dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.contributor.advisor | Montoya Castaño, Dolly |
dc.contributor.advisor | Márquez Godoy, Marco Antonio |
dc.contributor.author | Barragán Vidal, Carlos Eduardo |
dc.date.accessioned | 2020-08-24T19:34:21Z |
dc.date.available | 2020-08-24T19:34:21Z |
dc.date.issued | 2020-01-31 |
dc.identifier.citation | Barragán, C.E. (2020). Identificación de genes expresados diferencialmente durante la biooxidación de arsenopirita, por un consorcio de microorganismos aislados en una mina de Antioquia (tesis doctorado en Biotecnología). Universidad Nacional de Colombia (Sede Bogotá). Facultad de Ciencias. Colombia |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/78195 |
dc.description.abstract | Mines represent particular environments where several microorganisms fulfill crucial roles
in the biogeochemical cycles and are a very interesting biotechnological source.
Circumneutral effluents emanating from the Colombian gold mine El Zancudo led to isolate
acidophilic chemolithoautotrophic bacterial strains. The indigenous strains were screened
to obtain pure cultures of bacteria having resistance to high arsenic concentrations. Some
of the strains exhibiting relatively good resistance to arsenite and were able to catalyze
arsenopyrite oxidation through adaptation by successive increasing pulp concentrations
cultures. A defined bacterial consortium was prepared in a ratio 1:1 with the iron oxidizing
strain Acidithiobacillus ferrianus (IBUN Ppt12) and the sulfur oxidizing Acidithiobacillus sp.
(IBUN Pt1247 S3), this consortium showed iron and arsenic lixiviation while growing on
refractory ore composed mainly by arsenopyrite with a pulp density up to 10 % at 30 °C. In
the course of the adaptation to increasing pulp concentrations in medium, it was extracted
the total RNA from the consortium, getting samples of three different conditions, upon the
arsenopyrite concentration. The transcriptomic profile and differential expression analysis
confirmed that both strains harbor two copies of the ars operon. Several genes encoding
for transmembrane ion transport proteins, stress response mechanisms, accumulation of
inorganic polyphosphates and electron transport proteins have been identified as induced
during adaptation whilst RNA transcripts related to motility suggested some kind of
repression. This thesis makes up the first transcriptomic research of indigenous strains and
also provides highlights of the genetic response during the biooxidation of arsenopyrite,
becoming an important breakthrough for the biomining research in Colombia. |
dc.description.abstract | Las minas constituyen ecosistemas complejos caracterizados por la presencia de una gran
diversidad de microorganismos que cumplen importantes funciones en los ciclos
biogeoquímicos y poseen gran potencial biotecnológico. A partir de muestras colectadas
en efluentes con pH circum-neutro provenientes de la mina de oro El Zancudo, ubicada en
Antioquia, se logró el aislamiento de bacterias quimiolitoautótrofas acidófilas con
capacidad de tolerar altas concentraciones de arsénico en el medio de cultivo. Así mismo,
estas cepas mostraron capacidad de adaptarse a cultivos con incrementos progresivos de
arsenopirita en concentraciones de pulpa hasta del 10 %. Con este grupo de cepas se
estableció un consorcio conformado por una cepa de Acidithiobacillus ferrianus (IBUN
Ppt12) y una cepa de Acidithiobacillus sp. (IBUN Pt1247-S3) en proporción 1:1, que
demostraron la lixiviación de hierro y arsénico durante la biooxidación de arsenopirita a
30 °C. Durante el proceso de adaptación a incrementos sucesivos en el mineral se obtuvo
el RNA total de las células planctónicas en tres condiciones diferentes y tras secuenciación
del transcriptoma por RNA-Seq se obtuvo un perfil transcripcional del consorcio para cada
condición. El análisis de expresión diferencial confirmó la regulación de genes asociados
con los operones ars presentes por duplicado en ambas cepas. Se pudo establecer la
inducción de genes relacionados con transporte de moléculas a través de membrana,
mecanismos de respuesta al estrés, acumulación de polifosfatos inorgánicos y procesos
de biooxidación; así como también, la represión de varios genes asociados con movilidad.
Este proyecto constituye la primera investigación de transcriptómica con cepas acidófilas
nativas y proporciona evidencia sobre la respuesta genética ocurrida durante la
biooxidación de arsenopirita, un avance importante en el estudio y aplicación de la
biominería en Colombia. |
dc.description.sponsorship | Vicerrectoria de Investigación - DIEB |
dc.format.extent | 175 |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.subject.ddc | 570 - Biología |
dc.subject.ddc | 600 - Tecnología (Ciencias aplicadas) |
dc.title | Identificación de genes expresados diferencialmente durante la biooxidación de arsenopirita, por un consorcio de microorganismos aislados en una mina de Antioquia |
dc.type | Trabajo de grado - Doctorado |
dc.rights.spa | Acceso abierto |
dc.description.project | Aislamiento e identificación de cepas tolerantes a arsénico con potencial biotecnológico en biohidrometalurgía |
dc.description.additional | Línea de Investigación: Bioprospección de microorganismos con potencial en biominería |
dc.type.driver | info:eu-repo/semantics/doctoralThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Biotecnología |
dc.contributor.researchgroup | Bioprocesos y bioprospección |
dc.description.degreelevel | Doctorado |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.references | Ajees, A. A., Yang, J., Rosen, B. P. (2011). The ArsD as (III) metallochaperone. Biometals, 24(3): 391-399. |
dc.relation.references | Arroyave, D, Márquez M, Gallego D, Pacheco, G. (2010). Evaluación y caracterización mineralógica del proceso de biooxidación en un reactor continuo de tanque agitado. Dyna, 77(164):18-28. |
dc.relation.references | Ben Fekih, I., Zhang, C., Li, Y. P., Zhao, Y., Alwathnani, H. A., Saquib, Q., ..., Cervantes, C. (2018). Distribution of arsenic resistance genes in prokaryotes. Frontiers in Microbiology, 9: 2473. |
dc.relation.references | Bertin, P., Heinrich-Salmeron, A., Pelletier, E., Goulhen-Chollet, F., Arsène-Ploetze, F., Gallien, S., Lauga, B., Casiot, C., Calteau, A., Vallenet, D., Bonnefoy, V. (2011). Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta- and proteo-genomics. The ISME Journal, 5(11): 1735-1747. |
dc.relation.references | Brierley, C.L. (2016). Biological processing: Biological processing of Sulfidic ores and concentrates -integrating innovations. En: Lakshmanan, V.I. et al. (eds). Innovative Process Development in Metallurgical Industry. Springer International Publishing. pp: 109-135. |
dc.relation.references | Busenlehner, L. S., Pennella, M. A., Giedroc, D. P. (2003). The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiology Reviews, 27(2-3): 131-143. |
dc.relation.references | Cárdenas, J.P., Quatrini, R., Holmes, D.S. (2016). Genomic and metagenomic challenges and opportunities for bioleaching: a mini-review. Research in Microbiology 167(7): 529-538. |
dc.relation.references | Carrillo-Pedroza, F. R., Soria-Aguilar, M. J., Salinas-Rodríguez, E., Martínez-Luevanos, A., Pecina-Treviño, T. E., Dávalos-Sánchez, A. (2012). Oxidative hydrometallurgy of sulphide minerals. In Nusheh et al. (Eds). Recent Researches in Metallurgical Engineering: From Extraction to Forming: 25-42. |
dc.relation.references | Casas-Flores, S., Gómez-Rodríguez, E.Y., García-Meza, J.V. (2015). Community of thermoacidophilic and arsenic resistant microorganisms isolated from a deep profile of mine heaps. AMB Express, 5(1): 1. |
dc.relation.references | Chen, J., Bhattacharjee, H., Rosen, B. P. (2015). ArsH is an organoarsenical oxidase that confers resistance to trivalent forms of the herbicide monosodium methylarsenate and the poultry growth promoter roxarsone. Molecular Microbiology, 96(5): 1042-1052. |
dc.relation.references | Christel, S., Fridlund, J., Buetti-Dinh, A., Buck, M., Watkin, E. L., Dopson, M. (2016). RNA transcript sequencing reveals inorganic sulfur compound oxidation pathways in the acidophile Acidithiobacillus ferrivorans. FEMS Microbiology Letters, 363(7): fnw057. |
dc.relation.references | Ciftci, H., Akcil, A. (2013). Biohydrometallurgy in Turkish gold mining: First shake flask and bioreactor studies. Minerals Engineering, 46-47: 25-33. |
dc.relation.references | Corkhill, C.L., Vaughan, D.J. (2009). Arsenopyrite oxidation – A review. Applied Geochemistry, 24(12): 2342-2361. |
dc.relation.references | Deschênes G. (2016). Advances in the Cyanidation of Gold. En: Adams M. (Ed). Gold ore processing: Project Development and Operations. Second edition. El sevier. pp: 429-446. |
dc.relation.references | Dhuldhaj U.P., Yadav I.C., Singh S., Sharma N.K. (2013). Microbial Interactions in the Arsenic Cycle: Adoptive Strategies and Applications in Environmental Management. Reviews of Environmental Contamination and Toxicology 224. DOI 10.1007/978-1-4614-5882-1_1. |
dc.relation.references | Donati E.R, Castro C., Urbieta M.F. (2016). Thermophilic microorganisms in biomining. World Journal of Microbiology and Biotechnology, 32:179. |
dc.relation.references | Dopson, M., Johnson, D.B. (2012) Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms. Environmental Microbiology 14(10): 2620–2631. |
dc.relation.references | Dopson, M., Holmes, D. S. (2014). Metal resistance in acidophilic microorganisms and its significance for biotechnologies. Applied Microbiology and Biotechnology, 98(19): 8133-8144. |
dc.relation.references | Drewniak, L., Sklodowska, A. (2013). Arsenic-transforming microbes and their role in biomining processes. Environmental Science and Pollution Research, 20(11): 7728-7739. |
dc.relation.references | Ehrlich HL., Newman DK., Kappler A. (2015). Ehrlich’s Geomicrobiology, 6th ed. CRC Press, Florida. pp: 297–321. |
dc.relation.references | Fan, W., Peng, Y., Meng, Y., Zhang, W., Zhu, N., Wang, J., ..., Dang, Z. (2018). Transcriptomic Analysis Reveals Reduced Inorganic Sulfur Compound Oxidation Mechanism in Acidithiobacillus ferrianus. Microbiology, 87(4): 486-501. |
dc.relation.references | Fernández, M., Mustin, C., de Donato, P., Barres, O., Marion, P., Berthelin, J. (1995). Occurrences at mineral–bacteria interface during oxidation of arsenopyrite by Thiobacillus ferrooxidans. Biotechnology and Bioengineering, 46(1): 13-21. |
dc.relation.references | Gahan, C. S., Srichandan, H., Kim, D. J., Akcil, A. (2012). Biohydrometallurgy and biomineral processing technology: A review on its past, present and future. Research Journal of Recent Sciences, 1(10): 85–99. |
dc.relation.references | Gentina J. C., Acevedo F. (2005). Biolixiviación de minerales de oro. En: Acevedo y Gentina (eds). Fundamentos y Perspectivas de las Tecnologías Biomineras. pp: 79-91. |
dc.relation.references | Hackl, R. P., Wright, F. R., Bruynesteyn, A. (1989). Adapting bacteria to low pH and high arsenic concentration for use in oxidizing sulfide ores, U.S. Patent No. 4,888,293. |
dc.relation.references | Hol, A., van der Weijden, R. D., Weert, G. V., Kondos, P., Buisman, C.J.N. (2011). Processing of Arsenopyritic gold concentrates by partial biooxidation followed by bioreduction. Environmental Science and Technology, 45: 6316–6321. |
dc.relation.references | Hong J., Silva R., Park J., Lee E., Park J., Kim H. (2016). Adaptation of a mixed culture of acidophiles for a tank biooxidation of refractory gold concentrates containing a high concentration of arsenic. Journal of Bioscience and Bioengineering 121(5): 536-542. |
dc.relation.references | Jiang H., Liang, Y., Yin, H., Xiao, Y., Guo, X., Xu, Y., Hu, Q., Liu, H., Liu, X. (2015). Effects of Arsenite Resistance on the Growth and Functional Gene Expression of Leptospirillum ferriphilum and Acidithiobacillus thiooxidans in Pure Culture and Coculture. BioMed Research International. Volume 2015, Article ID 203197, http://dx.doi.org/10.1155/2015/203197. |
dc.relation.references | Johnson, D.B. (2008). Biodiversity and interactions of acidophiles: Key to understanding and optimizing microbial processing of ores and concentrates. Transactions of Nonferrous Metals Society of China, 18(6): 1367-1373. |
dc.relation.references | Johnson, D.B. (2014). Biomining—biotechnologies for extracting and recovering metals from ores and waste materials. Current opinion in biotechnology, 30: 24-31. |
dc.relation.references | Kaksonen, A.H., Mudunuru, B.M., Hackl, R. (2014). The role of microorganisms in gold processing and recovery—A review. Hydrometallurgy, 142: 70-83. |
dc.relation.references | Karthikeyan, O.P., Rajasekar, A., Balasubramanian, R. (2015). Bio-Oxidation and Biocyanidation of Refractory Mineral Ores for Gold Extraction: A Review. Critical Reviews in Environmental Science and Technology, 45(15):1611-1643. |
dc.relation.references | Kelly D., Wood A. E. (2014). The Family Acidithiobacillaceae en Rosenberg et al. (eds.). The Prokaryotes – Gammaproteobacteria. Springer-Verlag Berlin Heidelberg. pp: 15-25. |
dc.relation.references | Kloppers A., Larmuth K., Deane S., Rawlings D. (2008). Leptospirilli from different continents have acquired related arsenic-resistance transposons. Hydrometallurgy 94: 170–174. |
dc.relation.references | Leng F., Li K., Zhang X., Li Y., Zhu Y., Lu J., Li H. (2009). Comparative study of inorganic arsenic resistance of several strains of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. Hydrometallurgy 98: 235–240. |
dc.relation.references | Ly M., van Niekerk, J. (2006). Biooxidation of arsenopyrite concentrate using BIOX® process: Industrial experience in Tamboraque, Perú. Hydrometallurgy, 83(1): 90-96. |
dc.relation.references | Ma, L., Wang, H., Wu, J., Wang, Y., Zhang, D., Liu, X. (2019). Metatranscriptomics reveals microbial adaptation and resistance to extreme environment coupling with bioleaching performance. Bioresource technology, 280, 9-17. |
dc.relation.references | Mahmoud, A., Cézac, P., Hoadley, A.F., Contamine, F., D'Hugues, P. (2016). A review of sulfide minerals microbially assisted leaching in stirred tank reactors. International Biodeterioration & Biodegradation. http://dx.doi.org/10.1016/j.ibiod.2016.09.015 |
dc.relation.references | Márquez, M., Gaspar, J., Bessler, K.E. ; Magela, G. (2006). Process mineralogy of bacterial oxidized gold ore in São Bento Mine (Brasil). Hydrometallurgy, 83(1): 114-123. |
dc.relation.references | Márquez, M. A., Ospina, J. D., Morales, A. L. (2012). New insights about the bacterial oxidation of arsenopyrite: A mineralogical scope. Minerals Engineering, 39: 248-254. |
dc.relation.references | Marsden, J., House, I. (2006). The chemistry of gold extraction. Second edition. Society for Mining, Metallurgy, and Exploration, Inc. Colorado, USA. |
dc.relation.references | Martínez, P., Vera, M., Bobadilla-Fazzini, R.A. (2015). Omics on bioleaching: current and future impacts. Applied microbiology and biotechnology, 99(20): 8337-8350. |
dc.relation.references | Moya, A., Falagán, C., Johnson D.B., Quatrini, R. (2018). A polyphasic and genomic evaluation of Acidithiobacillus thiooxidans strain diversity uncovers cryptic lineages. En Moracci M (Presidencia). 12th International Congress of Extremophiles. Poster (P113) presentado el Sep 16/20, 2018, Ischia, Italia. |
dc.relation.references | Nareshkumar, R., Nagendran, R., Parvathi, K. (2008). Bioleaching of heavy metals from contaminated soil using Acidithiobacillus thiooxidans: effect of sulfur/soil ratio. World Journal of Microbiology and Biotechnology, 24(8): 1539-1546. |
dc.relation.references | Norris, P. R., Falagán, C., Moya-Beltrán, A., Castro, M., Quatrini, R., Johnson, D.B. (2020). Acidithiobacillus ferrianus sp. nov.: an ancestral extremely acidophilic and facultatively anaerobic chemolithoautotroph. Extremophiles 24: 329-337. |
dc.relation.references | Nuñez, H., Moya-Beltrán, A., Covarrubias, P. C., Issotta, F., Cárdenas, J. P., González, M., ..., Quatrini, R. (2017). Molecular systematics of the genus Acidithiobacillus: insights into the phylogenetic structure and diversification of the taxon. Frontiers in Microbiology, 8: 30. |
dc.relation.references | Ofori-Sarpong, G., Tien, M., Osseo-Asare, K. (2010). Myco-hydrometallurgy: Coal model for potential reduction of preg-robbing capacity of carbonaceous gold ores using the fungus, Phanerochaete chrysosporium. Hydrometallurgy,102: 66–72. |
dc.relation.references | Olumbambi, P. A., Potgieter, J. H., Ndlovu, S., Borode, J. (2009) Electrochemical studies on interplay of mineralogical variations and particle size on bioleaching low grade complex sulfide ores. Transactions of Nonferrous Metals Society of China, 19: 1312–1325. |
dc.relation.references | Ospina, J.D., Bedoya, L.O., Builes, J.G., Restrepo, E.M., Márquez, M.A (2011). Aplicaciones biotecnológicas en minería aurífera: Estado del arte sobre la oxidación bacteriana de arsenopirita (FeAsS). Revista Informador Técnico, (75):53-65. |
dc.relation.references | Ospina, J.D., Restrepo, E.M, Márquez, M.A, Morales A.L. (2012). Biooxidación de concentrados de arsenopirita por Acidithiobacillus ferrooxidans en matraz agitados. Revista Colombiana de Biotecnología XIV (1): 135-145. |
dc.relation.references | Ossa-Henao, D. M., Márquez. M. A. (2010). Jarosite pseudomorph formation from arsenopyrite oxidation using Acidithiobacillus ferrooxidans. Hydrometallurgy, 104(2): 162-168. |
dc.relation.references | Pandey, S., Rai, R., Rai, L.C. (2015). Biochemical and Molecular Basis of Arsenic Toxicity and Tolerance in Microbes and Plants. En Flora SJS (ed.) Handbook of Arsenic Toxicology, pp:627-674. |
dc.relation.references | Qin, W., Liu, K., Diao, M., Wang, J., Zhang, Y., Yang, C., Jiao, F. (2013). Oxidation of arsenite (As (III)) by ferric iron in the presence of pyrite and a mixed moderately thermophilic culture. Hydrometallurgy, 137: 53-59. |
dc.relation.references | Rawlings D.E. (2002). Heavy metal mining using microbes. Annual Reviews in Microbiology 56:65–91 |
dc.relation.references | Rawlings, D. E. (2008). High level arsenic resistance in bacteria present in biooxidation tanks used to treat gold-bearing arsenopyrite concentrates: A review. Transactions of Nonferrous Metals Society of China, 18(6): 1311-1318. |
dc.relation.references | Rawlings, D.E., Johnson, D.B. (2007) The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology, 153(2): 315-324. |
dc.relation.references | Sand, W., Gehrke, T., Jozsa, P.G., Schippers, A. (2001). (Bio) chemistry of bacterial leaching—direct vs. indirect bioleaching. Hydrometallurgy, 59(2):159-175. |
dc.relation.references | Schippers, A., Breuker, A., Blazejak, A., Bosecker, K., Kock, D., Wright, T.L. (2010). The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe (II)-oxidizing bacteria. Hydrometallurgy, 104(3):342-350. |
dc.relation.references | Schippers, A; Hedrich, S; Vasters, J; Drobe, M; Sand, W., Willscher, S. (2014). Biomining: Metal Recovery from Ores with Microorganisms. Advances in Biochemistry Engineering and Biothecnology, 141: 1-147. |
dc.relation.references | Tanaka, M., Yamaji, Y., Fukano, Y., Shimada, K., Ishibashi, J.I., Hirajima, T., Sasaki, K., Sawada, M., Okibe, N. (2015). Biooxidation of Gold-, Silver, and Antimony-Bearing Highly Refractory Polymetallic Sulfide Concentrates, and its Comparison with Abiotic Pretreatment Techniques. Geomicrobiology Journal, 32(6): 538-548. |
dc.relation.references | Tang, D., Duan, J., Gao, Q., Zhao, Y., Li, Y., Chen, P., ..., Li, H. (2018). Strand-specific RNA-seq analysis of the Acidithiobacillus ferrooxidans transcriptome in response to magnesium stress. Archives of Microbiology, 200(7): 1025-1035. |
dc.relation.references | Travisany, D., Cortés, M.P., Latorre, M., Di Genova, A., Budinich, M., Bobadilla-Fazzini, R.A., Parada, P., González, M., Maass, A. (2014). A new genome of Acidithiobacillus thiooxidans provides insights into adaptation to a bioleaching environment. Research in Microbiology, 165(9):743-752. |
dc.relation.references | Tsaplina I. A., Panyushkina, A. E., Melamud, V. S., Grigor’eva, N. V., Kondrat’eva T. F. (2014). Leaching of Pyrite–Arsenopyrite Concentrate in Bioreactors during Continuous Cultivation of a Thermoacidophilic Microbial Community. Microbiology, Vol. 83 (5): 568–576. |
dc.relation.references | Tuffin, I. M., de Groot, P., Deane, S. M., Rawlings, D. E. (2005). An unusual Tn21-like transposon containing an ars operon is present in highly arsenic-resistant strains of the biomining bacterium Acidithiobacillus caldus. Microbiology, 151(9): 3027-3039. |
dc.relation.references | Valenzuela, L., Chi, A., Beard, S., Orell, A., Guiliani, N., Shabanowitz, J., Hunt, D.F., Jerez, C.A. (2006). Genomics, metagenomics and proteomics in biomining microorganisms. Biotechnology Advances, 24(2):197-211. |
dc.relation.references | van Aswegen, P.C., Van Niekerk, J., Olivier, W. (2007). The BIOX™ process for the treatment of refractory gold concentrates. En Rawlings D.E.; Johnson D.B (eds). Biomining. Springer Berlin Heidelberg. pp:1-33. |
dc.relation.references | Watling, H. (2016). Microbiological Advances in Biohydrometallurgy. Minerals 6(2):49; doi:10.3390/min6020049. |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.proposal | Acidithiobacillus sp. |
dc.subject.proposal | Acidithiobacillus sp. |
dc.subject.proposal | Cepas nativas |
dc.subject.proposal | Indigenous strains |
dc.subject.proposal | Biooxidation |
dc.subject.proposal | Biooxidación |
dc.subject.proposal | Arsenopyrite |
dc.subject.proposal | Arsenopirita |
dc.subject.proposal | Transcriptomics |
dc.subject.proposal | Transcriptómica |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |