Da Costa et al., “Cryptococcosis, A Risk for Immunocompromised and Immunocompetent Individuals,” Open Epidemiol. J., vol. 6, pp. 9–17, 2013.
dc.identifier.bibliographicCitation[15] J. Lizarazo, P. Escandón, C. I. Agudelo, and E. Castañeda, “Cryptococcosis in Colombian children and literature review,” Mem. Inst. Oswaldo Cruz, vol. 109, no. 6, pp. 797–804, 2014.
dc.identifier.bibliographicCitation[16] M. A. Pfaller and D. J. Diekema, “Epidemiology of invasive candidiasis: A persistent public health problem,” Clin. Microbiol. Rev., vol. 20, no. 1, pp. 133–163, 2007.
dc.identifier.bibliographicCitation[17] A. Lemke, A. F. Kiderlen, and O. Kayser, “Amphotericin B,” Appl. Microbiol. Biotechnol., vol. 68, no. 2, pp. 151–162, 2005.
dc.identifier.bibliographicCitation[18] F. Sangalli-Leite et al., “Amphotericin B mediates killing in Cryptococcus neoformans through the induction of a strong oxidative burst,” Microbes Infect., vol. 13, no. 5, pp. 457–467, 2011.
dc.identifier.bibliographicCitation[19] T. M. Anderson et al., “Amphotericin forms an extramembranous and fungicidal sterol sponge,” Nat. Chem. Biol., vol. 10, no. 5, pp. 400–406, 2014.
dc.identifier.bibliographicCitation[20] P. Laskar, S. Samanta, S. K. Ghosh, and J. Dey, “In vitro evaluation of pH-sensitive cholesterol-containing stable polymeric micelles for delivery of camptothecin,” J. Colloid Interface Sci., vol. 430, pp. 305–314, 2014.
dc.identifier.bibliographicCitation[21] C. Luengo-Alonso et al., “A novel performing PEG-cholane nanoformulation for Amphotericin B delivery,” Int. J. Pharm., vol. 495, no. 1, pp. 41–51, 2015.
dc.identifier.bibliographicCitation[22] Y. Kim, M. H. Pourgholami, D. L. Morris, and M. H. Stenzel, “Effect of cross-linking on the performance of micelles as drug delivery carriers: A cell uptake study,” Biomacromolecules, vol. 13, no. 3, pp. 814–825, 2012.
dc.identifier.bibliographicCitation[23] J. Miñones, J. Miñones, J. M. Rodríguez-Patino, O. Conde, and E. Iribarnegaray, “Miscibility of amphotericin B - Dipalmitoyl phosphatidyl serine mixed monolayers spread on the air/water interface,” J. Phys. Chem. B, vol. 107, no. 17, pp. 4189–4195, 2003.
dc.identifier.bibliographicCitation[24] R. Pérez, S. Villanueva, and R. Cosío, “El aceite de aguacate y sus propiedades nutricionales,” e-Gnosis, vol. 3, pp. 0–11, 2005.
dc.identifier.bibliographicCitation[25] A. E. Silva, G. Barratt, M. Cheŕon, and E. S. T. Egito, “Development of oil-in-water microemulsions for the oral delivery of amphotericin B,” Int. J. Pharm., vol. 454, no. 2, pp. 641–648, 2013.
dc.identifier.bibliographicCitation[26] P. Wasko, R. Luchowski, K. Tutaj, W. Grudzinski, P. Adamkiewicz, and W. I. Gruszecki, “Toward understanding of toxic side effects of a polyene antibiotic amphotericin B: Fluorescence spectroscopy reveals widespread formation of the specific supramolecular structures of the drug,” Mol. Pharm., vol. 9, no. 5, pp. 1511–1520, 2012.
dc.identifier.bibliographicCitation[27] I. L. Diaz, C. Parra, M. Linarez, and L. D. Perez, “Design of Micelle Nanocontainers Based on PDMAEMA-b-PCL-b-PDMAEMA Triblock Copolymers for the Encapsulation of Amphotericin B,” AAPS PharmSciTech, vol. 16, no. 5, pp. 1069–1078, 2015.
dc.identifier.bibliographicCitation[28] E. De Pablo, P. Ballesteros, and D. R. Serrano, “Unmet clinical needs in the treatment of systemic fungal infections: the role of amphotericin B and drug targeting,” Int. J. Pharm., 2017.
dc.identifier.bibliographicCitation[29] J. Zielińska, M. Wieczór, T. Bączek, M. Gruszecki, and J. Czub, “Thermodynamics and kinetics of amphotericin B self-association in aqueous solution characterized in molecular detail,” Nat. Publ. Gr., no. January, pp. 1–11, 2016.
dc.identifier.bibliographicCitation[30] J. P. Rao and K. E. Geckeler, “Polymer nanoparticles: Preparation techniques and size-control parameters,” Prog. Polym. Sci., vol. 36, no. 7, pp. 887–913, 2011.
dc.identifier.bibliographicCitation[31] M. C. Chen, K. Sonaje, K. J. Chen, and H. W. Sung, “A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery,” Biomaterials, vol. 32, no. 36, pp. 9826–9838, 2011.
dc.identifier.bibliographicCitation[32] S. B. H. Fessi, F. Puisieux, J.Ph. Devissaguet, N. Ammoury, “Nanocapsule formation by interfacial polymer deposition following solvent displacement,” Int. J. Pharm., vol. 55, pp. R1–R4, 1989.
dc.identifier.bibliographicCitation[33] C. C.-G. E. Marin, M. Briceño, “Critical evaluation of biodegradable polymers used in nanodrugs,” Int. J. Nanomedicine, vol. 8, pp. 3071–3091, 2013.
dc.identifier.bibliographicCitation[34] D. J. Mc Carthy, M. Malhotra, A. M. O’Mahony, J. F. Cryan, and C. M. O’Driscoll, “Nanoparticles and the blood-brain barrier: Advancing from in-vitro models towards therapeutic significance,” Pharm. Res., vol. 32, no. 4, pp. 1161–1185, 2015.
dc.identifier.bibliographicCitation[35] M. C. Urrejola et al., “Sistemas de Nanopartículas Poliméricas II: Estructura, Métodos de Elaboración, Características, Propiedades, Biofuncionalización y Tecnologías de Auto-Ensamblaje Capa por Capa (Layer-by-Layer Self-Assembly),” Int. J. Morphol., vol. 36, no. 4, pp. 1463–1471, 2018.
dc.identifier.bibliographicCitation[36] Y. Mai and A. Eisenberg, “Self-assembly of block copolymers,” Chem. Soc. Rev., vol. 41, no. 18, pp. 5969–5985, 2012.
dc.identifier.bibliographicCitation[37] G. Rojas, B. Vallejo, and J. Perilla, “Los biopolímeros como materiales para el desarrollo de productos en aplicaciones farmacéuticas y de uso biomédico,” Rev. Ing. E Investig., vol. 28, no. 1, pp. 57–71, 2008.
dc.identifier.bibliographicCitation[38] I. Katime, V. Sáez, E. Hernáez, and L. Sanz, “Liberación controlada de fármacos. micropartículas,” Rev. Iberoam. Polímeros, vol. 5, no. 2, pp. 87–101, 2004.
dc.identifier.bibliographicCitation[39] D. Ramos, M. Gómez, D. Fernández, and L. Nuñez, “Microesferas biodegradables de liberación controlada para administración parenteral,” Rev. Cuba. Farm., vol. 34, no. 1, pp. 70–77, 2000.
dc.identifier.bibliographicCitation[40] M. Barzegar-Jalali et al., “Kinetic analysis of drug release from nanoparticles,” J. Pharm. Pharm. Sci., vol. 11, no. 1, pp. 167–177, 2008.
dc.identifier.bibliographicCitation[41] G. H. Son, B. J. Lee, and C. W. Cho, “Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles,” J. Pharm. Investig., vol. 47, no. 4, pp. 287–296, 2017.
dc.identifier.bibliographicCitation[42] S. Dash, P. N. Murthy, L. Nath, and P. Chowdhury, “Kinetic modeling on drug release from controlled drug delivery systems,” Acta Pol. Pharm. - Drug Res., vol. 67, no. 3, pp. 217–223, 2010.
dc.identifier.bibliographicCitation[43] A. R. Voltan, G. Quindós, K. P. M. Alarcón, A. M. Fusco-Almeida, M. J. S. Mendes-Giannini, and M. Chorilli, “Fungal diseases: Could nanostructured drug delivery systems be a novel paradigm for therapy?,” Int. J. Nanomedicine, vol. 11, pp. 3715–3730, 2016.
dc.identifier.bibliographicCitation[44] B. Gaba, M. Fazil, A. Ali, S. Baboota, J. K. Sahni, and J. Ali, “Nanostructured lipid (NLCs) carriers as a bioavailability enhancement tool for oral administration,” Drug Deliv., vol. 22, no. 6, pp. 691–700, 2015.
dc.identifier.bibliographicCitation[45] M. Liu, M. Chen, and Z. Yang, “Design of amphotericin B oral formulation for antifungal therapy,” Drug Deliv., vol. 24, no. 1, pp. 1–9, 2017.
dc.identifier.bibliographicCitation[46] M. B. Chaudhari, P. P. Desai, P. A. Patel, and V. B. Patravale, “Solid lipid nanoparticles of amphotericin B (AmbiOnp): in vitro and in vivo assessment towards safe and effective oral treatment module,” Drug Deliv. Transl. Res., vol. 6, no. 4, pp. 354–364, 2016.
dc.identifier.bibliographicCitation[47] Z. Yang et al., “Development of Amphotericin B-Loaded Cubosomes Through the SolEmuls Technology for Enhancing the Oral Bioavailability,” AAPS PharmSciTech, vol. 13, no. 4, pp. 1483–1491, 2012.
dc.identifier.bibliographicCitation[48] M. Benincasa, S. Pacor, W. Wu, M. Prato, A. Bianco, and R. Gennaro, “Antifungal activity of amphotericin B conjugated to carbon nanotubes,” ACS Nano, vol. 5, no. 1, pp. 199–208, 2011.
dc.identifier.bibliographicCitation[49] J. L. Italia, M. M. Yahya, D. Singh, and M. N. V. Ravi Kumar, “Biodegradable nanoparticles improve oral bioavailability of amphotericin B and show reduced nephrotoxicity compared to intravenous fungizone®,” Pharm. Res., vol. 26, no. 6, pp. 1324–1331, 2009.
dc.identifier.bibliographicCitation[50] X. Zhang et al., “Preparation and self-assembly of amphiphilic triblock copolymers with polyrotaxane as a middle block and their application as carrier for the controlled release of Amphotericin B,” Polymer (Guildf)., vol. 50, no. 18, pp. 4343–4351, 2009.
dc.identifier.bibliographicCitation[51] M. L. Adams, D. R. Andes, and G. S. Kwon, “Amphotericin B encapsulated in micelles based on poly(ethylene oxide)-block-poly(L-amino acid) derivatives exerts reduced in vitro hemolysis but maintains potent in vivo antifungal activity,” Biomacromolecules, vol. 4, no. 3, pp. 750–757, 2003.
dc.identifier.bibliographicCitation[52] X. Tang et al., “Enhanced Antifungal Activity by Ab-Modified Amphotericin B-Loaded Nanoparticles Using a pH-Responsive Block Copolymer,” Nanoscale Res. Lett., vol. 10, no. 1, pp. 1–11, 2015.
dc.identifier.bibliographicCitation[53] Y. Wang et al., “Biodegradable functional polycarbonate micelles for controlled release of amphotericin B,” Acta Biomater., vol. 46, pp. 211–220, 2016.
dc.identifier.bibliographicCitation[54] C. H. Wang, W. T. Wang, and G. H. Hsiue, “Development of polyion complex micelles for encapsulating and delivering amphotericin B,” Biomaterials, vol. 30, no. 19, pp. 3352–3358, 2009.
dc.identifier.bibliographicCitation[56] M. J. Paquet, I. Fournier, J. Barwicz, P. Tancrède, and M. Auger, “The effects of amphotericin B on pure and ergosterol- or cholesterol-containing dipalmitoylphosphatidylcholine bilayers as viewed by2H NMR,” Chem. Phys. Lipids, vol. 119, no. 1–2, pp. 1–11, 2002.
dc.identifier.bibliographicCitation[57] J. C. Villamil, C. M. Parra-Giraldo, and L. D. Pérez, “Enhancing the performance of PEG-b-PCL copolymers as precursors of micellar vehicles for amphotericin B through its conjugation with cholesterol,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 572, no. March, pp. 79–87, 2019.
dc.identifier.bibliographicCitation[58] G. Ramage and B. L. Wickes, “Standardized Method for In Vitro Antifungal Susceptibility Testing of,” Society, vol. 45, no. 9, pp. 2475–2479, 2001.
dc.identifier.bibliographicCitation[59] P. B. Fai and A. Grant, “A rapid resazurin bioassay for assessing the toxicity of fungicides,” Chemosphere, vol. 74, no. 9, pp. 1165–1170, 2009.
dc.identifier.bibliographicCitation[60] E. M. Moctezuma, “La Teoría de Flory – Huggins en la Ingeniería de Soluciones y Mezclas de Polímeros,” ContactoS, vol. 68, pp. 54–62, 2008.
dc.identifier.bibliographicCitation[61] G. Odian, Principles of Polymerization, Cuarta Edi., vol. 37, no. 3. Staten Island, New York: John Wiley & Sons, Inc., 2004.
dc.identifier.bibliographicCitation[62] A. Angarita, “Síntesis de copolímeros dibloque biodegradables conjugados con biomoléculas como plataforma de administración de fármacos,” Universidad Nacional de Colombia, 2020.
dc.identifier.bibliographicCitation[63] A. Lavasanifar, J. Samuel, and G. S. Kwon, “Poly(ethylene oxide)-block-poly(,” Adv. Drug Deliv. Rev., vol. 54, pp. 169–190, 2002.
dc.identifier.bibliographicCitation[64] C. M. Hansen, “50 Years with solubility parameters - Past and future,” Prog. Org. Coatings, vol. 51, no. 1, pp. 77–84, 2004.
dc.identifier.bibliographicCitation[65] K. K. Gill, S. Nazzal, and A. Kaddoumi, “Paclitaxel loaded PEG5000-DSPE micelles as pulmonary delivery platform: Formulation characterization, tissue distribution, plasma pharmacokinetics, and toxicological evaluation,” Eur. J. Pharm. Biopharm., vol. 79, no. 2, pp. 276–284, 2011.
dc.identifier.bibliographicCitation[66] T. Elzein, H. Awada, M. Nasser-eddine, C. Delaite, and M. Brogly, “A model of chain folding in Polycaprolactone-b-Polymethyl Methacrylate diblock copolymers,” vol. 483, pp. 388–395, 2005.
dc.identifier.bibliographicCitation[67] A. Azam, K. E. Laflin, M. Jamal, R. Fernandes, and D. H. Gracias, “Self-folding micropatterned polymeric containers,” pp. 51–58, 2011.
dc.identifier.bibliographicCitation[68] A. K. Mohanty, U. Jana, P. K. Manna, and G. P. Mohanta, “Synthesis and evaluation of MePEG-PCL diblock copolymers: surface properties and controlled release behavior,” Prog. Biomater., vol. 4, no. 2–4, pp. 89–100, 2015.
dc.identifier.bibliographicCitation[69] G. Singhvi and M. Singh, “Review: In-vitro Drug Release Characterisation Models,” Int. J. Pharm. Stud. Res., vol. 2, no. 1, pp. 77–84, 2011.
dc.identifier.bibliographicCitation[70] D. R. Paul, “Elaborations on the Higuchi model for drug delivery,” Int. J. Pharm., vol. 418, no. 1, pp. 13–17, 2011.
dc.identifier.bibliographicCitation[71] J. Balcerzak and M. Mucha, “Analysis of Model Drug Release Kinetics from Complex Matrices of Polylactide-Chitosane,” Prog. Chem. Appl. Chitin Its Deriv., vol. 15, pp. 117–126, 2010.
dc.identifier.bibliographicCitation[72] M. Pérez Guzmán, Y. Orobio Lerma, and Y. Baena Aristizábal, “Comparative study for in vitro release of metformin of two immediate-release multisource products, marketed in Colombia,” Rev. Colomb. Ciencias Químico - Farm., vol. 42, no. 2, pp. 169–189, 2013.
dc.identifier.bibliographicCitation[73] R. Espada, S. Valdespina, C. Alfonso, G. Rivas, M. P. Ballesteros, and J. J. Torrado, “Effect of aggregation state on the toxicity of different amphotericin B preparations,” Int. J. Pharm., vol. 361, no. 1–2, pp. 64–69, 2008.
dc.identifier.bibliographicCitation[74] Y. Rodríguez Molina and L. Pérez Pérez, “Aproximaciones al diseño de copolímeros anfifílicos con potencial aplicación en la encapsulación y liberación de Anfotericina B,” Universidad Nacional de Colombia, 2019.
dc.identifier.bibliographicCitation[75] J. Xie, S. Singh-Babak, and L. Cowen, “Minimum Inhibitory Concentration (MIC) Assay for Antifungal Drugs,” Bio-Protocol, vol. 2, no. 20, pp. 1–7, 2012.
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Química


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/publicdomain/zero/1.0/This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit